Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.674
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 187(8): 1955-1970.e23, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38503282

RESUMO

Characterizing somatic mutations in the brain is important for disentangling the complex mechanisms of aging, yet little is known about mutational patterns in different brain cell types. Here, we performed whole-genome sequencing (WGS) of 86 single oligodendrocytes, 20 mixed glia, and 56 single neurons from neurotypical individuals spanning 0.4-104 years of age and identified >92,000 somatic single-nucleotide variants (sSNVs) and small insertions/deletions (indels). Although both cell types accumulate somatic mutations linearly with age, oligodendrocytes accumulated sSNVs 81% faster than neurons and indels 28% slower than neurons. Correlation of mutations with single-nucleus RNA profiles and chromatin accessibility from the same brains revealed that oligodendrocyte mutations are enriched in inactive genomic regions and are distributed across the genome similarly to mutations in brain cancers. In contrast, neuronal mutations are enriched in open, transcriptionally active chromatin. These stark differences suggest an assortment of active mutagenic processes in oligodendrocytes and neurons.


Assuntos
Envelhecimento , Encéfalo , Neurônios , Oligodendroglia , Humanos , Envelhecimento/genética , Envelhecimento/patologia , Cromatina/genética , Cromatina/metabolismo , Mutação , Neurônios/metabolismo , Neurônios/patologia , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Análise da Expressão Gênica de Célula Única , Sequenciamento Completo do Genoma , Encéfalo/metabolismo , Encéfalo/patologia , Polimorfismo de Nucleotídeo Único , Mutação INDEL , Bancos de Espécimes Biológicos , Células Precursoras de Oligodendrócitos/metabolismo , Células Precursoras de Oligodendrócitos/patologia
2.
Cell ; 186(21): 4514-4527.e14, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37757828

RESUMO

Autozygosity is associated with rare Mendelian disorders and clinically relevant quantitative traits. We investigated associations between the fraction of the genome in runs of homozygosity (FROH) and common diseases in Genes & Health (n = 23,978 British South Asians), UK Biobank (n = 397,184), and 23andMe. We show that restricting analysis to offspring of first cousins is an effective way of reducing confounding due to social/environmental correlates of FROH. Within this group in G&H+UK Biobank, we found experiment-wide significant associations between FROH and twelve common diseases. We replicated associations with type 2 diabetes (T2D) and post-traumatic stress disorder via within-sibling analysis in 23andMe (median n = 480,282). We estimated that autozygosity due to consanguinity accounts for 5%-18% of T2D cases among British Pakistanis. Our work highlights the possibility of widespread non-additive genetic effects on common diseases and has important implications for global populations with high rates of consanguinity.


Assuntos
Consanguinidade , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/genética , Homozigoto , Fenótipo , Polimorfismo de Nucleotídeo Único , Bancos de Espécimes Biológicos , Genoma Humano , Predisposição Genética para Doença , Reino Unido
3.
Cell ; 185(23): 4256-4258, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36288728

RESUMO

Genome-wide association studies (GWASs) can require immense sample sizes to identify variants associated with human health across the frequency spectrum. As the Global Biobank Meta-analysis Initiative (GBMI), Zhou et al. describe a collaborative network across 23 biobanks and 2.2 million participants to address challenges of underrepresentation of diversity in genomic research.


Assuntos
Estudo de Associação Genômica Ampla , Genômica , Humanos , Bancos de Espécimes Biológicos
4.
Cell ; 180(1): 188-204.e22, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31883794

RESUMO

Glioblastomas exhibit vast inter- and intra-tumoral heterogeneity, complicating the development of effective therapeutic strategies. Current in vitro models are limited in preserving the cellular and mutational diversity of parental tumors and require a prolonged generation time. Here, we report methods for generating and biobanking patient-derived glioblastoma organoids (GBOs) that recapitulate the histological features, cellular diversity, gene expression, and mutational profiles of their corresponding parental tumors. GBOs can be generated quickly with high reliability and exhibit rapid, aggressive infiltration when transplanted into adult rodent brains. We further demonstrate the utility of GBOs to test personalized therapies by correlating GBO mutational profiles with responses to specific drugs and by modeling chimeric antigen receptor T cell immunotherapy. Our studies show that GBOs maintain many key features of glioblastomas and can be rapidly deployed to investigate patient-specific treatment strategies. Additionally, our live biobank establishes a rich resource for basic and translational glioblastoma research.


Assuntos
Técnicas de Cultura de Células/métodos , Glioblastoma/metabolismo , Organoides/crescimento & desenvolvimento , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Bancos de Espécimes Biológicos , Feminino , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Modelos Biológicos , Organoides/metabolismo , Reprodutibilidade dos Testes , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
5.
Cell ; 183(5): 1420-1435.e21, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33159857

RESUMO

Gastroenteropancreatic (GEP) neuroendocrine neoplasm (NEN) that consists of neuroendocrine tumor and neuroendocrine carcinoma (NEC) is a lethal but under-investigated disease owing to its rarity. To fill the scarcity of clinically relevant models of GEP-NEN, we here established 25 lines of NEN organoids and performed their comprehensive molecular characterization. GEP-NEN organoids recapitulated pathohistological and functional phenotypes of the original tumors. Whole-genome sequencing revealed frequent genetic alterations in TP53 and RB1 in GEP-NECs, and characteristic chromosome-wide loss of heterozygosity in GEP-NENs. Transcriptome analysis identified molecular subtypes that are distinguished by the expression of distinct transcription factors. GEP-NEN organoids gained independence from the stem cell niche irrespective of genetic mutations. Compound knockout of TP53 and RB1, together with overexpression of key transcription factors, conferred on the normal colonic epithelium phenotypes that are compatible with GEP-NEN biology. Altogether, our study not only provides genetic understanding of GEP-NEN, but also connects its genetics and biological phenotypes.


Assuntos
Bancos de Espécimes Biológicos , Tumores Neuroendócrinos/patologia , Organoides/patologia , Animais , Cromossomos Humanos/genética , Genótipo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neoplasias Intestinais/genética , Neoplasias Intestinais/patologia , Masculino , Camundongos , Modelos Genéticos , Mutação/genética , Tumores Neuroendócrinos/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Fenótipo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Transcriptoma/genética , Sequenciamento Completo do Genoma
6.
Cell ; 177(1): 70-84, 2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30901550

RESUMO

Affordable genome sequencing technologies promise to revolutionize the field of human genetics by enabling comprehensive studies that interrogate all classes of genome variation, genome-wide, across the entire allele frequency spectrum. Ongoing projects worldwide are sequencing many thousands-and soon millions-of human genomes as part of various gene mapping studies, biobanking efforts, and clinical programs. However, while genome sequencing data production has become routine, genome analysis and interpretation remain challenging endeavors with many limitations and caveats. Here, we review the current state of technologies for genetic variant discovery, genotyping, and functional interpretation and discuss the prospects for future advances. We focus on germline variants discovered by whole-genome sequencing, genome-wide functional genomic approaches for predicting and measuring variant functional effects, and implications for studies of common and rare human disease.


Assuntos
Variação Genética/genética , Genoma Humano/genética , Análise de Sequência de DNA/tendências , Bancos de Espécimes Biológicos , Mapeamento Cromossômico/métodos , Predisposição Genética para Doença/genética , Testes Genéticos/tendências , Estudo de Associação Genômica Ampla , Genômica/métodos , Genômica/tendências , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Projeto Genoma Humano , Humanos , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA/métodos , Sequenciamento Completo do Genoma/métodos , Sequenciamento Completo do Genoma/tendências
7.
Cell ; 167(1): 260-274.e22, 2016 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-27641504

RESUMO

The inter- and intra-tumor heterogeneity of breast cancer needs to be adequately captured in pre-clinical models. We have created a large collection of breast cancer patient-derived tumor xenografts (PDTXs), in which the morphological and molecular characteristics of the originating tumor are preserved through passaging in the mouse. An integrated platform combining in vivo maintenance of these PDTXs along with short-term cultures of PDTX-derived tumor cells (PDTCs) was optimized. Remarkably, the intra-tumor genomic clonal architecture present in the originating breast cancers was mostly preserved upon serial passaging in xenografts and in short-term cultured PDTCs. We assessed drug responses in PDTCs on a high-throughput platform and validated several ex vivo responses in vivo. The biobank represents a powerful resource for pre-clinical breast cancer pharmacogenomic studies (http://caldaslab.cruk.cam.ac.uk/bcape), including identification of biomarkers of response or resistance.


Assuntos
Bancos de Espécimes Biológicos , Neoplasias da Mama , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Biomarcadores Farmacológicos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Ensaios de Triagem em Larga Escala , Humanos , Camundongos , Testes Farmacogenômicos , Células Tumorais Cultivadas
8.
Cell ; 161(4): 933-45, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25957691

RESUMO

In Rspondin-based 3D cultures, Lgr5 stem cells from multiple organs form ever-expanding epithelial organoids that retain their tissue identity. We report the establishment of tumor organoid cultures from 20 consecutive colorectal carcinoma (CRC) patients. For most, organoids were also generated from adjacent normal tissue. Organoids closely recapitulate several properties of the original tumor. The spectrum of genetic changes within the "living biobank" agrees well with previous large-scale mutational analyses of CRC. Gene expression analysis indicates that the major CRC molecular subtypes are represented. Tumor organoids are amenable to high-throughput drug screens allowing detection of gene-drug associations. As an example, a single organoid culture was exquisitely sensitive to Wnt secretion (porcupine) inhibitors and carried a mutation in the negative Wnt feedback regulator RNF43, rather than in APC. Organoid technology may fill the gap between cancer genetics and patient trials, complement cell-line- and xenograft-based drug studies, and allow personalized therapy design. PAPERCLIP.


Assuntos
Bancos de Espécimes Biológicos , Neoplasias Colorretais/patologia , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Organoides , Neoplasias Colorretais/tratamento farmacológico , Proteínas de Ligação a DNA/metabolismo , Humanos , Proteínas Oncogênicas/metabolismo , Técnicas de Cultura de Órgãos , Organoides/efeitos dos fármacos , Medicina de Precisão , Ubiquitina-Proteína Ligases
9.
Nature ; 631(8019): 134-141, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38867047

RESUMO

Mosaic loss of the X chromosome (mLOX) is the most common clonal somatic alteration in leukocytes of female individuals1,2, but little is known about its genetic determinants or phenotypic consequences. Here, to address this, we used data from 883,574 female participants across 8 biobanks; 12% of participants exhibited detectable mLOX in approximately 2% of leukocytes. Female participants with mLOX had an increased risk of myeloid and lymphoid leukaemias. Genetic analyses identified 56 common variants associated with mLOX, implicating genes with roles in chromosomal missegregation, cancer predisposition and autoimmune diseases. Exome-sequence analyses identified rare missense variants in FBXO10 that confer a twofold increased risk of mLOX. Only a small fraction of associations was shared with mosaic Y chromosome loss, suggesting that distinct biological processes drive formation and clonal expansion of sex chromosome missegregation. Allelic shift analyses identified X chromosome alleles that are preferentially retained in mLOX, demonstrating variation at many loci under cellular selection. A polygenic score including 44 allelic shift loci correctly inferred the retained X chromosomes in 80.7% of mLOX cases in the top decile. Our results support a model in which germline variants predispose female individuals to acquiring mLOX, with the allelic content of the X chromosome possibly shaping the magnitude of clonal expansion.


Assuntos
Aneuploidia , Cromossomos Humanos X , Células Clonais , Leucócitos , Mosaicismo , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Alelos , Doenças Autoimunes/genética , Bancos de Espécimes Biológicos , Segregação de Cromossomos/genética , Cromossomos Humanos X/genética , Cromossomos Humanos Y/genética , Células Clonais/metabolismo , Células Clonais/patologia , Exoma/genética , Proteínas F-Box/genética , Predisposição Genética para Doença/genética , Mutação em Linhagem Germinativa , Leucemia/genética , Leucócitos/metabolismo , Modelos Genéticos , Herança Multifatorial/genética , Mutação de Sentido Incorreto/genética
10.
Nature ; 632(8027): 1145-1154, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38862028

RESUMO

Spaceflight induces molecular, cellular and physiological shifts in astronauts and poses myriad biomedical challenges to the human body, which are becoming increasingly relevant as more humans venture into space1-6. Yet current frameworks for aerospace medicine are nascent and lag far behind advancements in precision medicine on Earth, underscoring the need for rapid development of space medicine databases, tools and protocols. Here we present the Space Omics and Medical Atlas (SOMA), an integrated data and sample repository for clinical, cellular and multi-omic research profiles from a diverse range of missions, including the NASA Twins Study7, JAXA CFE study8,9, SpaceX Inspiration4 crew10-12, Axiom and Polaris. The SOMA resource represents a more than tenfold increase in publicly available human space omics data, with matched samples available from the Cornell Aerospace Medicine Biobank. The Atlas includes extensive molecular and physiological profiles encompassing genomics, epigenomics, transcriptomics, proteomics, metabolomics and microbiome datasets, which reveal some consistent features across missions, including cytokine shifts, telomere elongation and gene expression changes, as well as mission-specific molecular responses and links to orthologous, tissue-specific mouse datasets. Leveraging the datasets, tools and resources in SOMA can help to accelerate precision aerospace medicine, bringing needed health monitoring, risk mitigation and countermeasure data for upcoming lunar, Mars and exploration-class missions.


Assuntos
Medicina Aeroespacial , Astronautas , Bancos de Espécimes Biológicos , Bases de Dados Factuais , Internacionalidade , Voo Espacial , Animais , Feminino , Humanos , Masculino , Camundongos , Medicina Aeroespacial/métodos , Atlas como Assunto , Citocinas/metabolismo , Conjuntos de Dados como Assunto , Epigenômica , Perfilação da Expressão Gênica , Genômica , Metabolômica , Microbiota/genética , Multiômica , Especificidade de Órgãos , Medicina de Precisão/tendências , Proteômica , Voo Espacial/estatística & dados numéricos , Telômero/metabolismo , Gêmeos
11.
Nature ; 632(8027): 995-1008, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38862027

RESUMO

The recent acceleration of commercial, private and multi-national spaceflight has created an unprecedented level of activity in low Earth orbit, concomitant with the largest-ever number of crewed missions entering space and preparations for exploration-class (lasting longer than one year) missions. Such rapid advancement into space from many new companies, countries and space-related entities has enabled a 'second space age'. This era is also poised to leverage, for the first time, modern tools and methods of molecular biology and precision medicine, thus enabling precision aerospace medicine for the crews. The applications of these biomedical technologies and algorithms are diverse, and encompass multi-omic, single-cell and spatial biology tools to investigate human and microbial responses to spaceflight. Additionally, they extend to the development of new imaging techniques, real-time cognitive assessments, physiological monitoring and personalized risk profiles tailored for astronauts. Furthermore, these technologies enable advancements in pharmacogenomics, as well as the identification of novel spaceflight biomarkers and the development of corresponding countermeasures. In this Perspective, we highlight some of the recent biomedical research from the National Aeronautics and Space Administration, Japan Aerospace Exploration Agency, European Space Agency and other space agencies, and detail the entrance of the commercial spaceflight sector (including SpaceX, Blue Origin, Axiom and Sierra Space) into aerospace medicine and space biology, the first aerospace medicine biobank, and various upcoming missions that will utilize these tools to ensure a permanent human presence beyond low Earth orbit, venturing out to other planets and moons.


Assuntos
Medicina Aeroespacial , Astronautas , Multiômica , Voo Espacial , Humanos , Medicina Aeroespacial/métodos , Medicina Aeroespacial/tendências , Bancos de Espécimes Biológicos , Biomarcadores/metabolismo , Biomarcadores/análise , Cognição , Internacionalidade , Monitorização Fisiológica/métodos , Monitorização Fisiológica/tendências , Multiômica/métodos , Multiômica/tendências , Farmacogenética/métodos , Farmacogenética/tendências , Medicina de Precisão/métodos , Medicina de Precisão/tendências , Voo Espacial/métodos , Voo Espacial/tendências
12.
Nature ; 613(7944): 519-525, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36653560

RESUMO

Identifying causal factors for Mendelian and common diseases is an ongoing challenge in medical genetics1. Population bottleneck events, such as those that occurred in the history of the Finnish population, enrich some homozygous variants to higher frequencies, which facilitates the identification of variants that cause diseases with recessive inheritance2,3. Here we examine the homozygous and heterozygous effects of 44,370 coding variants on 2,444 disease phenotypes using data from the nationwide electronic health records of 176,899 Finnish individuals. We find associations for homozygous genotypes across a broad spectrum of phenotypes, including known associations with retinal dystrophy and novel associations with adult-onset cataract and female infertility. Of the recessive disease associations that we identify, 13 out of 20 would have been missed by the additive model that is typically used in genome-wide association studies. We use these results to find many known Mendelian variants whose inheritance cannot be adequately described by a conventional definition of dominant or recessive. In particular, we find variants that are known to cause diseases with recessive inheritance with significant heterozygous phenotypic effects. Similarly, we find presumed benign variants with disease effects. Our results show how biobanks, particularly in founder populations, can broaden our understanding of complex dosage effects of Mendelian variants on disease.


Assuntos
Alelos , Bancos de Espécimes Biológicos , Doença , Animais , Feminino , Estudo de Associação Genômica Ampla , Fenótipo , Doença/genética , Finlândia , Distrofias Retinianas , Catarata , Infertilidade Feminina , Genes Recessivos , Heterozigoto , Efeito Fundador , Dosagem de Genes , Registros Eletrônicos de Saúde
13.
Nature ; 622(7982): 339-347, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37794183

RESUMO

Integrating human genomics and proteomics can help elucidate disease mechanisms, identify clinical biomarkers and discover drug targets1-4. Because previous proteogenomic studies have focused on common variation via genome-wide association studies, the contribution of rare variants to the plasma proteome remains largely unknown. Here we identify associations between rare protein-coding variants and 2,923 plasma protein abundances measured in 49,736 UK Biobank individuals. Our variant-level exome-wide association study identified 5,433 rare genotype-protein associations, of which 81% were undetected in a previous genome-wide association study of the same cohort5. We then looked at aggregate signals using gene-level collapsing analysis, which revealed 1,962 gene-protein associations. Of the 691 gene-level signals from protein-truncating variants, 99.4% were associated with decreased protein levels. STAB1 and STAB2, encoding scavenger receptors involved in plasma protein clearance, emerged as pleiotropic loci, with 77 and 41 protein associations, respectively. We demonstrate the utility of our publicly accessible resource through several applications. These include detailing an allelic series in NLRC4, identifying potential biomarkers for a fatty liver disease-associated variant in HSD17B13 and bolstering phenome-wide association studies by integrating protein quantitative trait loci with protein-truncating variants in collapsing analyses. Finally, we uncover distinct proteomic consequences of clonal haematopoiesis (CH), including an association between TET2-CH and increased FLT3 levels. Our results highlight a considerable role for rare variation in plasma protein abundance and the value of proteogenomics in therapeutic discovery.


Assuntos
Bancos de Espécimes Biológicos , Proteínas Sanguíneas , Estudos de Associação Genética , Genômica , Proteômica , Humanos , Alelos , Biomarcadores/sangue , Proteínas Sanguíneas/análise , Proteínas Sanguíneas/genética , Bases de Dados Factuais , Exoma/genética , Hematopoese , Mutação , Plasma/química , Reino Unido
14.
Nature ; 622(7982): 348-358, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37794188

RESUMO

High-throughput proteomics platforms measuring thousands of proteins in plasma combined with genomic and phenotypic information have the power to bridge the gap between the genome and diseases. Here we performed association studies of Olink Explore 3072 data generated by the UK Biobank Pharma Proteomics Project1 on plasma samples from more than 50,000 UK Biobank participants with phenotypic and genotypic data, stratifying on British or Irish, African and South Asian ancestries. We compared the results with those of a SomaScan v4 study on plasma from 36,000 Icelandic people2, for 1,514 of whom Olink data were also available. We found modest correlation between the two platforms. Although cis protein quantitative trait loci were detected for a similar absolute number of assays on the two platforms (2,101 on Olink versus 2,120 on SomaScan), the proportion of assays with such supporting evidence for assay performance was higher on the Olink platform (72% versus 43%). A considerable number of proteins had genomic associations that differed between the platforms. We provide examples where differences between platforms may influence conclusions drawn from the integration of protein levels with the study of diseases. We demonstrate how leveraging the diverse ancestries of participants in the UK Biobank helps to detect novel associations and refine genomic location. Our results show the value of the information provided by the two most commonly used high-throughput proteomics platforms and demonstrate the differences between them that at times provides useful complementarity.


Assuntos
Proteínas Sanguíneas , Suscetibilidade a Doenças , Genômica , Genótipo , Fenótipo , Proteômica , Humanos , África/etnologia , Ásia Meridional/etnologia , Bancos de Espécimes Biológicos , Proteínas Sanguíneas/análise , Proteínas Sanguíneas/genética , Conjuntos de Dados como Assunto , Genoma Humano/genética , Islândia/etnologia , Irlanda/etnologia , Plasma/química , Proteoma/análise , Proteoma/genética , Proteômica/métodos , Locos de Características Quantitativas , Reino Unido
15.
Nature ; 622(7984): 775-783, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37821706

RESUMO

Latin America continues to be severely underrepresented in genomics research, and fine-scale genetic histories and complex trait architectures remain hidden owing to insufficient data1. To fill this gap, the Mexican Biobank project genotyped 6,057 individuals from 898 rural and urban localities across all 32 states in Mexico at a resolution of 1.8 million genome-wide markers with linked complex trait and disease information creating a valuable nationwide genotype-phenotype database. Here, using ancestry deconvolution and inference of identity-by-descent segments, we inferred ancestral population sizes across Mesoamerican regions over time, unravelling Indigenous, colonial and postcolonial demographic dynamics2-6. We observed variation in runs of homozygosity among genomic regions with different ancestries reflecting distinct demographic histories and, in turn, different distributions of rare deleterious variants. We conducted genome-wide association studies (GWAS) for 22 complex traits and found that several traits are better predicted using the Mexican Biobank GWAS compared to the UK Biobank GWAS7,8. We identified genetic and environmental factors associating with trait variation, such as the length of the genome in runs of homozygosity as a predictor for body mass index, triglycerides, glucose and height. This study provides insights into the genetic histories of individuals in Mexico and dissects their complex trait architectures, both crucial for making precision and preventive medicine initiatives accessible worldwide.


Assuntos
Bancos de Espécimes Biológicos , Genética Médica , Genoma Humano , Genômica , Hispânico ou Latino , Humanos , Glicemia/genética , Glicemia/metabolismo , Estatura/genética , Índice de Massa Corporal , Interação Gene-Ambiente , Marcadores Genéticos/genética , Estudo de Associação Genômica Ampla , Hispânico ou Latino/classificação , Hispânico ou Latino/genética , Homozigoto , México , Fenótipo , Triglicerídeos/sangue , Triglicerídeos/genética , Reino Unido , Genoma Humano/genética
16.
Nature ; 622(7982): 329-338, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37794186

RESUMO

The Pharma Proteomics Project is a precompetitive biopharmaceutical consortium characterizing the plasma proteomic profiles of 54,219 UK Biobank participants. Here we provide a detailed summary of this initiative, including technical and biological validations, insights into proteomic disease signatures, and prediction modelling for various demographic and health indicators. We present comprehensive protein quantitative trait locus (pQTL) mapping of 2,923 proteins that identifies 14,287 primary genetic associations, of which 81% are previously undescribed, alongside ancestry-specific pQTL mapping in non-European individuals. The study provides an updated characterization of the genetic architecture of the plasma proteome, contextualized with projected pQTL discovery rates as sample sizes and proteomic assay coverages increase over time. We offer extensive insights into trans pQTLs across multiple biological domains, highlight genetic influences on ligand-receptor interactions and pathway perturbations across a diverse collection of cytokines and complement networks, and illustrate long-range epistatic effects of ABO blood group and FUT2 secretor status on proteins with gastrointestinal tissue-enriched expression. We demonstrate the utility of these data for drug discovery by extending the genetic proxied effects of protein targets, such as PCSK9, on additional endpoints, and disentangle specific genes and proteins perturbed at loci associated with COVID-19 susceptibility. This public-private partnership provides the scientific community with an open-access proteomics resource of considerable breadth and depth to help to elucidate the biological mechanisms underlying proteo-genomic discoveries and accelerate the development of biomarkers, predictive models and therapeutics1.


Assuntos
Bancos de Espécimes Biológicos , Proteínas Sanguíneas , Bases de Dados Factuais , Genômica , Saúde , Proteoma , Proteômica , Humanos , Sistema ABO de Grupos Sanguíneos/genética , Proteínas Sanguíneas/análise , Proteínas Sanguíneas/genética , COVID-19/genética , Descoberta de Drogas , Epistasia Genética , Fucosiltransferases/metabolismo , Predisposição Genética para Doença , Plasma/química , Pró-Proteína Convertase 9/metabolismo , Proteoma/análise , Proteoma/genética , Parcerias Público-Privadas , Locos de Características Quantitativas , Reino Unido , Galactosídeo 2-alfa-L-Fucosiltransferase
18.
Nature ; 607(7920): 732-740, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35859178

RESUMO

Detailed knowledge of how diversity in the sequence of the human genome affects phenotypic diversity depends on a comprehensive and reliable characterization of both sequences and phenotypic variation. Over the past decade, insights into this relationship have been obtained from whole-exome sequencing or whole-genome sequencing of large cohorts with rich phenotypic data1,2. Here we describe the analysis of whole-genome sequencing of 150,119 individuals from the UK Biobank3. This constitutes a set of high-quality variants, including 585,040,410 single-nucleotide polymorphisms, representing 7.0% of all possible human single-nucleotide polymorphisms, and 58,707,036 indels. This large set of variants allows us to characterize selection based on sequence variation within a population through a depletion rank score of windows along the genome. Depletion rank analysis shows that coding exons represent a small fraction of regions in the genome subject to strong sequence conservation. We define three cohorts within the UK Biobank: a large British Irish cohort, a smaller African cohort and a South Asian cohort. A haplotype reference panel is provided that allows reliable imputation of most variants carried by three or more sequenced individuals. We identified 895,055 structural variants and 2,536,688 microsatellites, groups of variants typically excluded from large-scale whole-genome sequencing studies. Using this formidable new resource, we provide several examples of trait associations for rare variants with large effects not found previously through studies based on whole-exome sequencing and/or imputation.


Assuntos
Bancos de Espécimes Biológicos , Bases de Dados Genéticas , Variação Genética , Genoma Humano , Genômica , Sequenciamento Completo do Genoma , África/etnologia , Ásia/etnologia , Estudos de Coortes , Sequência Conservada , Éxons/genética , Genoma Humano/genética , Haplótipos/genética , Humanos , Mutação INDEL , Irlanda/etnologia , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único/genética , Reino Unido
19.
Nature ; 608(7922): 336-345, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35896751

RESUMO

In European and many African, Middle Eastern and southern Asian populations, lactase persistence (LP) is the most strongly selected monogenic trait to have evolved over the past 10,000 years1. Although the selection of LP and the consumption of prehistoric milk must be linked, considerable uncertainty remains concerning their spatiotemporal configuration and specific interactions2,3. Here we provide detailed distributions of milk exploitation across Europe over the past 9,000 years using around 7,000 pottery fat residues from more than 550 archaeological sites. European milk use was widespread from the Neolithic period onwards but varied spatially and temporally in intensity. Notably, LP selection varying with levels of prehistoric milk exploitation is no better at explaining LP allele frequency trajectories than uniform selection since the Neolithic period. In the UK Biobank4,5 cohort of 500,000 contemporary Europeans, LP genotype was only weakly associated with milk consumption and did not show consistent associations with improved fitness or health indicators. This suggests that other reasons for the beneficial effects of LP should be considered for its rapid frequency increase. We propose that lactase non-persistent individuals consumed milk when it became available but, under conditions of famine and/or increased pathogen exposure, this was disadvantageous, driving LP selection in prehistoric Europe. Comparison of model likelihoods indicates that population fluctuations, settlement density and wild animal exploitation-proxies for these drivers-provide better explanations of LP selection than the extent of milk exploitation. These findings offer new perspectives on prehistoric milk exploitation and LP evolution.


Assuntos
Arqueologia , Indústria de Laticínios , Doença , Genética Populacional , Lactase , Leite , Seleção Genética , Animais , Animais Selvagens , Bancos de Espécimes Biológicos , Cerâmica/história , Estudos de Coortes , Indústria de Laticínios/história , Europa (Continente)/epidemiologia , Europa (Continente)/etnologia , Fome Epidêmica/estatística & dados numéricos , Frequência do Gene , Genótipo , História Antiga , Humanos , Lactase/genética , Leite/metabolismo , Reino Unido
20.
Nature ; 604(7907): 697-707, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35255491

RESUMO

There is strong evidence of brain-related abnormalities in COVID-191-13. However, it remains unknown whether the impact of SARS-CoV-2 infection can be detected in milder cases, and whether this can reveal possible mechanisms contributing to brain pathology. Here we investigated brain changes in 785 participants of UK Biobank (aged 51-81 years) who were imaged twice using magnetic resonance imaging, including 401 cases who tested positive for infection with SARS-CoV-2 between their two scans-with 141 days on average separating their diagnosis and the second scan-as well as 384 controls. The availability of pre-infection imaging data reduces the likelihood of pre-existing risk factors being misinterpreted as disease effects. We identified significant longitudinal effects when comparing the two groups, including (1) a greater reduction in grey matter thickness and tissue contrast in the orbitofrontal cortex and parahippocampal gyrus; (2) greater changes in markers of tissue damage in regions that are functionally connected to the primary olfactory cortex; and (3) a greater reduction in global brain size in the SARS-CoV-2 cases. The participants who were infected with SARS-CoV-2 also showed on average a greater cognitive decline between the two time points. Importantly, these imaging and cognitive longitudinal effects were still observed after excluding the 15 patients who had been hospitalised. These mainly limbic brain imaging results may be the in vivo hallmarks of a degenerative spread of the disease through olfactory pathways, of neuroinflammatory events, or of the loss of sensory input due to anosmia. Whether this deleterious effect can be partially reversed, or whether these effects will persist in the long term, remains to be investigated with additional follow-up.


Assuntos
Encéfalo , COVID-19 , Idoso , Idoso de 80 Anos ou mais , Bancos de Espécimes Biológicos , Encéfalo/diagnóstico por imagem , Encéfalo/virologia , COVID-19/patologia , Humanos , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , SARS-CoV-2 , Olfato , Reino Unido/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA