Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Zoolog Sci ; 37(5): 399-410, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32972080

RESUMO

Cockroaches are commonly found in human residences and notorious as hygienic and nuisance pests. Notably, however, no more than 30 cockroach species are regarded as pests, while the majority of 4,500 cockroaches in the world are living in forest environments with little relevance to human life. Why some cockroaches have exceptionally adapted to anthropic environments and established pest status is of interest. Here we investigated the German cockroach Blattella germanica, which is a cosmopolitan pest species, and the forest cockroach Blattella nipponica, which is a wild species closely related to B. germanica. In contrast to easy rearing of B. germanica, laboratory rearing of B. nipponica was challenging-several trials enabled us to keep the insects for up to three months. We particularly focused on the distribution patterns of specialized cells, bacteriocytes, for harboring endosymbiotic Blattabacterium, which has been suggested to contribute to host's nitrogen metabolism and recycling, during the postembryonic development of the insects. The bacteriocytes were consistently localized to visceral fat bodies filling the abdominal body cavity, where a number of single bacteriocytes were scattered among the adipocytes, throughout the developmental stages in both females and males. The distribution patterns of the bacteriocytes were quite similar between B. germanica and B. nipponica, and also among other diverse cockroach species, plausibly reflecting the highly conserved cockroach-Blattabacterium symbiotic association over evolutionary time. Our study lays a foundation to experimentally investigate the origin and the processes of urban pest evolution, on account of possible involvement of microbial associates.


Assuntos
Bacteroidetes/fisiologia , Baratas/citologia , Baratas/microbiologia , Simbiose/fisiologia , Animais , Filogenia
2.
Cell Tissue Res ; 370(2): 243-265, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28801771

RESUMO

The present transmission and scanning electron microscopic study of the ultramorphology of the pliable attachment pads (arolium, euplantulae) of the Madagascar hissing cockroach Gromphadorhina portentosa reveals structural evidence for their function in producing, storing, and secreting an adhesion-mediating secretion and releasing it to the exterior. The exocrine epidermal tissue of both the arolium and the euplantula is significantly enlarged by numerous invaginations stretching into the hemolymph cavity. Its cells show large nuclei, numerous mitochondria, Golgi complexes, and a prominent rough-surfaced endoplasmic reticulum integrated within an electron-dense cytoplasm that contains numerous vesicles of diverse electron density and size. Invaginations of the cell membrane provide evidence for strong membrane turnover. The glandular epithelium of both the arolium and the euplantula releases the adhesion-mediating secretion into a subcuticular void from which it has to permeate the thick cuticle of the adhesive pads. The subcuticular void is compartmentalized by cuticle bands through which the adhesion-mediating secretion permeates via small canals. The secretion subsequently enters a larger storage reservoir before being received by a prominent sponge-like cuticle. The structural differences between the arolium and the euplantula consist of the number and length of the interdigitations spanning the hemolymph cavity, of the subdivision of the subcuticular reservoir by cuticle bands, and of the thickness of the sponge-like cuticle. The structural results are discussed with respect to the production of a chemically complex (emulsion-like) adhesive, its controlled release to the exterior, and the micromechanical properties of the cuticle of the pliable pad.


Assuntos
Adesivos/análise , Baratas/anatomia & histologia , Baratas/ultraestrutura , Animais , Baratas/citologia , Microscopia Crioeletrônica , Células Epidérmicas , Epiderme/anatomia & histologia , Epiderme/ultraestrutura , Feminino , Masculino , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Caminhada
3.
J Neurophysiol ; 114(2): 763-7, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25318766

RESUMO

Although the ability to detect humidity (i.e., hygrosensation) represents an important sensory attribute in many animal species (including humans), the neurophysiological and molecular bases of such sensory ability remain largely unknown in many animals. Recently, Russell and colleagues (Russell J, Vidal-Gadea AG, Makay A, Lanam C, Pierce-Shimomura JT. Proc Natl Acad Sci USA 111: 8269-8274, 2014) provided for the first time neuromolecular evidence for the sensory integration of thermal and mechanical sensory cues which underpin the hygrosensation strategy of an animal (i.e., the free-living roundworm Caenorhabditis elegans) that lacks specific sensory organs for humidity detection (i.e., hygroreceptors). Due to the remarkable similarities in the hygrosensation transduction mechanisms used by hygroreceptor-provided (e.g., insects) and hygroreceptor-lacking species (e.g., roundworms and humans), the findings of Russell et al. highlight potentially universal mechanisms for humidity detection that could be shared across a wide range of species, including humans.


Assuntos
Caenorhabditis elegans/fisiologia , Baratas/fisiologia , Umidade , Sensação/fisiologia , Células Receptoras Sensoriais/fisiologia , Animais , Caenorhabditis elegans/citologia , Baratas/citologia , Humanos , Células Receptoras Sensoriais/citologia , Especificidade da Espécie
4.
J Exp Biol ; 217(Pt 21): 3815-22, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25214489

RESUMO

Evidence for the presence of allatostatin (AST) A-like neuropeptides in the larval midge Chironomus riparius is reported. Immunohistochemical studies on the nervous system and gut revealed the presence of AST A-like immunoreactive (AST-IR) cells and processes. The nerve cord contained AST-IR processes that originated from cells in the brain and travelled the length of nerve cord to the terminal ganglion. Within each ganglion, these processes gave rise to varicosities, suggesting that they formed synapses with neurons in the ganglia. Endocrine cells containing AST-IR were present in three regions of the midgut: near the attachment of the Malpighian tubules, between the anterior and posterior midgut, and in the vicinity of the gastric caecae. The terminal ganglion also contained four AST-IR cells that gave rise to axons that projected onto the hindgut and posterior midgut. Application of a cockroach AST to the semi-isolated hindgut of larval C. riparius led to dose-dependent inhibition of muscle contractions with an EC50 of ~10 nmol l(-1) and a decrease in rectal K(+) reabsorption resulting from reduced rectal Na(+)/K(+)-ATPase and vacuolar type H(+)-ATPase activities. The results suggest the presence of endogenous AST-like neuropeptides in larval C. riparius, where these factors play a role in the function of the gut. Furthermore, regulation of ion reabsorption by ASTs at the rectum could serve as an ideal mechanism of ion regulation in the face of abrupt and acute elevated salt levels.


Assuntos
Chironomidae/imunologia , Chironomidae/fisiologia , Trato Gastrointestinal/imunologia , Sistema Nervoso/imunologia , Neuropeptídeos/imunologia , Animais , Baratas/citologia , Células Enteroendócrinas/metabolismo , Motilidade Gastrointestinal/fisiologia , Trato Gastrointestinal/metabolismo , Imuno-Histoquímica , Contração Muscular/efeitos dos fármacos , Neuropeptídeos/farmacologia , Potássio/metabolismo , Salinidade , ATPase Trocadora de Sódio-Potássio/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-23456090

RESUMO

The accessory medulla (aMe) is the pacemaker that controls circadian activity rhythms in the cockroach Rhyparobia maderae. Not much is known about the classical neurotransmitters of input pathways to the cockroach circadian system. The circadian pacemaker center receives photic input from the compound eye, via unknown excitatory and GABAergic inhibitory entrainment pathways. In addition, neuropeptidergic inputs couple both pacemaker centers. A histamine-immunoreactive centrifugal neuron connects the ventral aMe with projection areas in the lateral protocerebrum and may provide non-photic inputs. To identify neurotransmitters of input pathways to the circadian clock with Fura-2-dependent Ca(2+) imaging, primary cell cultures of the adult aMe were stimulated with acetylcholine (ACh), as the most prominent excitatory, and histamine, as common inhibitory neurotransmitter. In most of aMe neurons, ACh application caused dose-dependent increases in intracellular Ca(2+) levels via ionotropic nicotinic ACh receptors. These ACh-dependent rises in Ca(2+) were mediated by mibefradil-sensitive voltage-activated Ca(2+) channels. In contrast, histamine application decreased intracellular Ca(2+) levels in only a subpopulation of aMe cells via H2-type histamine receptor chloride channels. Thus, our data suggest that ACh is part of the light entrainment pathway while histamine is involved in a non-photic input pathway to the ventral circadian clock of the Madeira cockroach.


Assuntos
Acetilcolina/farmacologia , Relógios Biológicos/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Ritmo Circadiano , Baratas/efeitos dos fármacos , Agonistas dos Receptores Histamínicos/farmacologia , Histamina/farmacologia , Neurônios/efeitos dos fármacos , Agonistas Nicotínicos/farmacologia , Animais , Encéfalo/metabolismo , Células Cultivadas , Canais de Cloreto/efeitos dos fármacos , Canais de Cloreto/metabolismo , Baratas/citologia , Baratas/metabolismo , Relação Dose-Resposta a Droga , Luz , Inibição Neural/efeitos dos fármacos , Neurônios/metabolismo , Estimulação Luminosa , Receptores Histamínicos H2/efeitos dos fármacos , Receptores Histamínicos H2/metabolismo , Receptores Nicotínicos/efeitos dos fármacos , Receptores Nicotínicos/metabolismo , Fatores de Tempo
6.
Anal Bioanal Chem ; 405(26): 8525-37, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23975087

RESUMO

Calcium (Ca(2+)) is a ubiquitous intracellular second messenger and involved in a plethora of cellular processes. Thus, quantification of the intracellular Ca(2+) concentration ([Ca(2+)]i) and of its dynamics is required for a comprehensive understanding of physiological processes and potential dysfunctions. A powerful approach for studying [Ca(2+)]i is the use of fluorescent Ca(2+) indicators. In addition to the fluorescence intensity as a common recording parameter, the fluorescence lifetime imaging microscopy (FLIM) technique provides access to the fluorescence decay time of the indicator dye. The nanosecond lifetime is mostly independent of variations in dye concentration, allowing more reliable quantification of ion concentrations in biological preparations. In this study, the feasibility of the fluorescent Ca(2+) indicator Oregon Green Bapta-1 (OGB-1) for two-photon fluorescence lifetime imaging microscopy (2P-FLIM) was evaluated. In aqueous solution, OGB-1 displayed a Ca(2+)-dependent biexponential fluorescence decay behaviour, indicating the presence of a Ca(2+)-free and Ca(2+)-bound dye form. After sufficient dye loading into living cells, an in situ calibration procedure has also unravelled the Ca(2+)-free and Ca(2+)-bound dye forms from a global biexponential fluorescence decay analysis, although the dye's Ca(2+) sensitivity is reduced. Nevertheless, quantitative [Ca(2+)]i recordings and its stimulus-induced changes in salivary gland cells could be performed successfully. These results suggest that OGB-1 is suitable for 2P-FLIM measurements, which can gain access to cellular physiology.


Assuntos
Compostos de Anilina/análise , Cálcio/análise , Fluoresceínas/análise , Corantes Fluorescentes/análise , Microscopia de Fluorescência/métodos , Imagem Óptica/métodos , Animais , Baratas/citologia , Glândulas Salivares/citologia
7.
Am J Physiol Cell Physiol ; 300(6): C1323-36, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21346157

RESUMO

The intracellular ion homeostasis in cockroach salivary acinar cells during salivation is not satisfactorily understood. This is mainly due to technical problems regarding strong tissue autofluorescence and ineffective ion concentration quantification. For minimizing these problems, we describe the successful application of two-photon (2P) microscopy partly in combination with fluorescence lifetime imaging microscopy (FLIM) to record intracellular Na(+) and Cl(-) concentrations ([Na(+)](i), [Cl(-)](i)) in cockroach salivary acinar cells. Quantitative 2P-FLIM Cl(-) measurements with the dye N-(ethoxycarbonylmethyl)-6-methoxy-quinolinium bromide indicate that the resting [Cl(-)](i) is 1.6 times above the Cl(-) electrochemical equilibrium but is not influenced by pharmacological inhibition of the Na(+)-K(+)-2Cl(-) cotransporter (NKCC) and anion exchanger using bumetanide and 4,4'-diisothiocyanatodihydrostilbene-2,2'-disulfonic acid disodium salt. In contrast, rapid Cl(-) reuptake after extracellular Cl(-) removal is almost totally NKCC mediated both in the absence and presence of dopamine. However, in physiological saline [Cl(-)](i) does not change during dopamine stimulation although dopamine stimulates fluid secretion in these glands. On the other hand, dopamine causes a decrease in the sodium-binding benzofuran isophthalate tetra-ammonium salt (SBFI) fluorescence and an increase in the Sodium Green fluorescence after 2P excitation. This opposite behavior of both dyes suggests a dopamine-induced [Na(+)](i) rise in the acinar cells, which is supported by the determined 2P-action cross sections of SBFI. The [Na(+)](i) rise is Cl(-) dependent and inhibited by bumetanide. The Ca(2+)-ionophore ionomycin also causes a bumetanide-sensitive [Na(+)](i) rise. We propose that a Ca(2+)-mediated NKCC activity in acinar peripheral cells attributable to dopamine stimulation serves for basolateral Na(+) uptake during saliva secretion and that the concomitantly transported Cl(-) is recycled back to the bath.


Assuntos
Cloretos/metabolismo , Baratas/citologia , Baratas/metabolismo , Microscopia de Fluorescência/métodos , Sódio/metabolismo , Animais , Bumetanida/metabolismo , Dopamina/metabolismo , Fluorescência , Corantes Fluorescentes/metabolismo , Compostos de Quinolínio/metabolismo , Glândulas Salivares/citologia , Inibidores de Simportadores de Cloreto de Sódio e Potássio/metabolismo , Simportadores de Cloreto de Sódio-Potássio/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-21107581

RESUMO

The parasitoid wasp Ampulex compressa stings and injects venom into the cockroach brain to induce a long-lasting hypokinetic state. This state is characterized by decreased responsiveness to aversive stimuli, suggesting the manipulation of a neuromodulatory system in the cockroach's central nervous system. A likely candidate is the opioid system, which is known to affect responsiveness to stimuli in insects. To explore this possibility, we injected cockroaches with different opioid receptor agonists or antagonists before they were stung by a wasp and tested the escape behavior of these cockroaches to electric foot shocks. Antagonists significantly decreased the startle threshold in stung individuals, whereas agonists led to an increased startle threshold in controls. Yet, neither agonists nor antagonists had any effect on grooming. To further characterize the interaction between the venom and opioid receptors, we used an antenna-heart preparation. In un-stung individuals external application of crude venom completely inhibits antenna-heart contractions. In stung individuals the antenna-heart showed no contractions. Although acetylcholine restored contractions, the opioid receptor antagonist naloxone was unable to antagonize the venom inhibition. These results suggest that the venom of A. compressa might contribute to the manipulation of cockroach behavior by affecting the opioid system.


Assuntos
Sistema Nervoso Central/parasitologia , Baratas/fisiologia , Baratas/parasitologia , Hipocinesia/parasitologia , Peptídeos Opioides/fisiologia , Comportamento Predatório/fisiologia , Vespas/fisiologia , Animais , Sistema Nervoso Central/efeitos dos fármacos , Baratas/citologia , Feminino , Hipocinesia/induzido quimicamente , Hipocinesia/metabolismo
9.
J Neurophysiol ; 103(6): 3274-86, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20375249

RESUMO

The most favored model of humidity transduction views the cuticular wall of insect hygroreceptive sensilla as a hygromechanical transducer. Hygroscopic swelling or shrinking alters the geometry of the wall, deforming the dendritic membranes of the moist and dry cells. The small size the sensilla and their position surrounded by elevated structures creates technical difficulties to mechanically stimulate them by direct contact. The present study investigated hygroreceptors on the antennae of the cockroach and the stick insect. Accurately controlled, homogeneous mechanical input was delivered by modulating air pressure. Both the moist and dry cells responded not only to changes in air pressure but also in the opposite direction, as observed during changes in air humidity. The moist cell's excitatory response to increasing humidity and increasing air pressure implies that swelling of the hygroscopic cuticle compresses the dendrites, and the dry cell's excitatory response to decreasing humidity and decreasing air pressure implies that shrinking of the hygroscopic cuticle expands the dendrites. The moist and dry cells of the stick insect are more sensitive to pressure changes than those of the cockroach, but the responses to air pressure are generally weaker than to humidity. Therefore the hygroreceptive sensilla differ in their physical properties and constitutions. Furthermore, the mechanical parameters associated with homogeneous changes in air pressure on the sensillum surface can only partially account for the responses of the moist and dry cells of both species to humidity stimulation.


Assuntos
Pressão do Ar , Baratas/citologia , Umidade , Células Receptoras Sensoriais/fisiologia , Temperatura , Potenciais de Ação/fisiologia , Animais , Baratas/fisiologia
10.
Neuropharmacology ; 52(8): 1650-62, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17517422

RESUMO

The inhibitor cystine-knot motif identified in the structure of CSTX-1 from Cupiennius salei venom suggests that this toxin may act as a blocker of ion channels. Whole-cell patch-clamp experiments performed on cockroach neurons revealed that CSTX-1 produced a slow voltage-independent block of both mid/low- (M-LVA) and high-voltage-activated (HVA) insect Ca(v) channels. Since C. salei venom affects both insect as well as rodent species, we investigated whether Ca(v) channel currents of rat neurons are also inhibited by CSTX-1. CSTX-1 blocked rat neuronal L-type, but no other types of HVA Ca(v) channels, and failed to modulate LVA Ca(v) channel currents. Using neuroendocrine GH3 and GH4 cells, CSTX-1 produced a rapid voltage-independent block of L-type Ca(v) channel currents. The concentration-response curve was biphasic in GH4 neurons and the subnanomolar IC(50) values were at least 1000-fold lower than in GH3 cells. L-type Ca(v) channel currents of skeletal muscle myoballs and other voltage-gated ion currents of rat neurons, such as I(Na(v)) or I(K(v)) were not affected by CSTX-1. The high potency and selectivity of CSTX-1 for a subset of L-type channels in mammalian neurons may enable the toxin to be used as a molecular tool for the investigation of this family of Ca(v) channels.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/efeitos dos fármacos , Canais de Cálcio Tipo L/fisiologia , Neurônios/efeitos dos fármacos , Venenos de Aranha/química , Venenos de Aranha/farmacologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Baratas/citologia , Relação Dose-Resposta a Droga , Estimulação Elétrica/métodos , Gânglios Sensitivos/citologia , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Nitrendipino/farmacologia , Técnicas de Patch-Clamp , Ratos
11.
Biochem J ; 399(3): 445-53, 2006 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-16800812

RESUMO

In the present study, BmK alphaIV, a novel modulator of sodium channels, was cloned from venomous glands of the Chinese scorpion (Buthus martensi Karsch) and expressed successfully in Escherichia coli. The BmK alphaIV gene is composed of two exons separated by a 503 bp intron. The mature polypeptide contains 66 amino acids. BmK alphaIV has potent toxicity in mice and cockroaches. Surface-plasmon-resonance analysis found that BmK alphaIV could bind to both rat cerebrocortical synaptosomes and cockroach neuronal membranes, and shared similar binding sites on sodium channels with classical AaH II (alpha-mammal neurotoxin from the scorpion Androctonus australis Hector), BmK AS (beta-like neurotoxin), BmK IT2 (the depressant insect-selective neurotoxin) and BmK abT (transitional neurotoxin), but not with BmK I (alpha-like neurotoxin). Two-electrode voltage clamp recordings on rNav1.2 channels expressed in Xenopus laevis oocytes revealed that BmK alphaIV increased the peak amplitude and prolonged the inactivation phase of Na+ currents. The structural and pharmacological properties compared with those of other scorpion alpha-toxins suggests that BmK alphaIV represents a novel subgroup or functional hybrid of alpha-toxins and might be an evolutionary intermediate neurotoxin for alpha-toxins.


Assuntos
Neurotoxinas/farmacologia , Venenos de Escorpião/metabolismo , Bloqueadores dos Canais de Sódio/farmacologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Membrana Celular/efeitos dos fármacos , Dicroísmo Circular , Clonagem Molecular , Baratas/citologia , Baratas/efeitos dos fármacos , Evolução Molecular , Feminino , Genes , Vetores Genéticos/genética , Transporte de Íons/efeitos dos fármacos , Dose Letal Mediana , Masculino , Camundongos , Dados de Sequência Molecular , Canal de Sódio Disparado por Voltagem NAV1.2 , Proteínas do Tecido Nervoso/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurotoxinas/química , Neurotoxinas/classificação , Neurotoxinas/genética , Neurotoxinas/toxicidade , Oócitos , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/farmacologia , Venenos de Escorpião/química , Venenos de Escorpião/classificação , Venenos de Escorpião/genética , Venenos de Escorpião/farmacologia , Escorpiões/química , Escorpiões/genética , Convulsões/induzido quimicamente , Alinhamento de Sequência , Sódio/metabolismo , Bloqueadores dos Canais de Sódio/toxicidade , Canais de Sódio/efeitos dos fármacos , Espasmo/induzido quimicamente , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Sinaptossomos/efeitos dos fármacos , Xenopus laevis
12.
PLoS One ; 12(9): e0185233, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28934335

RESUMO

Our current taxonomic perspective on Entamoeba is largely based on small-subunit ribosomal RNA genes (SSU rDNA) from Entamoeba species identified in vertebrate hosts with minor exceptions such as E. moshkovskii from sewage water and E. marina from marine sediment. Other Entamoeba species have also been morphologically identified and described from non-vertebrate species such as insects; however, their genetic diversity remains unknown. In order to further disclose the diversity of the genus, we investigated Entamoeba spp. in the intestines of three cockroach species: Periplaneta americana, Blaptica dubia, and Gromphadorhina oblongonota. We obtained 134 Entamoeba SSU rDNA sequences from 186 cockroaches by direct nested PCR using the DNA extracts of intestines from cockroaches, followed by scrutinized BLASTn screening and phylogenetic analyses. All the sequences identified in this study were distinct from those reported from known Entamoeba species, and considered as novel Entamoeba ribosomal lineages. Furthermore, they were positioned at the base of the clade of known Entamoeba species and displayed remarkable degree of genetic diversity comprising nine major groups in the three cockroach species. This is the first report of the diversity of SSU rDNA sequences from Entamoeba in non-vertebrate host species, and should help to understand the genetic diversity of the genus Entamoeba.


Assuntos
Baratas/citologia , Baratas/genética , Variação Genética , Ribossomos/genética , Animais , Filogenia , Polimorfismo Genético , Análise de Sequência de DNA , Especificidade da Espécie
13.
Peptides ; 27(9): 2157-64, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16716455

RESUMO

The midgut plays a major role in digestion and absorption of nutrients in insects, and contains endocrine cells throughout the epithelial layer that express neuropeptides, including crustacean cardioactive peptide (CCAP). In the present study, we demonstrate regulation of digestive enzyme activities by CCAP in response to nutrient ingestion in the cockroach, Periplaneta americana. The midgut of the cockroach exhibits maximal alpha-amylase and protease activities 3 h after intake of either starch or casein, but not of non-nutrients. Similar time-dependent responses of CCAP expression in midgut endocrine cells were observed after feeding starch and casein, but not after non-nutrients. We also show that incubation of the dissected midgut with CCAP leads to an increase in alpha-amylase and protease activity in a time-dependent manner, with the maximal activity at 2 h. Taken together, our data indicate the existence of an inducible mechanism where endocrine cells in the midgut are stimulated to synthesize and secrete CCAP by nutrients, and CCAP then up-regulates the activity of digestive enzymes.


Assuntos
Baratas/enzimologia , Neuropeptídeos/farmacologia , Peptídeo Hidrolases/metabolismo , alfa-Amilases/metabolismo , Animais , Baratas/citologia , Baratas/metabolismo , Sistema Digestório/citologia , Sistema Digestório/enzimologia , Células Enteroendócrinas/citologia , Células Enteroendócrinas/enzimologia , Masculino , Neuropeptídeos/metabolismo , Fatores de Tempo , Regulação para Cima
14.
Open Biol ; 6(1): 150197, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26763344

RESUMO

The Notch pathway is an essential regulator of cell proliferation and differentiation during development. Its involvement in insect oogenesis has been examined in insect species with meroistic ovaries, and it is known to play a fundamental role in cell fate decisions and the induction of the mitosis-to-endocycle switch in follicular cells (FCs). This work reports the functions of the main components of the Notch pathway (Notch and its ligands Delta and Serrate) during oogenesis in Blattella germanica, a phylogenetically basal species with panoistic ovary. As is revealed by RNAi-based analyses, Notch and Delta were found to contribute towards maintaining the FCs in an immature, non-apoptotic state. This ancestral function of Notch appears in opposition to the induction of transition from mitosis to endocycle that Notch exerts in Drosophila melanogaster, a change in the Notch function that might be in agreement with the evolution of the insect ovary types. Notch was also shown to play an active role in inducing ovarian follicle elongation via the regulation of the cytoskeleton. In addition, Delta and Notch interactions were seen to determine the differentiation of the posterior population of FCs. Serrate levels were found to be Notch-dependent and are involved in the control of the FC programme, although they would appear to play no crucial role in panoistic ovary oogenesis.


Assuntos
Diferenciação Celular , Baratas/citologia , Baratas/metabolismo , Proteínas de Insetos/metabolismo , Folículo Ovariano/citologia , Transdução de Sinais , Animais , Apoptose , Proliferação de Células , Citoesqueleto/metabolismo , Feminino , Ligantes , Mitose , Interferência de RNA
15.
Insect Biochem Mol Biol ; 35(1): 41-50, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15607654

RESUMO

The corpora allata synthesize and release juvenile hormone (JH) that in turn regulates insect growth, metamorphosis and reproduction. In the corpus allatum (CA) of the female adult cockroach Diploptera punctata, cyclic rise and decline in JH synthesis rates occur concurrently with cyclic growth and atrophy during an ovarian cycle. Here, we report that protein content decreases, whereas Golgi population, lysosomal content and autophagic activities increase with decrease in CA cell size. Also, the concentration of cyclic GMP (cGMP) is low in large cells and high in small cells. Results of treating CA with ovarian tissue suggest that a putative peptidergic growth regulator released from mature ovaries acts directly on active CA cells and induces the elevation of intracellular cGMP content. Consequently, elevated cGMP may inhibit protein synthesis or trigger massive and synchronous autophagic activities, resulting in cell atrophy and reduction of protein content. As a result of the depletion of cellular machinery, CA glands exhibit long-term depression in JH synthesis.


Assuntos
Baratas/fisiologia , Corpora Allata/metabolismo , Hormônios de Inseto/fisiologia , Hormônios Juvenis/biossíntese , Animais , Tamanho Celular , Baratas/citologia , Baratas/metabolismo , Corpora Allata/citologia , GMP Cíclico/metabolismo , GMP Cíclico/fisiologia , Feminino , Ovário/fisiologia
16.
J Mass Spectrom ; 40(2): 160-8, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15706616

RESUMO

Imaging mass spectrometry provides both chemical information and the spatial distribution of each analyte detected. Here it is demonstrated how imaging mass spectrometry of tissue at subcellular resolution can be achieved by combining the high spatial resolution of secondary ion mass spectrometry (SIMS) with the sample preparation protocols of matrix-assisted laser desorption/ionization (MALDI). Despite mechanistic differences and sampling 10(5) times less material, matrix-enhanced (ME)-SIMS of tissue samples yields similar results to MALDI (up to m/z 2500), in agreement with previous studies on standard compounds. In this regard ME-SIMS represents an attractive alternative to polyatomic primary ions for increasing the molecular ion yield. ME-SIMS of whole organs and thin sections of the cerebral ganglia of Lymnaea stagnalis demonstrate the advantages of ME-SIMS for chemical imaging mass spectrometry. Subcellular distributions of cellular analytes are clearly obtained, and the matrix provides an in situ height map of the tissue, allowing the user to identify rapidly regions prone to topographical artifacts and to deconvolute topographical losses in mass resolution and signal-to-noise ratio.


Assuntos
Química Encefálica , Baratas/citologia , Lymnaea/citologia , Espectrometria de Massa de Íon Secundário/métodos , Animais , Encéfalo/citologia , Colesterol/análise , Baratas/química , Gentisatos , Lymnaea/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massa de Íon Secundário/instrumentação , Ácido Trifluoracético
17.
Eur J Histochem ; 49(2): 189-97, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15967747

RESUMO

It is common knowledge that polychlorinated biphenyls (PCBs) represent a serious threat to the health of both vertebrates and invertebrates. As far as the former are concerned, especially as regards human beings, a broad literature describes the direct and indirect effects induced by the PCBs on their systems and organs. Among invertebrates, the information available is mostly related to arthropods and is, however, very scarce. The aim of this work was to evaluate the effects of polychlorinated biphenyls (PCBs) on tissues and organs of individuals belonging to a species of Blattaria (Blattella germanica) treated with various doses of this toxic material. The pathologies found became more serious as the dosage increased and were present throughout the entire digestive system, in the fat body and in the male gonads: in these areas cell and tissue breakdown and severely damaged spermiogenesis were observed. In particular, the testes, Malpighian tubules and fat body accumulated an amorphous basophilic PAS-positive substance. Furthermore, the NOS-dependent NADPH diaphorase activity pattern in the retina and optic lobes was more evident in the treated than in the control insects.


Assuntos
Baratas/efeitos dos fármacos , Bifenilos Policlorados/toxicidade , Animais , Baratas/citologia , Baratas/metabolismo , NADP/metabolismo , Ninfa/efeitos dos fármacos , Ninfa/metabolismo , Taxa de Sobrevida , Fatores de Tempo
18.
Toxicon ; 104: 73-82, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26220799

RESUMO

A potent insecticidal toxin, ß/δ-PrIT1, molecular mass of 5598.86 [M+H](+), was characterized from Phoneutria reidyi spider venom. Its partial amino acid sequence showed high similarity with insecticidal spider toxins from the genus Phoneutria. ß/δ-PrIT1 was very toxic (LD50 = 4 nmol/g) to flies (Musca domestica), but not to mice (Mus musculus). Kinetic studies showed that (125)I-ß/δ-PrIT1 binds to two distinct sites in insect sodium channels, with close affinity (Kd1 = 34.7 pM and Kd2 = 35.1 pM). Its association is rather fast (t1/2(1) = 1.4 min, t1/2(2) = 8.5 min) and its dissociation is a slower process (t1/2(1) = 5.4 min, t1/2(2) = 32.8 min). On rat brain synaptosomes ß/δ-PrIT1 partially competed (∼30%) with the beta-toxin (125)I-CssIV, but did not compete with the alpha-toxin of reference (125)I-AaII, nor with the beta-toxin (125)I-TsVII. On cockroach nerve cord synaptosomes, ß/δ-PrIT1 did not compete with the anti-insect toxin (125)I-LqqIT1, but it competed (IC50 = 80 pM) with the "alpha-like" toxin (125)I-BomIV. In cockroach neurons, ß/δ-PrIT1 inhibited the inactivation of Nav-channels and it shifted the sodium channel activation to hyperpolarizing potentials. These results indicate two different binding sites for ß/δ-PrIT1, leading to two different pharmacological responses. ß/δ-PrIT1 is one of the most toxic spider toxins to insects without apparent toxicity to mammals, and provide new model for the development of insecticides.


Assuntos
Inseticidas/farmacologia , Venenos de Aranha/farmacologia , Aranhas/química , Sinaptossomos/metabolismo , Animais , Sítios de Ligação , Brasil , Baratas/citologia , Baratas/efeitos dos fármacos , Dípteros/efeitos dos fármacos , Feminino , Inseticidas/química , Masculino , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Wistar , Canais de Sódio/metabolismo , Venenos de Aranha/química
19.
J Comp Neurol ; 352(3): 458-68, 1995 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-7706561

RESUMO

A large number of photoreceptors of insect ocelli converge onto a smaller number of second-order neurons. Second-order neurons exit the ocellus and project into the ocellar tract neuropil of the brain. Here, the anatomy and physiology of ocellar interneurons of the ocellar tract neuropil of the cockroach are described. The total number and gross morphologies of ocellar tract neurons were examined by extracellular cobalt impregnations into the neuropil. Morphology and physiology of individual neurons were examined using intracellular recording and stainings. Each ocellar tract neuropil contains at least 25 interneurons comprising: 1) four second-order neurons, 2) 15 third-order neurons that receive synapses from second-order neurons at the ocellar tract and project into a number of target neuropil areas of the brain, 3) two possible efferent neurons, 4) three third-order or efferent neurons, and 5) one neuron still to be characterized. The projection areas of ocellar third-order neurons include 1) visual, olfactory, and mechanosensory centers; 2) the mushroom body (a higher associative center); 3) the posterior slope, a premotor center from which descending brain neurons originate; and 4) the thoracic motor systems. By comparing the present results to those reported from other insects, I conclude that the cockroach ocellar system has two distinctive features. 1) The ratio of convergence at synapses between photoreceptors and second-order neurons is higher than those reported for other insects so far studied. 2) Ocellar signals are transmitted to various target neuropils by third-order neurons, whereas ocellar systems of all other insects possess pathways in which ocellar signals are transmitted to target neuropils by second-order neurons. The functional significance of these features of the cockroach ocellar system is discussed.


Assuntos
Encéfalo/citologia , Baratas/citologia , Vias Visuais/citologia , Animais , Encéfalo/fisiologia , Mapeamento Encefálico , Cobalto , Baratas/fisiologia , Masculino , Neurônios/citologia , Neurônios/fisiologia , Vias Visuais/fisiologia
20.
J Comp Neurol ; 315(3): 364-74, 1992 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-1740549

RESUMO

A specific cell recognition process during regeneration of severed axons of identified cockroach motor neurons eventually leads to the reformation of the original innervation pattern of target muscles in the leg. This occurs even though, at early times after nerve crush, the multiple branches of each regenerating axon grow into both appropriate and inappropriate muscles. In this study, we sought to examine whether there are any structural differences between regenerating axon branches in appropriate and inappropriate muscles that could lead to an understanding of why only those in inappropriate muscles are eliminated. A neuron subset-specific monoclonal antibody, NSS-2A, which labels the inhibitory motor neurons, was used to make their axon branches visible at various times after nerve crush. In inappropriate muscles, these axons grow primarily parallel to the muscle fibers and are later eliminated. In the appropriate muscles, these axon branches initially also grow parallel to the muscle fibers, but subsequently grow many interstitial collaterals. The formation of the collateral branches is a morphological correlate of the specific interaction of a neuron with its appropriate muscle. The simultaneous occurrence of axonal elimination and collateral sprouting supports the idea that the two processes are causally related, as suggested by the sibling neurite bias hypothesis.


Assuntos
Baratas/citologia , Neurônios Motores/citologia , Músculos/inervação , Regeneração Nervosa , Animais , Anticorpos Monoclonais , Axônios/ultraestrutura , Baratas/fisiologia , Baratas/ultraestrutura , Extremidades/inervação , Imuno-Histoquímica , Masculino , Neurônios Motores/fisiologia , Inibição Neural , Vias Neurais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA