RESUMO
Self-incompatibility (SI) is used by many angiosperms to prevent self-fertilization and inbreeding. In common poppy (Papaver rhoeas), interaction of cognate pollen and pistil S-determinants triggers programmed cell death (PCD) of incompatible pollen. We previously identified that reactive oxygen species (ROS) signal to SI-PCD. ROS-induced oxidative posttranslational modifications (oxPTMs) can regulate protein structure and function. Here, we have identified and mapped oxPTMs triggered by SI in incompatible pollen. Notably, SI-induced pollen had numerous irreversible oxidative modifications, while untreated pollen had virtually none. Our data provide a valuable analysis of the protein targets of ROS in the context of SI-induction and comprise a benchmark because currently there are few reports of irreversible oxPTMs in plants. Strikingly, cytoskeletal proteins and enzymes involved in energy metabolism are a prominent target of ROS. Oxidative modifications to a phosphomimic form of a pyrophosphatase result in a reduction of its activity. Therefore, our results demonstrate irreversible oxidation of pollen proteins during SI and provide evidence that this modification can affect protein function. We suggest that this reduction in cellular activity could lead to PCD.
Assuntos
Papaver/fisiologia , Proteínas de Plantas/metabolismo , Pólen/fisiologia , Autoincompatibilidade em Angiospermas/fisiologia , Actinas/metabolismo , Sequência de Aminoácidos , Aminoácidos/metabolismo , Proteínas do Citoesqueleto/metabolismo , Peróxido de Hidrogênio/toxicidade , Pirofosfatase Inorgânica/metabolismo , Nitrosação , Oxirredução , Papaver/efeitos dos fármacos , Peptídeo Hidrolases/metabolismo , Peptídeos/metabolismo , Proteínas de Plantas/química , Pólen/efeitos dos fármacos , Tubo Polínico/efeitos dos fármacos , Tubo Polínico/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Autoincompatibilidade em Angiospermas/efeitos dos fármacos , SolubilidadeRESUMO
Self-incompatibility (SI) is a genetic mechanism most flowering plants adopted to reject self-pollen thus avoid inbreeding. In the Brassicaceae, self-pollen recognition triggers downstream signaling pathways to reject self-pollen. However, the downstream signaling pathways are not very clear. Here we show that ethylene negatively mediates self-incompatibility response of Chinese cabbage (Brassica rapa L. ssp. Pekinensis) via PCD in papilla cells. We found that ethylene signaling genes were upregulated after cross-pollination. Treating stigmas with ethylene, or suppressing the expression of a negative regulator of ethylene signaling, CONSTITUTIVE TRIPLE RESPONSE 1 (CTR1), caused PCD in papilla cells and broke down the self-incompatibility. On the other hand, treating stigmas with ethylene inhibitors, or suppressing the expression of ethylene-responsive factors (ERFs), inhibited PCD in papilla cells and the compatible pollination. Our study identified an additional signaling pathway mediating self-incompatibility responses in the Brassicaceae and also developed a new method in overcoming self-incompatibility to improve the efficiency of inbred line propagation in agriculture practice.
Assuntos
Brassica rapa/fisiologia , Etilenos/farmacologia , Autoincompatibilidade em Angiospermas/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Brassica rapa/efeitos dos fármacos , Compostos Organofosforados/farmacologia , Polinização/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacosRESUMO
Mitogen-activated protein kinases (MAPKs) form important signaling modules for a variety of cellular responses in eukaryotic cells. In plants, MAPKs play key roles in growth and development as well as in immunity/stress responses. Pollen-pistil interactions are critical early events regulating pollination and fertilization and involve many signaling events. Self-incompatibility (SI) is an important mechanism to prevent self-fertilization and inbreeding in higher plants and also is known to utilize signaling to achieve incompatible pollen rejection. Although several pollen-expressed MAPKs exist, very little is known about their function. We previously identified a pollen-expressed MAPK (p56) from Papaver rhoeas that was rapidly activated during SI; several studies implicated its role in signaling to SI-induced programmed cell death involving a DEVDase. However, to date, the identity of the MAPK involved has been unknown. Here, we have identified and cloned a pollen-expressed P. rhoeas threonine-aspartate-tyrosine (TDY) MAPK, PrMPK9-1 Rather few data relating to the function of TDY MAPKs in plants currently exist. We provide evidence that PrMPK9-1 has a cell type-specific function, with a distinct role from AtMPK9 To our knowledge, this is the first study implicating a function for a TDY MAPK in pollen. We show that PrMPK9-1 corresponds to p56 and demonstrate that it is functionally involved in mediating SI in P. rhoeas pollen: PrMPK9-1 is a key regulator for SI in pollen and acts upstream of programmed cell death involving actin and activation of a DEVDase. Our study provides an important advance in elucidating functional roles for this class of MAPKs.
Assuntos
Proteínas Quinases Ativadas por Mitógeno/metabolismo , Papaver/enzimologia , Papaver/fisiologia , Proteínas de Plantas/metabolismo , Autoincompatibilidade em Angiospermas/fisiologia , Apoptose/efeitos dos fármacos , Arabidopsis/enzimologia , Caspase 3/metabolismo , Citosol/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oligonucleotídeos Antissenso/farmacologia , Peptídeo Hidrolases/metabolismo , Fosfoproteínas/metabolismo , Tubo Polínico/efeitos dos fármacos , Tubo Polínico/crescimento & desenvolvimento , Transporte Proteico/efeitos dos fármacos , Autoincompatibilidade em Angiospermas/efeitos dos fármacosRESUMO
Self-incompatibility (SI) is an important genetically controlled mechanism to prevent inbreeding in higher plants. SI involves highly specific interactions during pollination, resulting in the rejection of incompatible (self) pollen. Programmed cell death (PCD) is an important mechanism for destroying cells in a precisely regulated manner. SI in field poppy (Papaver rhoeas) triggers PCD in incompatible pollen. During SI-induced PCD, we previously observed a major acidification of the pollen cytosol. Here, we present measurements of temporal alterations in cytosolic pH ([pH]cyt); they were surprisingly rapid, reaching pH 6.4 within 10 min of SI induction and stabilizing by 60 min at pH 5.5. By manipulating the [pH]cyt of the pollen tubes in vivo, we show that [pH]cyt acidification is an integral and essential event for SI-induced PCD. Here, we provide evidence showing the physiological relevance of the cytosolic acidification and identify key targets of this major physiological alteration. A small drop in [pH]cyt inhibits the activity of a soluble inorganic pyrophosphatase required for pollen tube growth. We also show that [pH]cyt acidification is necessary and sufficient for triggering several key hallmark features of the SI PCD signaling pathway, notably activation of a DEVDase/caspase-3-like activity and formation of SI-induced punctate actin foci. Importantly, the actin binding proteins Cyclase-Associated Protein and Actin-Depolymerizing Factor are identified as key downstream targets. Thus, we have shown the biological relevance of an extreme but physiologically relevant alteration in [pH]cyt and its effect on several components in the context of SI-induced events and PCD.
Assuntos
Apoptose/efeitos dos fármacos , Citosol/metabolismo , Papaver/citologia , Tubo Polínico/citologia , Propionatos/farmacologia , Autoincompatibilidade em Angiospermas/efeitos dos fármacos , Actinas/metabolismo , Calcimicina/farmacologia , Cálcio/farmacologia , Caspase 3/metabolismo , Citosol/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Pirofosfatase Inorgânica/metabolismo , Ionóforos/farmacologia , Papaver/metabolismo , Peptídeo Hidrolases/metabolismo , Proteínas de Plantas/metabolismo , Tubo Polínico/efeitos dos fármacos , Solubilidade , Vacúolos/efeitos dos fármacos , Vacúolos/metabolismoRESUMO
BACKGROUND: Tomato (Solanum lycopersicum) self-compatibility (SC) is defined as self-pollen tubes that can penetrate their own stigma, elongate in the style and fertilize their own ovules. Self-incompatibility (SI) is defined as self-pollen tubes that are prevented from developing in the style. To determine the influence of gene expression on style self-pollination, a transcriptome-wide comparative analysis of SC and SI tomato unpollinated/pollinated styles was performed using RNA-sequencing (RNA-seq) data. RESULTS: Transcriptome profiles of 24-h unpollination (UP) and self-pollination (P) styles from SC and SI tomato species were generated using high-throughput next generation sequencing. From the comparison of SC self-pollinated and unpollinated styles, 1341 differentially expressed genes (DEGs) were identified, of which 753 were downregulated and 588 were upregulated. From the comparison of SI self-pollinated and unpollinated styles, 804 DEGs were identified, of which 215 were downregulated and 589 were upregulated. Nine gene ontology (GO) terms were enriched significantly in SC and 78 GO terms were enriched significantly in SI. A total of 105 enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were identified in SC and 80 enriched KEGG pathways were identified in SI, among which "Cysteine and methionine metabolism pathway" and "Plant hormone signal transduction pathway" were significantly enriched in SI. CONCLUSIONS: This study is the first global transcriptome-wide comparative analysis of SC and SI tomato unpollinated/pollinated styles. Advanced bioinformatic analysis of DEGs uncovered the pathways of "Cysteine and methionine metabolism" and "Plant hormone signal transduction", which are likely to play important roles in the control of pollen tubes growth in SI species.
Assuntos
Flores/genética , Perfilação da Expressão Gênica , Polinização/genética , Autoincompatibilidade em Angiospermas/genética , Solanum lycopersicum/genética , Análise por Conglomerados , Bases de Dados de Ácidos Nucleicos , Flores/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Solanum lycopersicum/efeitos dos fármacos , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Anotação de Sequência Molecular , Reguladores de Crescimento de Plantas/farmacologia , Polinização/efeitos dos fármacos , Autoincompatibilidade em Angiospermas/efeitos dos fármacos , Análise de Sequência de RNARESUMO
Self-incompatibility (SI) is genetically determined reproductive barrier preventing inbreeding and thereby providing the maintenance of plant species diversity. At present, active studies of molecular bases of SI mechanisms are underway. S-RNAse-based SI in Petunia hybrida L. is a self-/non-self recognition system that allows the pistil to reject self pollen and to accept non-self pollen for outcrossing. In the present work, using fluorescent methods including the TUNEL method allowed us to reveal the presence of markers of programmed cell death (PCD), such as DNA fragmentation, in growing in vivo petunia pollen tubes during the passage of the SI reaction. The results of statistical analysis reliably proved that PCD is the factor of S-RNAse-based SI. It was found that preliminary treatment before self-pollination of stigmas of petunia self-incompatible line with aminooxyacetic acid (AOA), inhibitor of ACC synthesis, led to stimulation of pollen tubes growth when the latter did not exhibit any hallmarks of PCD. These data argue in favor of assumption that ethylene controls the passage of PCD in incompatible pollen tubes in the course of S-RNAse-based SI functioning. The involvement of the hormonal regulation in SI mechanism in P. hybrida L. is the finding observed by us for the first time.