Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.200
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 185(16): 2899-2917.e31, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35914528

RESUMO

Glioblastomas are incurable tumors infiltrating the brain. A subpopulation of glioblastoma cells forms a functional and therapy-resistant tumor cell network interconnected by tumor microtubes (TMs). Other subpopulations appear unconnected, and their biological role remains unclear. Here, we demonstrate that whole-brain colonization is fueled by glioblastoma cells that lack connections with other tumor cells and astrocytes yet receive synaptic input from neurons. This subpopulation corresponds to neuronal and neural-progenitor-like tumor cell states, as defined by single-cell transcriptomics, both in mouse models and in the human disease. Tumor cell invasion resembled neuronal migration mechanisms and adopted a Lévy-like movement pattern of probing the environment. Neuronal activity induced complex calcium signals in glioblastoma cells followed by the de novo formation of TMs and increased invasion speed. Collectively, superimposing molecular and functional single-cell data revealed that neuronal mechanisms govern glioblastoma cell invasion on multiple levels. This explains how glioblastoma's dissemination and cellular heterogeneity are closely interlinked.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Astrócitos/patologia , Encéfalo/patologia , Neoplasias Encefálicas/patologia , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Camundongos , Invasividade Neoplásica , Neurônios/fisiologia
2.
Cell ; 183(6): 1617-1633.e22, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33259802

RESUMO

Histone H3.3 glycine 34 to arginine/valine (G34R/V) mutations drive deadly gliomas and show exquisite regional and temporal specificity, suggesting a developmental context permissive to their effects. Here we show that 50% of G34R/V tumors (n = 95) bear activating PDGFRA mutations that display strong selection pressure at recurrence. Although considered gliomas, G34R/V tumors actually arise in GSX2/DLX-expressing interneuron progenitors, where G34R/V mutations impair neuronal differentiation. The lineage of origin may facilitate PDGFRA co-option through a chromatin loop connecting PDGFRA to GSX2 regulatory elements, promoting PDGFRA overexpression and mutation. At the single-cell level, G34R/V tumors harbor dual neuronal/astroglial identity and lack oligodendroglial programs, actively repressed by GSX2/DLX-mediated cell fate specification. G34R/V may become dispensable for tumor maintenance, whereas mutant-PDGFRA is potently oncogenic. Collectively, our results open novel research avenues in deadly tumors. G34R/V gliomas are neuronal malignancies where interneuron progenitors are stalled in differentiation by G34R/V mutations and malignant gliogenesis is promoted by co-option of a potentially targetable pathway, PDGFRA signaling.


Assuntos
Neoplasias Encefálicas/genética , Carcinogênese/genética , Glioma/genética , Histonas/genética , Interneurônios/metabolismo , Mutação/genética , Células-Tronco Neurais/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Neoplasias Encefálicas/patologia , Carcinogênese/patologia , Linhagem da Célula , Reprogramação Celular/genética , Cromatina/metabolismo , Embrião de Mamíferos/metabolismo , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Glioma/patologia , Histonas/metabolismo , Lisina/metabolismo , Camundongos Endogâmicos C57BL , Modelos Biológicos , Gradação de Tumores , Oligodendroglia/metabolismo , Regiões Promotoras Genéticas/genética , Prosencéfalo/embriologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Transcrição Gênica , Transcriptoma/genética
3.
Cell ; 179(7): 1483-1498.e22, 2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31813625

RESUMO

Metabolism has been shown to control peripheral immunity, but little is known about its role in central nervous system (CNS) inflammation. Through a combination of proteomic, metabolomic, transcriptomic, and perturbation studies, we found that sphingolipid metabolism in astrocytes triggers the interaction of the C2 domain in cytosolic phospholipase A2 (cPLA2) with the CARD domain in mitochondrial antiviral signaling protein (MAVS), boosting NF-κB-driven transcriptional programs that promote CNS inflammation in experimental autoimmune encephalomyelitis (EAE) and, potentially, multiple sclerosis. cPLA2 recruitment to MAVS also disrupts MAVS-hexokinase 2 (HK2) interactions, decreasing HK enzymatic activity and the production of lactate involved in the metabolic support of neurons. Miglustat, a drug used to treat Gaucher and Niemann-Pick disease, suppresses astrocyte pathogenic activities and ameliorates EAE. Collectively, these findings define a novel immunometabolic mechanism that drives pro-inflammatory astrocyte activities, outlines a new role for MAVS in CNS inflammation, and identifies candidate targets for therapeutic intervention.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Astrócitos/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Fosfolipases A2 Secretórias/metabolismo , 1-Desoxinojirimicina/análogos & derivados , 1-Desoxinojirimicina/farmacologia , 1-Desoxinojirimicina/uso terapêutico , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Células Cultivadas , Encefalomielite Autoimune Experimental/tratamento farmacológico , Feminino , Hexoquinase/metabolismo , Humanos , Ácido Láctico/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Fosfolipases A2 Secretórias/genética
4.
Cell ; 177(5): 1280-1292.e20, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31031006

RESUMO

Hyperactivity and disturbances of attention are common behavioral disorders whose underlying cellular and neural circuit causes are not understood. We report the discovery that striatal astrocytes drive such phenotypes through a hitherto unknown synaptic mechanism. We found that striatal medium spiny neurons (MSNs) triggered astrocyte signaling via γ-aminobutyric acid B (GABAB) receptors. Selective chemogenetic activation of this pathway in striatal astrocytes in vivo resulted in acute behavioral hyperactivity and disrupted attention. Such responses also resulted in upregulation of the synaptogenic cue thrombospondin-1 (TSP1) in astrocytes, increased excitatory synapses, enhanced corticostriatal synaptic transmission, and increased MSN action potential firing in vivo. All of these changes were reversed by blocking TSP1 effects. Our data identify a form of bidirectional neuron-astrocyte communication and demonstrate that acute reactivation of a single latent astrocyte synaptogenic cue alters striatal circuits controlling behavior, revealing astrocytes and the TSP1 pathway as therapeutic targets in hyperactivity, attention deficit, and related psychiatric disorders.


Assuntos
Astrócitos/metabolismo , Transtorno do Deficit de Atenção com Hiperatividade/metabolismo , Comportamento Animal , Comunicação Celular , Neurônios/metabolismo , Transdução de Sinais , Sinapses/metabolismo , Animais , Astrócitos/patologia , Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno do Deficit de Atenção com Hiperatividade/patologia , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/patologia , Receptores de GABA-B/genética , Receptores de GABA-B/metabolismo , Sinapses/genética , Trombospondina 1/genética , Trombospondina 1/metabolismo , Ácido gama-Aminobutírico/genética , Ácido gama-Aminobutírico/metabolismo
5.
Cell ; 164(4): 603-15, 2016 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26871627

RESUMO

The amyloid hypothesis for Alzheimer's disease (AD) posits a neuron-centric, linear cascade initiated by Aß and leading to dementia. This direct causality is incompatible with clinical observations. We review evidence supporting a long, complex cellular phase consisting of feedback and feedforward responses of astrocytes, microglia, and vasculature. The field must incorporate this holistic view and take advantage of advances in single-cell approaches to resolve the critical junctures at which perturbations initially amenable to compensatory feedback transform into irreversible, progressive neurodegeneration.


Assuntos
Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/metabolismo , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Encéfalo/patologia , Humanos , Camundongos , Microglia/metabolismo , Microglia/patologia , Vias Neurais , Oligodendroglia/patologia , Análise de Célula Única
6.
Nature ; 627(8005): 865-872, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38509377

RESUMO

Disease-associated astrocyte subsets contribute to the pathology of neurologic diseases, including multiple sclerosis and experimental autoimmune encephalomyelitis1-8 (EAE), an experimental model for multiple sclerosis. However, little is known about the stability of these astrocyte subsets and their ability to integrate past stimulation events. Here we report the identification of an epigenetically controlled memory astrocyte subset that exhibits exacerbated pro-inflammatory responses upon rechallenge. Specifically, using a combination of single-cell RNA sequencing, assay for transposase-accessible chromatin with sequencing, chromatin immunoprecipitation with sequencing, focused interrogation of cells by nucleic acid detection and sequencing, and cell-specific in vivo CRISPR-Cas9-based genetic perturbation studies we established that astrocyte memory is controlled by the metabolic enzyme ATP-citrate lyase (ACLY), which produces acetyl coenzyme A (acetyl-CoA) that is used by histone acetyltransferase p300 to control chromatin accessibility. The number of ACLY+p300+ memory astrocytes is increased in acute and chronic EAE models, and their genetic inactivation ameliorated EAE. We also detected the pro-inflammatory memory phenotype in human astrocytes in vitro; single-cell RNA sequencing and immunohistochemistry studies detected increased numbers of ACLY+p300+ astrocytes in chronic multiple sclerosis lesions. In summary, these studies define an epigenetically controlled memory astrocyte subset that promotes CNS pathology in EAE and, potentially, multiple sclerosis. These findings may guide novel therapeutic approaches for multiple sclerosis and other neurologic diseases.


Assuntos
Astrócitos , Encefalomielite Autoimune Experimental , Memória Epigenética , Esclerose Múltipla , Animais , Feminino , Humanos , Masculino , Camundongos , Acetilcoenzima A/metabolismo , Astrócitos/enzimologia , Astrócitos/metabolismo , Astrócitos/patologia , ATP Citrato (pro-S)-Liase/metabolismo , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Sequenciamento de Cromatina por Imunoprecipitação , Sistemas CRISPR-Cas , Encefalomielite Autoimune Experimental/enzimologia , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Inflamação/enzimologia , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Esclerose Múltipla/enzimologia , Esclerose Múltipla/genética , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Análise da Expressão Gênica de Célula Única , Transposases/metabolismo
7.
Nature ; 634(8033): 415-423, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39232166

RESUMO

Astrocytes are the most abundant cell type in the mammalian brain and provide structural and metabolic support to neurons, regulate synapses and become reactive after injury and disease. However, a small subset of astrocytes settles in specialized areas of the adult brain where these astrocytes instead actively generate differentiated neuronal and glial progeny and are therefore referred to as neural stem cells1-3. Common parenchymal astrocytes and quiescent neural stem cells share similar transcriptomes despite their very distinct functions4-6. Thus, how stem cell activity is molecularly encoded remains unknown. Here we examine the transcriptome, chromatin accessibility and methylome of neural stem cells and their progeny, and of astrocytes from the striatum and cortex in the healthy and ischaemic adult mouse brain. We identify distinct methylation profiles associated with either astrocyte or stem cell function. Stem cell function is mediated by methylation of astrocyte genes and demethylation of stem cell genes that are expressed later. Ischaemic injury to the brain induces gain of stemness in striatal astrocytes7. We show that this response involves reprogramming the astrocyte methylome to a stem cell methylome and is absent if the de novo methyltransferase DNMT3A is missing. Overall, we unveil DNA methylation as a promising target for regenerative medicine.


Assuntos
Astrócitos , Isquemia Encefálica , Metilação de DNA , Epigênese Genética , Saúde , Células-Tronco Neurais , Animais , Masculino , Camundongos , Astrócitos/citologia , Astrócitos/metabolismo , Astrócitos/patologia , Isquemia Encefálica/patologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/genética , Reprogramação Celular/genética , Córtex Cerebral/citologia , Cromatina/metabolismo , Cromatina/genética , Corpo Estriado/citologia , Corpo Estriado/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA/genética , DNA Metiltransferase 3A/metabolismo , Epigenoma , Camundongos Endogâmicos C57BL , Neostriado/citologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Tecido Parenquimatoso/citologia , Medicina Regenerativa , Transcriptoma
8.
Nature ; 633(8030): 634-645, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39198642

RESUMO

Alzheimer's disease (AD) has recently been associated with diverse cell states1-11, yet when and how these states affect the onset of AD remains unclear. Here we used a data-driven approach to reconstruct the dynamics of the brain's cellular environment and identified a trajectory leading to AD that is distinct from other ageing-related effects. First, we built a comprehensive cell atlas of the aged prefrontal cortex from 1.65 million single-nucleus RNA-sequencing profiles sampled from 437 older individuals, and identified specific glial and neuronal subpopulations associated with AD-related traits. Causal modelling then prioritized two distinct lipid-associated microglial subpopulations-one drives amyloid-ß proteinopathy while the other mediates the effect of amyloid-ß on tau proteinopathy-as well as an astrocyte subpopulation that mediates the effect of tau on cognitive decline. To model the dynamics of cellular environments, we devised the BEYOND methodology, which identified two distinct trajectories of brain ageing, each defined by coordinated progressive changes in certain cellular communities that lead to (1) AD dementia or (2) alternative brain ageing. Thus, we provide a cellular foundation for a new perspective on AD pathophysiology that informs personalized therapeutic development, targeting different cellular communities for individuals on the path to AD or to alternative brain ageing.


Assuntos
Envelhecimento , Doença de Alzheimer , Biologia Celular , Córtex Pré-Frontal , Idoso , Idoso de 80 Anos ou mais , Animais , Feminino , Humanos , Masculino , Envelhecimento/genética , Envelhecimento/metabolismo , Envelhecimento/patologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Astrócitos/patologia , Astrócitos/metabolismo , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Microglia/patologia , Microglia/metabolismo , Neurônios/patologia , Neurônios/metabolismo , Córtex Pré-Frontal/patologia , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/metabolismo , Análise da Expressão Gênica de Célula Única , Proteínas tau/metabolismo , Tauopatias/genética , Tauopatias/metabolismo , Tauopatias/patologia , Atlas como Assunto
9.
Nature ; 632(8026): 858-868, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39048816

RESUMO

Alzheimer's disease is the leading cause of dementia worldwide, but the cellular pathways that underlie its pathological progression across brain regions remain poorly understood1-3. Here we report a single-cell transcriptomic atlas of six different brain regions in the aged human brain, covering 1.3 million cells from 283 post-mortem human brain samples across 48 individuals with and without Alzheimer's disease. We identify 76 cell types, including region-specific subtypes of astrocytes and excitatory neurons and an inhibitory interneuron population unique to the thalamus and distinct from canonical inhibitory subclasses. We identify vulnerable populations of excitatory and inhibitory neurons that are depleted in specific brain regions in Alzheimer's disease, and provide evidence that the Reelin signalling pathway is involved in modulating the vulnerability of these neurons. We develop a scalable method for discovering gene modules, which we use to identify cell-type-specific and region-specific modules that are altered in Alzheimer's disease and to annotate transcriptomic differences associated with diverse pathological variables. We identify an astrocyte program that is associated with cognitive resilience to Alzheimer's disease pathology, tying choline metabolism and polyamine biosynthesis in astrocytes to preserved cognitive function late in life. Together, our study develops a regional atlas of the ageing human brain and provides insights into cellular vulnerability, response and resilience to Alzheimer's disease pathology.


Assuntos
Doença de Alzheimer , Encéfalo , Perfilação da Expressão Gênica , Análise de Célula Única , Idoso de 80 Anos ou mais , Animais , Feminino , Humanos , Masculino , Camundongos , Envelhecimento/metabolismo , Envelhecimento/patologia , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Astrócitos/classificação , Astrócitos/citologia , Astrócitos/metabolismo , Astrócitos/patologia , Autopsia , Encéfalo/anatomia & histologia , Encéfalo/citologia , Encéfalo/metabolismo , Encéfalo/patologia , Estudos de Casos e Controles , Colina/metabolismo , Cognição/fisiologia , Redes Reguladoras de Genes , Interneurônios/classificação , Interneurônios/citologia , Interneurônios/metabolismo , Interneurônios/patologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Inibição Neural , Neurônios/classificação , Neurônios/citologia , Neurônios/metabolismo , Neurônios/patologia , Poliaminas/metabolismo , Proteína Reelina , Transdução de Sinais , Tálamo/citologia , Tálamo/metabolismo , Tálamo/patologia , Transcriptoma
10.
Nature ; 627(8004): 604-611, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38448582

RESUMO

Human brains vary across people and over time; such variation is not yet understood in cellular terms. Here we describe a relationship between people's cortical neurons and cortical astrocytes. We used single-nucleus RNA sequencing to analyse the prefrontal cortex of 191 human donors aged 22-97 years, including healthy individuals and people with schizophrenia. Latent-factor analysis of these data revealed that, in people whose cortical neurons more strongly expressed genes encoding synaptic components, cortical astrocytes more strongly expressed distinct genes with synaptic functions and genes for synthesizing cholesterol, an astrocyte-supplied component of synaptic membranes. We call this relationship the synaptic neuron and astrocyte program (SNAP). In schizophrenia and ageing-two conditions that involve declines in cognitive flexibility and plasticity1,2-cells divested from SNAP: astrocytes, glutamatergic (excitatory) neurons and GABAergic (inhibitory) neurons all showed reduced SNAP expression to corresponding degrees. The distinct astrocytic and neuronal components of SNAP both involved genes in which genetic risk factors for schizophrenia were strongly concentrated. SNAP, which varies quantitatively even among healthy people of similar age, may underlie many aspects of normal human interindividual differences and may be an important point of convergence for multiple kinds of pathophysiology.


Assuntos
Envelhecimento , Astrócitos , Neurônios , Córtex Pré-Frontal , Esquizofrenia , Adulto , Idoso , Idoso de 80 Anos ou mais , Humanos , Pessoa de Meia-Idade , Adulto Jovem , Envelhecimento/metabolismo , Envelhecimento/patologia , Astrócitos/citologia , Astrócitos/metabolismo , Astrócitos/patologia , Colesterol/metabolismo , Cognição , Neurônios GABAérgicos/metabolismo , Predisposição Genética para Doença , Glutamina/metabolismo , Saúde , Individualidade , Inibição Neural , Plasticidade Neuronal , Neurônios/citologia , Neurônios/metabolismo , Neurônios/patologia , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Esquizofrenia/genética , Esquizofrenia/metabolismo , Esquizofrenia/patologia , Análise da Expressão Gênica de Célula Única , Sinapses/genética , Sinapses/metabolismo , Sinapses/patologia , Membranas Sinápticas/química , Membranas Sinápticas/metabolismo
11.
Nature ; 614(7947): 326-333, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36599367

RESUMO

Multiple sclerosis is a chronic inflammatory disease of the central nervous system1. Astrocytes are heterogeneous glial cells that are resident in the central nervous system and participate in the pathogenesis of multiple sclerosis and its model experimental autoimmune encephalomyelitis2,3. However, few unique surface markers are available for the isolation of astrocyte subsets, preventing their analysis and the identification of candidate therapeutic targets; these limitations are further amplified by the rarity of pathogenic astrocytes. Here, to address these challenges, we developed focused interrogation of cells by nucleic acid detection and sequencing (FIND-seq), a high-throughput microfluidic cytometry method that combines encapsulation of cells in droplets, PCR-based detection of target nucleic acids and droplet sorting to enable in-depth transcriptomic analyses of cells of interest at single-cell resolution. We applied FIND-seq to study the regulation of astrocytes characterized by the splicing-driven activation of the transcription factor XBP1, which promotes disease pathology in multiple sclerosis and experimental autoimmune encephalomyelitis4. Using FIND-seq in combination with conditional-knockout mice, in vivo CRISPR-Cas9-driven genetic perturbation studies and bulk and single-cell RNA sequencing analyses of samples from mouse experimental autoimmune encephalomyelitis and humans with multiple sclerosis, we identified a new role for the nuclear receptor NR3C2 and its corepressor NCOR2 in limiting XBP1-driven pathogenic astrocyte responses. In summary, we used FIND-seq to identify a therapeutically targetable mechanism that limits XBP1-driven pathogenic astrocyte responses. FIND-seq enables the investigation of previously inaccessible cells, including rare cell subsets defined by unique gene expression signatures or other nucleic acid markers.


Assuntos
Astrócitos , Encefalomielite Autoimune Experimental , Microfluídica , Esclerose Múltipla , Ácidos Nucleicos , Análise da Expressão Gênica de Célula Única , Animais , Humanos , Camundongos , Astrócitos/metabolismo , Astrócitos/patologia , Regulação da Expressão Gênica , Camundongos Knockout , Esclerose Múltipla/patologia , Microfluídica/métodos , Análise da Expressão Gênica de Célula Única/métodos , Ácidos Nucleicos/análise , Edição de Genes
12.
PLoS Biol ; 22(7): e3002687, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38991663

RESUMO

Reactive astrocytes are associated with neuroinflammation and cognitive decline in diverse neuropathologies; however, the underlying mechanisms are unclear. We used optogenetic and chemogenetic tools to identify the crucial roles of the hippocampal CA1 astrocytes in cognitive decline. Our results showed that repeated optogenetic stimulation of the hippocampal CA1 astrocytes induced cognitive impairment in mice and decreased synaptic long-term potentiation (LTP), which was accompanied by the appearance of inflammatory astrocytes. Mechanistic studies conducted using knockout animal models and hippocampal neuronal cultures showed that lipocalin-2 (LCN2), derived from reactive astrocytes, mediated neuroinflammation and induced cognitive impairment by decreasing the LTP through the reduction of neuronal NMDA receptors. Sustained chemogenetic stimulation of hippocampal astrocytes provided similar results. Conversely, these phenomena were attenuated by a metabolic inhibitor of astrocytes. Fiber photometry using GCaMP revealed a high level of hippocampal astrocyte activation in the neuroinflammation model. Our findings suggest that reactive astrocytes in the hippocampus are sufficient and required to induce cognitive decline through LCN2 release and synaptic modulation. This abnormal glial-neuron interaction may contribute to the pathogenesis of cognitive disturbances in neuroinflammation-associated brain conditions.


Assuntos
Astrócitos , Disfunção Cognitiva , Hipocampo , Lipocalina-2 , Potenciação de Longa Duração , Doenças Neuroinflamatórias , Neurônios , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/patologia , Lipocalina-2/metabolismo , Lipocalina-2/genética , Camundongos , Hipocampo/metabolismo , Hipocampo/patologia , Doenças Neuroinflamatórias/patologia , Doenças Neuroinflamatórias/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Camundongos Knockout , Masculino , Camundongos Endogâmicos C57BL , Receptores de N-Metil-D-Aspartato/metabolismo , Optogenética , Região CA1 Hipocampal/patologia , Região CA1 Hipocampal/metabolismo , Modelos Animais de Doenças
13.
Nature ; 597(7878): 709-714, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34497421

RESUMO

Multiple sclerosis (MS) lesions that do not resolve in the months after they form harbour ongoing demyelination and axon degeneration, and are identifiable in vivo by their paramagnetic rims on MRI scans1-3. Here, to define mechanisms underlying this disabling, progressive neurodegenerative state4-6 and foster development of new therapeutic agents, we used MRI-informed single-nucleus RNA sequencing to profile the edge of demyelinated white matter lesions at various stages of inflammation. We uncovered notable glial and immune cell diversity, especially at the chronically inflamed lesion edge. We define 'microglia inflamed in MS' (MIMS) and 'astrocytes inflamed in MS', glial phenotypes that demonstrate neurodegenerative programming. The MIMS transcriptional profile overlaps with that of microglia in other neurodegenerative diseases, suggesting that primary and secondary neurodegeneration share common mechanisms and could benefit from similar therapeutic approaches. We identify complement component 1q (C1q) as a critical mediator of MIMS activation, validated immunohistochemically in MS tissue, genetically by microglia-specific C1q ablation in mice with experimental autoimmune encephalomyelitis, and therapeutically by treating chronic experimental autoimmune encephalomyelitis with C1q blockade. C1q inhibition is a potential therapeutic avenue to address chronic white matter inflammation, which could be monitored by longitudinal assessment of its dynamic biomarker, paramagnetic rim lesions, using advanced MRI methods.


Assuntos
Astrócitos/patologia , Linfócitos/patologia , Microglia/patologia , Esclerose Múltipla/patologia , Animais , Encéfalo/patologia , Complemento C1q/antagonistas & inibidores , Complemento C1q/metabolismo , Encefalomielite Autoimune Experimental/patologia , Feminino , Humanos , Inflamação/patologia , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Esclerose Múltipla/diagnóstico por imagem , RNA-Seq , Transcriptoma , Substância Branca/patologia
14.
Nature ; 595(7868): 565-571, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34153974

RESUMO

Although SARS-CoV-2 primarily targets the respiratory system, patients with and survivors of COVID-19 can suffer neurological symptoms1-3. However, an unbiased understanding of the cellular and molecular processes that are affected in the brains of patients with COVID-19 is missing. Here we profile 65,309 single-nucleus transcriptomes from 30 frontal cortex and choroid plexus samples across 14 control individuals (including 1 patient with terminal influenza) and 8 patients with COVID-19. Although our systematic analysis yields no molecular traces of SARS-CoV-2 in the brain, we observe broad cellular perturbations indicating that barrier cells of the choroid plexus sense and relay peripheral inflammation into the brain and show that peripheral T cells infiltrate the parenchyma. We discover microglia and astrocyte subpopulations associated with COVID-19 that share features with pathological cell states that have previously been reported in human neurodegenerative disease4-6. Synaptic signalling of upper-layer excitatory neurons-which are evolutionarily expanded in humans7 and linked to cognitive function8-is preferentially affected in COVID-19. Across cell types, perturbations associated with COVID-19 overlap with those found in chronic brain disorders and reside in genetic variants associated with cognition, schizophrenia and depression. Our findings and public dataset provide a molecular framework to understand current observations of COVID-19-related neurological disease, and any such disease that may emerge at a later date.


Assuntos
Astrócitos/patologia , Encéfalo/patologia , COVID-19/diagnóstico , COVID-19/patologia , Plexo Corióideo/patologia , Microglia/patologia , Neurônios/patologia , Idoso , Idoso de 80 Anos ou mais , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Encéfalo/virologia , COVID-19/genética , COVID-19/fisiopatologia , Núcleo Celular/genética , Plexo Corióideo/metabolismo , Plexo Corióideo/fisiopatologia , Plexo Corióideo/virologia , Feminino , Humanos , Inflamação/virologia , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/crescimento & desenvolvimento , SARS-CoV-2/patogenicidade , Análise de Célula Única , Transcriptoma , Replicação Viral
15.
Proc Natl Acad Sci U S A ; 121(22): e2315690121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38781206

RESUMO

The prion-like spread of protein aggregates is a leading hypothesis for the propagation of neurofibrillary lesions in the brain, including the spread of tau inclusions associated with Alzheimer's disease. The mechanisms of cellular uptake of tau seeds and subsequent nucleated polymerization of cytosolic tau are major questions in the field, and the potential for coupling between the entry and nucleation mechanisms has been little explored. We found that in primary astrocytes and neurons, endocytosis of tau seeds leads to their accumulation in lysosomes. This in turn leads to lysosomal swelling, deacidification, and recruitment of ESCRT proteins, but not Galectin-3, to the lysosomal membrane. These observations are consistent with nanoscale damage of the lysosomal membrane. Live cell imaging and STORM superresolution microscopy further show that the nucleation of cytosolic tau occurs primarily at the lysosome membrane under these conditions. These data suggest that tau seeds escape from lysosomes via nanoscale damage rather than wholesale rupture and that nucleation of cytosolic tau commences as soon as tau fibril ends emerge from the lysosomal membrane.


Assuntos
Citosol , Lisossomos , Proteínas tau , Proteínas tau/metabolismo , Lisossomos/metabolismo , Citosol/metabolismo , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Neurônios/metabolismo , Neurônios/patologia , Humanos , Membranas Intracelulares/metabolismo , Endocitose , Camundongos , Células Cultivadas
16.
Cell ; 146(2): 209-21, 2011 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-21737130

RESUMO

Cancer cell of origin is difficult to identify by analyzing cells within terminal stage tumors, whose identity could be concealed by the acquired plasticity. Thus, an ideal approach to identify the cell of origin is to analyze proliferative abnormalities in distinct lineages prior to malignancy. Here, we use mosaic analysis with double markers (MADM) in mice to model gliomagenesis by initiating concurrent p53/Nf1 mutations sporadically in neural stem cells (NSCs). Surprisingly, MADM-based lineage tracing revealed significant aberrant growth prior to malignancy only in oligodendrocyte precursor cells (OPCs), but not in any other NSC-derived lineages or NSCs themselves. Upon tumor formation, phenotypic and transcriptome analyses of tumor cells revealed salient OPC features. Finally, introducing the same p53/Nf1 mutations directly into OPCs consistently led to gliomagenesis. Our findings suggest OPCs as the cell of origin in this model, even when initial mutations occur in NSCs, and highlight the importance of analyzing premalignant stages to identify the cancer cell of origin.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Glioma/genética , Glioma/patologia , Mosaicismo , Células-Tronco Neoplásicas/patologia , Animais , Astrócitos/patologia , Biomarcadores , Neoplasias Encefálicas/embriologia , Genes p53 , Glioma/embriologia , Camundongos , Dados de Sequência Molecular , Mutação , Células-Tronco Neurais/patologia , Neurofibromina 1/genética , Neurônios/patologia , Oligodendroglia/patologia
17.
Nature ; 578(7796): 593-599, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32051591

RESUMO

Multiple sclerosis is a chronic inflammatory disease of the CNS1. Astrocytes contribute to the pathogenesis of multiple sclerosis2, but little is known about the heterogeneity of astrocytes and its regulation. Here we report the analysis of astrocytes in multiple sclerosis and its preclinical model experimental autoimmune encephalomyelitis (EAE) by single-cell RNA sequencing in combination with cell-specific Ribotag RNA profiling, assay for transposase-accessible chromatin with sequencing (ATAC-seq), chromatin immunoprecipitation with sequencing (ChIP-seq), genome-wide analysis of DNA methylation and in vivo CRISPR-Cas9-based genetic perturbations. We identified astrocytes in EAE and multiple sclerosis that were characterized by decreased expression of NRF2 and increased expression of MAFG, which cooperates with MAT2α to promote DNA methylation and represses antioxidant and anti-inflammatory transcriptional programs. Granulocyte-macrophage colony-stimulating factor (GM-CSF) signalling in astrocytes drives the expression of MAFG and MAT2α and pro-inflammatory transcriptional modules, contributing to CNS pathology in EAE and, potentially, multiple sclerosis. Our results identify candidate therapeutic targets in multiple sclerosis.


Assuntos
Astrócitos/patologia , Sistema Nervoso Central/patologia , Inflamação/patologia , Fator de Transcrição MafG/genética , Proteínas Repressoras/genética , Animais , Antioxidantes/metabolismo , Astrócitos/metabolismo , Sistema Nervoso Central/metabolismo , Metilação de DNA , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/patologia , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Inflamação/genética , Masculino , Metionina Adenosiltransferase/genética , Camundongos , Esclerose Múltipla/genética , Esclerose Múltipla/patologia , Fator 2 Relacionado a NF-E2/genética , Análise de Sequência de RNA , Transdução de Sinais , Transcrição Gênica
18.
Proc Natl Acad Sci U S A ; 120(24): e2210719120, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37279261

RESUMO

Astroglial dysfunction contributes to the pathogenesis of Huntington's disease (HD), and glial replacement can ameliorate the disease course. To establish the topographic relationship of diseased astrocytes to medium spiny neuron (MSN) synapses in HD, we used 2-photon imaging to map the relationship of turboRFP-tagged striatal astrocytes and rabies-traced, EGFP-tagged coupled neuronal pairs in R6/2 HD and wild-type (WT) mice. The tagged, prospectively identified corticostriatal synapses were then studied by correlated light electron microscopy followed by serial block-face scanning EM, allowing nanometer-scale assessment of synaptic structure in 3D. By this means, we compared the astrocytic engagement of single striatal synapses in HD and WT brains. R6/2 HD astrocytes exhibited constricted domains, with significantly less coverage of mature dendritic spines than WT astrocytes, despite enhanced engagement of immature, thin spines. These data suggest that disease-dependent changes in the astroglial engagement and sequestration of MSN synapses enable the high synaptic and extrasynaptic levels of glutamate and K+ that underlie striatal hyperexcitability in HD. As such, these data suggest that astrocytic structural pathology may causally contribute to the synaptic dysfunction and disease phenotype of those neurodegenerative disorders characterized by network overexcitation.


Assuntos
Doença de Huntington , Camundongos , Animais , Camundongos Transgênicos , Doença de Huntington/patologia , Astrócitos/patologia , Sinapses/fisiologia , Corpo Estriado/patologia , Modelos Animais de Doenças
19.
J Neurosci ; 44(14)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38395613

RESUMO

Tumor necrosis factor α (TNF) mediates homeostatic synaptic plasticity (HSP) in response to chronic activity blockade, and prior work has established that it is released from glia. Here we demonstrate that astrocytes are the necessary source of TNF during HSP. Hippocampal cultures from rats of both sexes depleted of microglia still will increase TNF levels following activity deprivation and still express TTX-driven HSP. Slice cultures from mice of either sex with a conditional deletion of TNF from microglia also express HSP, but critically, slice cultures with a conditional deletion of TNF from astrocytes do not. In astrocytes, glutamate signaling is sufficient to reduce NFκB signaling and TNF mRNA levels. Further, chronic TTX treatment increases TNF in an NFκB-dependent manner, although NFκB signaling is dispensable for the neuronal response to TTX-driven HSP. Thus, astrocytes can sense neuronal activity through glutamate spillover and increase TNF production when activity falls, to drive HSP through the production of TNF.


Assuntos
Astrócitos , Fator de Necrose Tumoral alfa , Ratos , Camundongos , Animais , Astrócitos/patologia , Transdução de Sinais , Plasticidade Neuronal , Glutamatos
20.
J Neurosci ; 44(22)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38548341

RESUMO

The neurovascular unit (NVU) includes multiple different cell types, including neurons, astrocytes, endothelial cells, and pericytes, which respond to insults on very different time or dose scales. We defined differential vulnerability among these cell types, using response to two different insults: oxygen-glucose deprivation (OGD) and thrombin-mediated cytotoxicity. We found that neurons are most vulnerable, followed by endothelial cells and astrocytes. After temporary focal cerebral ischemia in male rats, we found significantly more injured neurons, compared with astrocytes in the ischemic area, consistent with differential vulnerability in vivo. We sought to illustrate different and shared mechanisms across all cell types during response to insult. We found that gene expression profiles in response to OGD differed among the cell types, with a paucity of gene responses shared by all types. All cell types activated genes relating to autophagy, apoptosis, and necroptosis, but the specific genes differed. Astrocytes and endothelial cells also activated pathways connected to DNA repair and antiapoptosis. Taken together, the data support the concept of differential vulnerability in the NVU and suggest that different elements of the unit will evolve from salvageable to irretrievable on different time scales while residing in the same brain region and receiving the same (ischemic) blood flow. Future work will focus on the mechanisms of these differences. These data suggest future stroke therapy development should target different elements of the NVU differently.


Assuntos
Astrócitos , Células Endoteliais , Neurônios , Ratos Sprague-Dawley , Animais , Masculino , Ratos , Astrócitos/metabolismo , Astrócitos/patologia , Células Endoteliais/metabolismo , Neurônios/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Glucose/deficiência , Glucose/metabolismo , Isquemia Encefálica/patologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/genética , Pericitos/metabolismo , Pericitos/patologia , Acoplamento Neurovascular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA