Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 469: 116529, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37100089

RESUMO

The most commonly reported side effect of azithromycin is gastrointestinal (GI) disorders, and the main acid degradation product is 3'-Decladinosyl azithromycin (impurity J). We aimed to compare the GI toxicity of azithromycin and impurity J on zebrafish larvae and investigate the mechanism causing the differential GI toxicity. Results of our study showed that the GI toxicity induced by impurity J was higher than that of azithromycin in zebrafish larvae, and the effects of impurity J on transcription in the digestive system of zebrafish larvae were significantly stronger than those of azithromycin. Additionally, impurity J exerts stronger cytotoxic effects on GES-1 cells than azithromycin. Simultaneously, impurity J significantly increased ghsrb levels in the zebrafish intestinal tract and ghsr levels in human GES-1 cells compared to azithromycin, and ghsr overexpression significantly reduced cell viability, indicating that GI toxicity induced by azithromycin and impurity J may be correlated with ghsr overexpression induced by the two compounds. Meanwhile, molecular docking analysis showed that the highest -CDOCKER interaction energy scores with the zebrafish GHSRb or human GHSR protein might reflect the effect of azithromycin and impurity J on the expression of zebrafish ghsrb or human ghsr. Thus, our results suggest that impurity J has higher GI toxicity than azithromycin due to its greater ability to elevate ghsrb expression in zebrafish intestinal tract.


Assuntos
Azitromicina , Peixe-Zebra , Animais , Humanos , Azitromicina/toxicidade , Larva , Simulação de Acoplamento Molecular , Intestinos
2.
Environ Res ; 214(Pt 3): 114026, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35977588

RESUMO

Azithromycin (AZM), an antibacterial considered one of the most consumed drugs, especially during the period against the Covid 19 pandemic, and it is one of the persistent contaminants that can be released into aquatic ecosystems. The purpose of this study is to determine the efficacy of a Fenton-like process (chlorine/iron) for the degradation of AZM in an aqueous medium by determining the impact of several factors (the initial concentration of (FeSO4, NaClO, pollutant), and the initial pH) on the degradation rate. The Response Surface Methodology (RSM) based on the Box-Wilson design as well as the Artificial Neural Network (ANN) modeling combined with a genetic algorithm (GA) approaches were used to determine the optimal levels of the selected variables and the optimal rate of degradation. The quadratic model of multi-linear regression developed indicated that the optimal conditions were a concentration of chlorine of 600 µM, the concentration of AZM is 32.8 mg/L, the mass of the catalyst FeSO4 is 3.5 mg and a pH of 2.5, these optimal values gave a predicted and experimental yield of 64.05% and 70% respectively, the lack of fit test in RSM modeling (F0 = 3.31 which is inferior to Fcritic (0.05, 10.4) = 5.96) indicates that the true regression function is not linear therefore, the ANN-GA modeling as non-linear regression indicated that the optimal conditions were a concentration of chlorine of 256 µM, the concentration of AZM is 5 mg/L, the mass of the catalyst FeSO4 is 9.5 mg and a pH of 2.8, these optimal values gave a predicted and experimental yield of 79.69% and close to 80% respectively, Furthermore, biotoxicity tests were conducted to confirm the performance of our process using bio-indicators called daphnia (Daphnia magna), which demonstrated the efficacy of the like-Fenton process after 4 h of degradation.


Assuntos
Tratamento Farmacológico da COVID-19 , Daphnia , Animais , Azitromicina/toxicidade , Cloro/toxicidade , Ecossistema , Redes Neurais de Computação , Água
3.
Drug Chem Toxicol ; 45(3): 1295-1301, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-32957842

RESUMO

The purpose of this study was to assess the acute and chronic effects of the macrolide azithromycin (AZI) on the European sea bass (Dicentrarchus labrax) early life stages. Azithromycin is a semi-synthetic antibiotic frequently detected in the aquatic environment, despite this few information about its effects on aquatic organisms were reported. Investigations of AZI acute toxicity on D. labrax early life stages were made using six increasing concentrations (0.625, 1.25, 2.5, 5, 10 and 20 mg/l) during 96 h of exposure. The chronic toxicity was tested at one year old juveniles using two sublethal concentrations (C1 = 0.05 µg/l and C2 = 0.8 µg/l) during 4 and 14 days. Malondialdehyde (MDA), glutathione S-transferase (GST), catalase (CAT) and acetylcholinesterase (AChE) activities were measured in gill and liver tissues of juveniles. The half lethal concentration (LC50), 96 h value of AZI for the European sea bass was determined as 31 mg/l. Results showed that short-time exposure to 20 mg/l of azithromycin induces 18% and 7.5% of larvae mortality and morphological abnormalities, respectively. Azithromycin provoked oxidative stress, peroxidative damage, and neurotoxicity in juveniles D. labrax. Overall, the CAT and AChE activities decreased in gill and liver tissues, while dissimilarity in response in both organs depending on AZI concentrations and time of exposure was observed in MDA and GST levels.


Assuntos
Bass , Acetilcolinesterase , Animais , Azitromicina/toxicidade , Bass/fisiologia , Bioensaio , Brânquias , Glutationa Transferase
4.
Ecotoxicol Environ Saf ; 222: 112553, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34325198

RESUMO

Pharmaceuticals are produced to inflict a specific physiological response in organisms. However, as only partially metabolized after administration, these types of compounds can also originate harmful side effects to non-target organisms. Additionally, there is still a lack of knowledge on the toxicological effects of legacy pharmaceuticals such as the antibiotic azithromycin. This macrolide occurs at high concentrations in the aquatic environment and can constitute a threat to aquatic organisms that are at the basis of the aquatic food chain, namely microalgae. This study established a high-throughput methodology to study the toxicity of azithromycin to the freshwater microalga Raphidocelis subcapitata. Flow cytometry and pulse amplitude modulated (PAM) fluorometry were used as screening tools. General toxicity was shown by effects in growth rate, cell size, cell complexity, cell viability and cell cycle. More specific outcomes were indicated by the analysis of mitochondrial and cytoplasmatic membrane potentials, DNA content, formation of ROS and LPO, natural pigments content and photosystem II performance. The specific mode of action (MoA) of azithromycin to crucial components of microalgae cells was revealed. Azithromycin had a negative impact on the regulation of energy dissipation at the PSII centers, along with an insufficient protection by the regulatory mechanisms leading to photodamage. The blockage of photosynthetic electrons led to ROS formation and consequent oxidative damage, affecting membranes and DNA. Overall, the used methodology exhibited its high potential for detecting the toxic MoA of compounds in microalgae and should be considered for future risk assessment of pharmaceuticals.


Assuntos
Clorofíceas , Microalgas , Poluentes Químicos da Água , Azitromicina/toxicidade , Água Doce , Poluentes Químicos da Água/toxicidade
5.
Ecotoxicol Environ Saf ; 222: 112496, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243111

RESUMO

Antibiotics are frequently detected in aquatic ecosystems, posing a potential threat to the freshwater environment. However, the response mechanism of freshwater microalgae to antibiotics remains inadequately understood. Here, the impacts of azithromycin (a broadly used antibiotic) on microalgae Chlorella pyrenoidosa were systematically studied. The results revealed that high concentrations (5-100 µg/L) of azithromycin inhibited algal growth, with a 96-h half maximal effective concentration of 41.6 µg/L. Azithromycin could weaken the photosynthetic activities of algae by promoting heat dissipation, inhibiting the absorption and trapping of light energy, impairing the reaction centre, and blocking electron transfer beyond QA. The blockage of the electron transport chain in the photosynthetic process further induced the generation of reactive oxygen species (ROS). The increases in the activities of superoxide dismutase, peroxidase and glutathione played important roles in antioxidant systems but were still not enough to scavenge the excessive ROS, thus resulting in the oxidative damage indicated by the elevated malondialdehyde level. Furthermore, azithromycin reduced the energy reserves (protein, carbohydrate and lipid) and impaired the cellular structure. In contrast, a hormesis effect on algal growth was found when exposed to low concentrations (0.5 and 1 µg/L) of azithromycin. Low concentrations of azithromycin could induce the activities of the PSII reaction centre by upregulating the mRNA expression of psbA. Additionally, increased chlorophyll b and carotenoids could improve the absorption of light energy and decrease oxidative damage, which further contributed to the increase in energy reserves (protein, carbohydrate and lipid). The risk quotients of azithromycin calculated in this study were higher than 1, suggesting that azithromycin could pose considerable ecological risks in real environments. The present work confirmed that azithromycin induced dual effects on microalgae, which provided new insight for understanding the ecological risk of antibiotics.


Assuntos
Chlorella , Microalgas , Poluentes Químicos da Água , Azitromicina/toxicidade , Clorofila , Ecossistema , Estresse Oxidativo , Fotossíntese , Poluentes Químicos da Água/toxicidade
6.
Mol Pharm ; 17(1): 70-83, 2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31617725

RESUMO

Azithromycin (AZ) is a broad-spectrum antibiotic with anti-inflammatory and antiquorum sensing activity against biofilm forming bacteria such as Pseudomonas aeruginosa. AZ administered by oral or parenteral routes, however, neither efficiently accesses nor remains in therapeutic doses inside pulmonary biofilm depths. Instead, inhaled nanocarriers loaded with AZ may revert the problem of low accessibility and permanence of AZ into biofilms, enhancing its antimicrobial activity. The first inhalable nanovesicle formulation of AZ, nanoarchaeosome-AZ (nanoARC-AZ), is here presented. NanoARC prepared with total polar archaeolipids (TPAs), rich in 2,3-di-O-phytanyl-sn-glycero-1-phospho-(3'-sn-glycerol-1'-methylphosphate) (PGP-Me) from Halorubrum tebenquichense archaebacteria, consisted of ∼180 nm-diameter nanovesicles, loaded with 0.28 w/w AZ/TPA. NanoARC-AZ displayed lower minimal inhibitory concentration and minimal bactericidal concentration, higher preformed biofilm disruptive, and anti-PAO1 activity in biofilms than AZ. NanoARC penetrated and disrupted the structure of the PAO1 biofilm within only 1 h. Two milliliters of 15 µg/mL AZ nanoARC-AZ nebulized for 5 min rendered AZ doses compatible with in vitro antibacterial activity. The strong association between AZ and the nanoARC bilayer, combined with electrostatic attraction and trapping into perpendicular methyl groups of archaeolipids, as determined by Laurdan fluorescence anisotropy, generalized polarization, and small-angle X-ray scattering, was critical to stabilize during storage and endure shear forces of nebulization. NanoARC-AZ was noncytotoxic on A549 cells and human THP-1-derived macrophages, deserving further preclinical exploration as enhancers of AZ anti-PAO1 activity.


Assuntos
Antibacterianos/farmacologia , Azitromicina/farmacologia , Biofilmes/efeitos dos fármacos , Halorubrum/química , Nanocápsulas/química , Pseudomonas aeruginosa/efeitos dos fármacos , Células A549 , Antibacterianos/administração & dosagem , Azitromicina/administração & dosagem , Azitromicina/toxicidade , Linhagem Celular Tumoral , Microscopia Crioeletrônica , Células Epiteliais/efeitos dos fármacos , Humanos , Lipídeos/química , Lipossomos , Testes de Sensibilidade Microbiana , Mucinas/metabolismo , Nanocápsulas/ultraestrutura , Fosfolipídeos/química , Pseudomonas aeruginosa/enzimologia , Difração de Raios X
7.
Ecotoxicol Environ Saf ; 197: 110573, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32278825

RESUMO

Antibiotics had been paid more and more attention to their toxicity to non-target aquatic organisms in the aquatic environment. As azithromycin (AZI) was an important antibiotic pollutant in water, its toxicity to aquatic organisms had been investigated. In this study, the potential aquatic ecological risk of AZI was identified by assessing the toxicity on the feeding behavior and physiological function of Daphnia magna (D. magna) under the different exposure pathways (aqueous phase exposure vs. food phase exposure). For the food Chlorella pyrenoidosa (C. pyrenoidosa), AZI could inhibit the growth and nutrition accumulation with concentration- and time-response relationship. For D. magna, the feeding behavior was inhibited by AZI under the aqueous phase exposure pathway. However, the feeding behavior was inhibited firstly and then reversed into promotion in the low and medium concentration groups and was continually promoted in the high concentration group under the food phase exposure pathway. The accumulation of polysaccharides and total protein were decreased in D. magna n the high concentration group under the aqueous phase exposure pathway, while the accumulation of polysaccharides and crude fat were decreased in the high concentration group under the food phase exposure pathway. The activity of amylase (AMS) and trypsin in D. magna were decreased after exposure to AZI under the aqueous phase exposure pathway. On the other hand, the activity of AMS in the medium and high concentration groups was decreased under the food phase exposure pathway, but the activity of trypsin was decreased in the medium concentration group and increased in the high concentration group. The levels of ROS in D. magna were also measured and increased in both exposure pathways except in the low concentration group under the food phase exposure pathway, indicating the oxidative stress injury of D. magna. Our results showed that AZI could affect the digestive enzyme activities and oxidative stress-antioxidative system, ultimately leading to the change of D. magna's feeding behavior and nutrition accumulation. These results also provided a comprehensive perspective to evaluate the toxic effects of non-lethal dose antibiotics to non-target aquatic organisms via different exposure pathways.


Assuntos
Azitromicina/toxicidade , Daphnia/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Nutrientes/metabolismo , Poluentes Químicos da Água/toxicidade , Animais , Azitromicina/metabolismo , Chlorella/metabolismo , Daphnia/metabolismo , Daphnia/fisiologia , Exposição Dietética/efeitos adversos , Exposição Ambiental/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Poluentes Químicos da Água/metabolismo
8.
Am J Pathol ; 188(9): 1993-2003, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29981744

RESUMO

Drug-induced phospholipidosis is a lysosomal storage disorder characterized by the excess accumulation of tissue phospholipids. Although azithromycin can be used to induce phospholipidosis, no experimental studies evaluating the relationship between drug accumulation and phospholipid localization have been performed. In this study, azithromycin was orally administered to rats for 7 days, and the relationship between drug and phospholipid accumulation was performed using imaging mass microscopy. The administration of azithromycin induced tubular epithelial vacuolation in the inner stripe of the outer medulla of the kidney, consistent with the lamellar bodies that are typical manifestations of drug-induced phospholipidosis. Azithromycin and phospholipid tissue levels were extensively elevated in the kidneys of azithromycin-treated rats. Imaging mass microscopy revealed that both azithromycin and its metabolites were found in the kidneys of azithromycin-treated rats but not in control animals. The vacuolated areas of the kidneys were primarily found in the inner stripe of the outer medulla, consistent with the areas of high azithromycin concentration. Azithromycin was colocalized with several phospholipids-phosphatidylinositol (18:0/20:4), phosphatidylethanolamine (18:0/20:4 and 16:0/20:4), and possibly didocosahexaenoyl (C22:6)-bis(monoacylglycerol) phosphate, a putative biomarker of drug-induced phospholipidosis. In summary, we found correlations between regions of kidney damage and the accumulation of azithromycin, its metabolites, and phospholipids using imaging mass microscopy. Such analyses may help reveal the mechanism and identify putative biomarkers of drug-induced phospholipidosis.


Assuntos
Azitromicina/toxicidade , Nefropatias/patologia , Lipidoses/patologia , Espectrometria de Massas/métodos , Microscopia Eletrônica de Transmissão/métodos , Fosfolipídeos/metabolismo , Animais , Antibacterianos/toxicidade , Processamento de Imagem Assistida por Computador , Nefropatias/induzido quimicamente , Nefropatias/complicações , Nefropatias/metabolismo , Lipidoses/induzido quimicamente , Lipidoses/complicações , Lipidoses/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley
9.
J Pharmacol Sci ; 138(3): 198-202, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30391117

RESUMO

Although azithromycin can suppress cardiac INa, IKr, IKs, ICa,L and IK1, its onset mechanisms for cardiovascular death have not been fully investigated. We examined electropharmacological effects of azithromycin in intravenous doses of 0.3, 3 and 30 mg/kg using microminipigs under the halothane anesthesia (n = 4), which provided plasma concentrations of 3.1, 11.2 and 120.4 µg/mL, respectively. The low dose did not alter any of the cardiohemodynamic or electrocardiographic variables. The middle dose significantly shortened QT interval for 10-20 min and QTc for 10-30 min. The high dose significantly decreased mean blood pressure for 5-60 min, prolonged QRS width at 20 min, but shortened QT interval for 15-20 min and QTc for 15-30 min (n = 3). Cardiohemodynamic collapse occurred in 1 animal after the start of the high dose infusion, which might be associated with the cardiovascular death in patients with vasomotor dysfunction. Prolongation of QRS width indicates that azithromycin may suppress ventricular INa in vivo, which may unmask latent type of Brugada electrocardiographic genotype. Meanwhile, abbreviation of the QTc might cause potentially lethal, short QT-related, cardiac arrhythmia syndrome. These findings with microminipigs suggest the possible entry point for analyzing the mechanisms of cardiovascular death clinically seen with this antibiotic.


Assuntos
Azitromicina/toxicidade , Pressão Sanguínea/efeitos dos fármacos , Doenças Cardiovasculares/induzido quimicamente , Eletrocardiografia/efeitos dos fármacos , Animais , Azitromicina/sangue , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Masculino , Suínos , Porco Miniatura
10.
Xenobiotica ; 46(1): 82-93, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26068526

RESUMO

1. Macrolides belong to the polyketide class of natural products. These products are a group of drugs (typically antibiotics) which their activity stems from the presence of a macrolide ring. Antibiotic macrolides are used to treat infections caused by Gram-positive bacteria and Haemophilus influenzae infections such as respiratory tract and soft-tissue infections. Macrolides, mainly erythromycin and clarithromycin, rarely show QT prolongation, as their infamous adverse reaction which can lead to torsades de pointes. Electrophysiological studies showed that macrolides prolonging the QT interval inhibit the rapid component of the delayed rectifier K(+) current (IKr) through the block of potassium channels encoded by the human ether-a-go-go-related gene (HERG). Other studies suggest that increased ROS generation alters the kinetics of hERG K(+) conductance. 2. In our study, rat cardiomyocytes were isolated with collagen perfusion technique. Finally, mitochondria isolated from cardiomyocytes were exposed to erythromycin, azithromycin and clarithromycin for their probable toxicity effects. 3. Our results demonstrated that macrolides induced reactive oxygen species formation, mitochondrial membrane permeabilization and mitochondrial swelling and finally cytochrome c release in cardiomyocyte mitochondria. 4. These findings suggested that the toxicity of heart mitochondria is a starting point for cardiotoxic effects of macrolides including QT prolongation, torsades de pointes and arrhythmia.


Assuntos
Antibacterianos/toxicidade , Cardiotoxinas/efeitos adversos , Macrolídeos/toxicidade , Mitocôndrias Cardíacas/metabolismo , Animais , Azitromicina/toxicidade , Claritromicina/toxicidade , Citocromos c/metabolismo , Eritromicina/toxicidade , Técnicas In Vitro , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Dilatação Mitocondrial/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/enzimologia , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Succinato Desidrogenase/metabolismo
11.
J Antimicrob Chemother ; 70(3): 784-96, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25416744

RESUMO

OBJECTIVES: This work was carried out to construct a novel liposomal azithromycin formulation and examine its antimicrobial effects against Pseudomonas aeruginosa. METHODS: The liposomal azithromycin formulation was prepared by the dehydration-rehydration vesicle method and its characterizations were tested. The MIC and the MBC of the liposomal formulation were determined by the microbroth dilution method. Liposomal azithromycin activity against biofilm-forming P. aeruginosa was assessed using a Calgary biofilm device. The effect of subinhibitory concentrations of liposomal azithromycin on bacterial virulence factors and motility studies was tested on P. aeruginosa strains. The bacteria and liposome interactions were studied using flow cytometry analysis. The toxicities of the liposomal formulation on erythrocytes and A549 lung cells were evaluated in vitro. RESULTS: The average diameter of the liposomal azithromycin was 406.07 ±â€Š45 nm and the encapsulation efficiency was 23.8% ±â€Š0.2%. The MIC and MBC values of liposomal azithromycin were significantly lower than those of free azithromycin. The liposomal azithromycin significantly reduced the bacteria in the biofilm and attenuated the production of different virulence factors; it also reduced the different patterns of bacterial motilities. By flow cytometry analysis data, it was shown that there are interactions of liposomes with the bacterial membranes. No significant haemolysis or cell toxicity was observed with the liposomal formulation. CONCLUSIONS: The results of this research indicate that this novel liposomal azithromycin formulation could be a useful therapy to enhance the safety and efficacy of azithromycin against P. aeruginosa-infected persons.


Assuntos
Antibacterianos/farmacologia , Azitromicina/farmacologia , Portadores de Fármacos/metabolismo , Lipossomos/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Antibacterianos/toxicidade , Azitromicina/toxicidade , Linhagem Celular , Portadores de Fármacos/toxicidade , Citometria de Fluxo , Humanos , Lipossomos/toxicidade , Locomoção/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Fatores de Virulência/análise
12.
Chem Biol Interact ; 387: 110814, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37995777

RESUMO

BACKGROUND: Azithromycin, one of the new-generation macrolides, is an effective medicine for the treatment of mycoplasma infection during pregnancy. Epidemiological studies have reported adverse pregnancy outcomes with prenatal azithromycin exposure (PAzE). However, the effect of PAzE on fetal hippocampal development is unclear. This study aimed to explore the effects and potential mechanism of PAzE-induced fetal hippocampal development at different doses, courses, and time. METHOD: Pregnant mice were administered azithromycin by gavage at different doses (50, 100 or 200 mg/kg.d), different courses (gestational day (GD)15-17 for three consecutive days, or GD17 once a day) and different time (GD10-12, GD15-17). RESULTS: Compared with the control group, morphological development damage of the fetal hippocampus was observed in the PAzE group, with a dysbalance in neuronal proliferation and apoptosis, decreased expression of the neuronal-specific marker Snap25, NeuN, PSD95 and Map2, increased expression of the glial-specific marker Iba1, GFAP, and S-100ß, and decreased expression of P2ry12. The PAzE-induced hippocampal developmental deficiency varied based on different doses, courses, and time, and the developmental toxicity was most significant in the late pregnancy, high dose, multi-course group (AZHT). The significant reduction of SOX2 and Wnt, which were related to regulation of neural progenitor cells (NPCs) proliferation in PAzE fetus compared with the control group indicated that the SOX2/Wnt signaling may be involved in PAzE-induced hippocampal developmental toxicity. CONCLUSION: In this study, PAzE was associated with hippocampal developmental toxicity in a variety of nerve cells. Hippocampal developmental toxicity due to azithromycin was most significant in the late pregnancy, high-dose (equivalent to maximum clinical dose) and multi-course group (AZHT). The findings provide an experimental and theoretical foundation for guiding the sensible use of medications during pregnancy and effectively assessing the risk of fetal hippocampal developmental toxicity.


Assuntos
Efeitos Tardios da Exposição Pré-Natal , Feminino , Humanos , Gravidez , Animais , Camundongos , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Azitromicina/toxicidade , Feto , Neurônios , Hipocampo
13.
Biomed Pharmacother ; 170: 116063, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38154271

RESUMO

Azithromycin is a commonly used antibiotic during pregnancy, but some studies have suggested its potential developmental toxicity. Currently, the effects and mechanisms of prenatal azithromycin exposure (PAzE) on fetal testicular development are still unclear. The effects of prenatal exposure to the same drug on fetal testicular development could vary depending on different stages, doses, and courses. Hence, in this study, based on clinical medication characteristics, Kunming mice was administered intragastrically with azithromycin at different stages (mid-/late-pregnancy), doses (50, 100, 200 mg/kg·d), and courses (single-/multi-course). Fetal blood and testicular samples were collected on GD18 for relevant assessments. The results indicated that PAzE led to changes in fetal testicular morphology, reduced cell proliferation, increased apoptosis, and decreased expression of markers related to Leydig cells (Star), Sertoli cells (Wt1), and spermatogonia (Plzf). Further investigation revealed that the effects of PAzE on fetal testicular development were characterized by mid-pregnancy, high dose (clinical dose), and single course having more pronounced effects. Additionally, the TGFß/Smad and Nrf2 signaling pathways may be involved in the changes in fetal testicular development induced by PAzE. In summary, this study confirmed that PAzE influences fetal testicular morphological development and multicellular function. It provided theoretical and experimental evidence for guiding the rational use of azithromycin during pregnancy and further exploring the mechanisms underlying its developmental toxicity on fetal testicles.


Assuntos
Azitromicina , Testículo , Camundongos , Masculino , Feminino , Gravidez , Animais , Azitromicina/toxicidade , Células Intersticiais do Testículo , Células de Sertoli , Feto
14.
Biomed Pharmacother ; 172: 116246, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38359487

RESUMO

Azithromycin, a commonly used macrolide antibiotic for treating chlamydial infections during pregnancy, has sparked investigations into its potential effects on offspring development. Despite these inquiries, there remains uncertainty about the specific impact of prenatal azithromycin exposure (PAzE) on offspring ovarian development and the precise "effect window". Pregnant mice, following clinical guidelines for azithromycin dosing, were orally administered azithromycin at different gestational stages [(gestational day, GD) 10-12 or GD 15-17], doses (50, 100, or 200 mg/kg·d), and courses (single or multiple). On GD 18, we collected offspring blood and ovaries to examine changes in fetal serum estradiol (E2) levels, fetal ovarian morphology, pre-granulosa cell function, and oocyte development. Multiple courses of PAzE resulted in abnormal fetal ovarian morphological development, disorganized germ cell nests, enhanced ovarian cell proliferation, and reduced apoptosis. Simultaneously, multiple courses of PAzE significantly increased fetal serum E2 levels, elevated ovarian steroidogenic function (indicated by Star, 3ß-hsd, and Cyp19 expression), disrupted oocyte development (indicated by Figlα and Nobox expression), and led to alterations in the MAPK signal pathway in fetal ovaries, particularly in the high-dose treatment group. In contrast, a single course of PAzE reduced fetal ovarian cell proliferation, decreased steroidogenic function, and inhibited oocyte development, particularly through the downregulation of Mek2 expression in the MAPK signal pathway. These findings suggest that PAzE can influence various aspects of fetal mouse ovarian cell development. Multiple courses enhance pre-granulosa cell estrogen synthesis function and advance germ cell development, while a single terminal gestation dose inhibits germ cell development. These differential effects may be associated with changes in the MAPK signal pathway.


Assuntos
Azitromicina , Ovário , Gravidez , Feminino , Camundongos , Animais , Azitromicina/toxicidade , Células da Granulosa , Reprodução , Células Germinativas
15.
Environ Sci Pollut Res Int ; 31(37): 49905-49915, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39085690

RESUMO

Organisms are usually exposed to mixtures of emerging pollutants in aquatic environments. Due to their widespread use and environmental relevance, the individual and combined effects of the drugs azithromycin (AZT) and ivermectin (IVM) on the freshwater rotifer Lecane papuana and the euryhaline rotifer Proales similis were investigated. Rotifers showed greater sensitivity to IVM compared to AZT. The LC50 values of IVM and AZT for L. papuana and P. similis were 0.163 and 0.172 mg/L, and 13.52 and 20.00 mg/L, respectively. Population growth rates, assessed in chronic toxicity assays, responded negatively to increasing concentrations of both toxicants, either individually or in combination. Our results revealed two distinct combined toxicity responses: a strong synergistic effect in the freshwater rotifer and a marked antagonistic impact of the AZT-IVM mixtures in the euryhaline rotifer.


Assuntos
Azitromicina , Água Doce , Ivermectina , Rotíferos , Poluentes Químicos da Água , Animais , Ivermectina/toxicidade , Ivermectina/análogos & derivados , Rotíferos/efeitos dos fármacos , Azitromicina/toxicidade , Poluentes Químicos da Água/toxicidade
16.
Sci Total Environ ; 859(Pt 2): 160022, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36368382

RESUMO

Antibiotic resistance (AR) development in natural water bodies is a significant source of concern. Macrolide antibiotics in particular have been identified as pollutants of concern for AR development throughout the literature, as well as by state and international authorities. This study utilises a probabilistic model to examine the risk of AR development arising from human-use macrolide residues, utilising administration rates from Ireland as a case study. Stages modelled included level of administration, excretion, degradation in wastewater, removal in wastewater treatment, assuming conventional activated sludge (CAS) treatment, and dilution. Release estimates per day, as well as risk quotient values for antibiotic resistance development and ecological impact, are generated for erythromycin, clarithromycin, and azithromycin. In the modelled scenario in which conventional activated sludge treatment is utilised in wastewater treatment, this model ranks risk of resistance development for each antibiotic in the order clarithromycin > azithromycin > erythromycin, with mean risk quotient values of 0.50, 0.34 and 0.12, respectively. A membrane bioreactor scenario was also modelled, which reduced risk quotient values for all three macrolides by at least 50 %. Risk of ecological impact for each antibiotic was also examined, by comparing environmental concentrations predicted to safety limits based on toxicity data for cyanobacteria and other organisms from the literature, with azithromycin being identified as the macrolide of highest risk. This study compares and quantifies the risk of resistance development and ecological impact for a high-risk antibiotic group in the Irish context, and demonstrates the potential for risk reduction achieved by adoption of alternative (e.g. membrane bioreactor) technology.


Assuntos
Antibacterianos , Macrolídeos , Humanos , Antibacterianos/toxicidade , Macrolídeos/toxicidade , Azitromicina/toxicidade , Claritromicina , Eritromicina
17.
Environ Pollut ; 319: 121007, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36608722

RESUMO

The current study presents the results of an experiment carried to assess the impact of azithromycin, a COVID-19 drug, probably accumulated in marine sediments for three years, since the start of the pandemic, on benthic marine nematodes. It was explored the extent to which a common macrophyte from the Mediterranean Sea influenced the toxic impact of azithromycin on meiobenthic nematodes. Metals are known to influence toxicity of azithromycin. The nematofauna from a metallically pristine site situated in Bizerte bay, Tunisia, was exposed to two concentrations of azithromycin [i.e. 5 and 10 µg l-1]. In addition, two masses of the common macrophyte Posidonia oceanica [10 and 20% Dry Weight (DW)] were considered and associated with azithromycin into four possible combinations. The abundance and the taxonomic diversity of the nematode communities decreased significantly following the exposure to azithromycin, which was confirmed by the toxicokinetic data and behaving as substrate for P-glycoprotein (P-gp). The toxicity of 5 µg l-1 dosage of azithromycin was partially reduced at 10% DW of Posidonia and completely at 20% DW. The results showed that 5 µg l-1 of azithromycin can be reduced by the macrophyte P. oceanica when present in the environment at low masses as 10% DW.


Assuntos
Alismatales , COVID-19 , Nematoides , Animais , Azitromicina/toxicidade , Toxicocinética , Tratamento Farmacológico da COVID-19 , Mar Mediterrâneo
18.
Aquat Toxicol ; 256: 106410, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36724685

RESUMO

Antibiotics, such as azithromycin (AZ), tetracycline (TC), and their related antibiotic resistance genes (ARGs), create serious ecological risks to aquatic organisms. This study examined the response mechanisms of submerged macrophytes and periphytic biofilms to a mixture of AZ and TC pollution and determined the antibiotic removal efficiencies and fate of ARGs. The results showed that the plant-biofilm system had a significant capacity for removing both single and combined antibiotics with removal efficiencies of 93.06% ∼99.80% for AZ and 73.35% ∼97.74% for TC. Higher ARG (tetA, tetC, tetW, ermF, ermX, and ermB) abundances were observed in the biofilm, and subsequent exposure to the antibiotic mixture increased the abundances of these genes. Both single and combined antibiotics triggered antioxidant stress, but antagonistic effects were induced only with mixed AZ and TC exposure. Furthermore, the antibiotics changed the structural characteristics of extracellular polysaccharides and induced alterations in the structure of the biofilm microbial community. Increased N-acylated-l-homoserine lactone confirmed alternations in microbial quorum-sensing. The results extend the understanding of the fate of antibiotics and ARGs when aquatic plants and biofilms are exposed to antibiotic mixtures, as well as the organism's response mechanisms.


Assuntos
Antibacterianos , Poluentes Químicos da Água , Antibacterianos/toxicidade , Azitromicina/toxicidade , Poluentes Químicos da Água/toxicidade , Tetraciclina/análise , Tetraciclina/química , Tetraciclina/farmacologia , Biofilmes , Resistência Microbiana a Medicamentos/genética
19.
Life Sci ; 329: 121985, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37516432

RESUMO

AIMS: Azithromycin is widely used in clinical practice for treating maternal infections during pregnancy. Meanwhile, azithromycin, as an "emerging pollutant", is increasingly polluting the environment due to the rapidly increasing usage (especially after the COVID-19). Previous studies have suggested a possible teratogenic risk of prenatal azithromycin exposure (PAzE), but its effects on fetal multi-organ development are still unclear. This study aimed to explore the potential impacts of PAzE. MATERIALS AND METHODS: We focused on pregnancy outcomes, maternal/fetal serum phenotypes, and fetal multiple organ development in mice at different doses (50/200 mg/kg·d) during late pregnancy or at 200 mg/kg·d during different stages (mid-/late-pregnancy) and courses (single-/multi-course). KEY FINDINGS: The results showed PAzE increased the rate of the absorbed fetus during mid-pregnancy and increased the intrauterine growth retardation rate (IUGR) during late pregnancy. PAzE caused multiple blood phenotypic changes in maternal and fetal mice, among which the number and degree of changes in fetal blood indicators were more significant. Moreover, PAzE inhibited long bone/cartilage development and adrenal steroid synthesis, promoting hepatic lipid production and ovarian steroid synthesis in varying degrees. The order of severity might be bone/cartilage > liver > gonads > other organs. PAzE-induced multi-organ alterations differed in stages, courses doses and fetal sex. The most apparent changes might be in high-dose, mid-pregnancy, multi-course, and female, while there was no typical rule for a dose-response relationship. SIGNIFICANCE: This study confirmed PAzE could cause fetal developmental abnormalities and multi-organ functional alterations, which deepens the comprehensive understanding of azithromycin's fetal developmental toxicity.


Assuntos
Azitromicina , COVID-19 , Gravidez , Camundongos , Feminino , Animais , Humanos , Azitromicina/toxicidade , Tratamento Farmacológico da COVID-19 , Desenvolvimento Fetal , Retardo do Crescimento Fetal , Esteroides/farmacologia
20.
Sci Total Environ ; 892: 164309, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37236443

RESUMO

Water contamination by pharmaceuticals is a global concern due to their potential negative effects on aquatic ecosystems and human health. This study examined the presence of three repositioned drugs used for COVID-19 treatment: azithromycin (AZI), ivermectin (IVE) and hydroxychloroquine (HCQ) in water samples collected from three urban rivers in Curitiba, Brazil, during August and September 2020. We conducted a risk assessment and evaluated the individual (0, 2, 4, 20, 100 and 200 µg.L-1) and combined (mix of the drugs at 2 µg.L-1) effects of the antimicrobials on the cyanobacterium Synechococcus elongatus and microalga Chlorella vulgaris. The liquid chromatography coupled to mass spectrometry results showed that AZI and IVE were present in all collected samples, while HCQ occurred in 78 % of them. In all the studied sites, the concentrations found of AZI (up to 2.85 µg.L-1) and HCQ (up to 2.97 µg.L-1) represent environmental risks for the studied species, while IVE (up to 3.2 µg.L-1) was a risk only for Chlorella vulgaris. The hazard quotients (HQ) indices demonstrated that the microalga was less sensitive to the drugs than the cyanobacteria. HCQ and IVE had the highest values of HQ for the cyanobacteria and microalga, respectively, being the most toxic drugs for each species. Interactive effects of drugs were observed on growth, photosynthesis and antioxidant activity. The treatment with AZI + IVE resulted in cyanobacteria death, while exposure to the mixture of all three drugs led to decreased growth and photosynthesis in the cells. On the other hand, no effect on growth was observed for C. vulgaris, although photosynthesis has been negatively affected by all treatments. The use of AZI, IVE and HCQ for COVID-19 treatment may have generated surface water contamination, which could increased their potential ecotoxicological effects. This raises the need to further investigation into their effects on aquatic ecosystems.


Assuntos
COVID-19 , Chlorella vulgaris , Microalgas , Poluentes Químicos da Água , Humanos , Ecossistema , Tratamento Farmacológico da COVID-19 , Hidroxicloroquina/análise , Hidroxicloroquina/farmacologia , Azitromicina/toxicidade , Preparações Farmacêuticas , Água , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA