Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.159
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(4): 672-689.e23, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35114111

RESUMO

ChRmine, a recently discovered pump-like cation-conducting channelrhodopsin, exhibits puzzling properties (large photocurrents, red-shifted spectrum, and extreme light sensitivity) that have created new opportunities in optogenetics. ChRmine and its homologs function as ion channels but, by primary sequence, more closely resemble ion pump rhodopsins; mechanisms for passive channel conduction in this family have remained mysterious. Here, we present the 2.0 Å resolution cryo-EM structure of ChRmine, revealing architectural features atypical for channelrhodopsins: trimeric assembly, a short transmembrane-helix 3, a twisting extracellular-loop 1, large vestibules within the monomer, and an opening at the trimer interface. We applied this structure to design three proteins (rsChRmine and hsChRmine, conferring further red-shifted and high-speed properties, respectively, and frChRmine, combining faster and more red-shifted performance) suitable for fundamental neuroscience opportunities. These results illuminate the conduction and gating of pump-like channelrhodopsins and point the way toward further structure-guided creation of channelrhodopsins for applications across biology.


Assuntos
Channelrhodopsins/química , Channelrhodopsins/metabolismo , Ativação do Canal Iônico , Animais , Channelrhodopsins/ultraestrutura , Microscopia Crioeletrônica , Feminino , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Modelos Moleculares , Optogenética , Filogenia , Ratos Sprague-Dawley , Bases de Schiff/química , Células Sf9 , Relação Estrutura-Atividade
2.
Cell ; 151(7): 1474-87, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23260137

RESUMO

DNA Ligase IV is responsible for sealing of double-strand breaks (DSBs) during nonhomologous end-joining (NHEJ). Inhibiting Ligase IV could result in amassing of DSBs, thereby serving as a strategy toward treatment of cancer. Here, we identify a molecule, SCR7 that inhibits joining of DSBs in cell-free repair system. SCR7 blocks Ligase IV-mediated joining by interfering with its DNA binding but not that of T4 DNA Ligase or Ligase I. SCR7 inhibits NHEJ in a Ligase IV-dependent manner within cells, and activates the intrinsic apoptotic pathway. More importantly, SCR7 impedes tumor progression in mouse models and when coadministered with DSB-inducing therapeutic modalities enhances their sensitivity significantly. This inhibitor to target NHEJ offers a strategy toward the treatment of cancer and improvement of existing regimens.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades/efeitos dos fármacos , DNA Ligases/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Pirimidinas/uso terapêutico , Bases de Schiff/uso terapêutico , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , DNA Ligase Dependente de ATP , DNA Ligases/química , DNA Ligases/genética , Modelos Animais de Doenças , Desenho de Fármacos , Resistencia a Medicamentos Antineoplásicos , Humanos , Linfócitos/efeitos dos fármacos , Linfoma/tratamento farmacológico , Linfoma/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Pirimidinas/síntese química , Pirimidinas/química , Tolerância a Radiação , Ratos , Bases de Schiff/síntese química , Bases de Schiff/química , Alinhamento de Sequência
3.
Proc Natl Acad Sci U S A ; 121(26): e2319676121, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38900801

RESUMO

The photoinduced all-trans to 13-cis isomerization of the retinal Schiff base represents the ultrafast first step in the reaction cycle of bacteriorhodopsin (BR). Extensive experimental and theoretical work has addressed excited-state dynamics and isomerization via a conical intersection with the ground state. In conflicting molecular pictures, the excited state potential energy surface has been modeled as a pure S[Formula: see text] state that intersects with the ground state, or in a 3-state picture involving the S[Formula: see text] and S[Formula: see text] states. Here, the photoexcited system passes two crossing regions to return to the ground state. The electric dipole moment of the Schiff base in the S[Formula: see text] and S[Formula: see text] state differs strongly and, thus, its measurement allows for assessing the character of the excited-state potential. We apply the method of ultrafast terahertz (THz) Stark spectroscopy to measure electric dipole changes of wild-type BR and a BR D85T mutant upon electronic excitation. A fully reversible transient broadening and spectral shift of electronic absorption is induced by a picosecond THz field of several megavolts/cm and mapped by a 120-fs optical probe pulse. For both BR variants, we derive a moderate electric dipole change of 5 [Formula: see text] 1 Debye, which is markedly smaller than predicted for a neat S[Formula: see text]-character of the excited state. In contrast, S[Formula: see text]-admixture and temporal averaging of excited-state dynamics over the probe pulse duration gives a dipole change in line with experiment. Our results support a picture of electronic and nuclear dynamics governed by the interaction of S[Formula: see text] and S[Formula: see text] states in a 3-state model.


Assuntos
Bacteriorodopsinas , Retinaldeído , Bacteriorodopsinas/química , Bacteriorodopsinas/metabolismo , Retinaldeído/química , Retinaldeído/metabolismo , Espectroscopia Terahertz/métodos , Bases de Schiff/química , Halobacterium salinarum/metabolismo , Halobacterium salinarum/química , Isomerismo
4.
Nature ; 583(7815): 314-318, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32499654

RESUMO

Light-driven sodium pumps actively transport small cations across cellular membranes1. These pumps are used by microorganisms to convert light into membrane potential and have become useful optogenetic tools with applications in neuroscience. Although the resting state structures of the prototypical sodium pump Krokinobacter eikastus rhodopsin 2 (KR2) have been solved2,3, it is unclear how structural alterations over time allow sodium to be translocated against a concentration gradient. Here, using the Swiss X-ray Free Electron Laser4, we have collected serial crystallographic data at ten pump-probe delays from femtoseconds to milliseconds. High-resolution structural snapshots throughout the KR2 photocycle show how retinal isomerization is completed on the femtosecond timescale and changes the local structure of the binding pocket in the early nanoseconds. Subsequent rearrangements and deprotonation of the retinal Schiff base open an electrostatic gate in microseconds. Structural and spectroscopic data, in combination with quantum chemical calculations, indicate that a sodium ion binds transiently close to the retinal within one millisecond. In the last structural intermediate, at 20 milliseconds after activation, we identified a potential second sodium-binding site close to the extracellular exit. These results provide direct molecular insight into the dynamics of active cation transport across biological membranes.


Assuntos
Flavobacteriaceae/química , Rodopsinas Microbianas/química , Rodopsinas Microbianas/efeitos da radiação , ATPase Trocadora de Sódio-Potássio/química , ATPase Trocadora de Sódio-Potássio/efeitos da radiação , Sítios de Ligação , Cristalografia , Elétrons , Transporte de Íons , Isomerismo , Lasers , Prótons , Teoria Quântica , Retinaldeído/química , Retinaldeído/metabolismo , Bases de Schiff/química , Sódio/metabolismo , Análise Espectral , Eletricidade Estática , Fatores de Tempo
5.
Methods ; 225: 28-37, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38485032

RESUMO

The manuscript presents the synthesis of a new di-chromene Schiff base (COM-CH) by combining 7-(diethylamino)-2-oxo-2H-chromene-3-carbohydrazide and 4-oxo-4H-chromene-3-carbaldehyde, and its characterization using various analytical techniques. The probe COM-CH functional group contains a hard donor atom that selectively complexes with Th4+ ions. This report investigated COM-CH's sensing ability towards Th4+ chromogenic and fluorogenic methods in ACN: H2O (8:2, v/v) with Th4+ ions. The COM-CH-Th4+ complex was excited at 430 nm, resulting in a bright emission band at 475 nm with a 45 nm Stokes shift. The COM-CH probe demonstrated the highest performance at pH 4.0 to 8.0, with a sensitivity of 18.7 nM. The complex formation of COM-CH with Th4+ was investigated using NMR, FTIR spectrometry, and density functional theory calculations. The COM-CH and Th4+ are bound with 2:1 stoichiometry and an association constant of 1.92 × 108 M-2. The probe's performance enabled the analysis of monazite sand and water samples for Th4+ content. The probe successfully detected Th4+ content in Caenorhabditis elegans, marking the first Th4+ detection in animal models.


Assuntos
Benzopiranos , Caenorhabditis elegans , Corantes Fluorescentes , Bases de Schiff , Animais , Bases de Schiff/química , Corantes Fluorescentes/química , Benzopiranos/química , Espectrometria de Fluorescência/métodos , Concentração de Íons de Hidrogênio , Imagem Óptica/métodos
6.
Proc Natl Acad Sci U S A ; 119(10): e2118940119, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35238634

RESUMO

SignificanceBase excision repair (BER) is one of the major DNA repair pathways used to fix a myriad of cellular DNA lesions. The enzymes involved in BER, including DNA polymerase ß (Polß), have been identified and characterized, but how they act together to efficiently perform BER has not been fully understood. Through gel electrophoresis, mass spectrometry, and kinetic analysis, we discovered that the two enzymatic activities of Polß can be interlocked, rather than functioning independently from each other, when processing DNA intermediates formed in BER. The finding prompted us to hypothesize a modified BER pathway. Through conventional and time-resolved X-ray crystallography, we solved 11 high-resolution crystal structures of cross-linked Polß complexes and proposed a detailed chemical mechanism for Polß's 5'-deoxyribose-5-phosphate lyase activity.


Assuntos
Dano ao DNA , DNA Polimerase beta/metabolismo , Reparo do DNA , Cristalografia por Raios X , DNA/metabolismo , DNA Polimerase beta/química , Eletroforese em Gel de Poliacrilamida , Cinética , Espectrometria de Massas/métodos , Conformação Proteica , Bases de Schiff/química , Especificidade por Substrato
7.
J Biol Chem ; 299(6): 104726, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37094700

RESUMO

The position of the counterion in animal rhodopsins plays a crucial role in maintaining visible light sensitivity and facilitating the photoisomerization of their retinal chromophore. The counterion displacement is thought to be closely related to the evolution of rhodopsins, with different positions found in invertebrates and vertebrates. Interestingly, box jellyfish rhodopsin (JelRh) acquired the counterion in transmembrane 2 independently. This is a unique feature, as in most animal rhodopsins, the counterion is found in a different location. In this study, we used Fourier Transform Infrared spectroscopy to examine the structural changes that occur in the early photointermediate state of JelRh. We aimed to determine whether the photochemistry of JelRh is similar to that of other animal rhodopsins by comparing its spectra to those of vertebrate bovine rhodopsin (BovRh) and invertebrate squid rhodopsin (SquRh). We observed that the N-D stretching band of the retinal Schiff base was similar to that of BovRh, indicating the interaction between the Schiff base and the counterion is similar in both rhodopsins, despite their different counterion positions. Furthermore, we found that the chemical structure of the retinal in JelRh is similar to that in BovRh, including the changes in the hydrogen-out-of-plane band that indicates a retinal distortion. Overall, the protein conformational changes induced by the photoisomerization of JelRh yielded spectra that resemble an intermediate between BovRh and SquRh, suggesting a unique spectral property of JelRh, and making it the only animal rhodopsin with a counterion in TM2 and an ability to activate Gs protein.


Assuntos
Rodopsina , Bases de Schiff , Animais , Bovinos , Fotoquímica , Rodopsina/química , Bases de Schiff/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Cubomedusas
8.
BMC Genomics ; 25(1): 162, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331729

RESUMO

In this work, a novel isatin-Schiff base L2 had been synthesized through a simple reaction between isatin and 2-amino-5-methylthio-1,3,4-thiadiazole. The produced Schiff base L2 was then subjected to a hydrothermal reaction with cerium chloride to produce the cerium (III)-Schiff base complex C2. Several spectroscopic methods, including mass spectra, FT-IR, elemental analysis, UV-vis, 13C-NMR, 1H-NMR, Thermogravimetric Analysis, HR-TEM, and FE-SEM/EDX, were used to completely characterize the produced L2 and C2. A computer simulation was performed using the MOE software program to find out the probable biological resistance of studied compounds against the proteins in some types of bacteria or fungi. To investigate the interaction between the ligand and its complex, we conducted molecular docking simulations using the molecular operating environment (MOE). The docking simulation findings revealed that the complex displayed greater efficacy and demonstrated a stronger affinity for Avr2 effector protein from the fungal plant pathogen Fusarium oxysporum (code 5OD4) than the original ligand. The antibacterial activity of the ligand and its Ce3+ complex were applied in vitro tests against different microorganism. The study showed that the complex was found to be more effective than the ligand.


Assuntos
Cério , Isatina , Simulação de Acoplamento Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Isatina/farmacologia , Isatina/química , Cério/farmacologia , Bases de Schiff/farmacologia , Bases de Schiff/química , Simulação por Computador , Ligantes , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
9.
Anal Chem ; 96(13): 5289-5297, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38507224

RESUMO

Paper spray mass spectrometry (PS-MS) has evolved into a promising tool for monitoring reactions in thin films and microdroplets, known as reactive PS, alongside its established role in ambient and direct ionization. This study addresses the need for rapid, cost-effective methods to improve analyte identification in biofluids by leveraging reactive PS-MS in clinical chemistry environments. The technique has proven effective in derivatizing target analytes, altering hydrophobicity to enhance elution and ionization efficiency, and refining detection through thin-film reactions on paper, significantly expediting reaction rates by using amino acids (AAs) as model analytes. These molecules are prone to interacting with substrates like paper, impeding elution and detection. Additionally, highly abundant species in biofluids, such as lipids, often suppress AA ionization. This study employs the Schiff base (SB) reaction utilizing aromatic aldehydes for AA derivatization to optimize reaction conditions time, temperature, and catalyst presence and dramatically increasing the conversion ratio (CR) of formed SB. For instance, using leucine as a model AA, the CR surged from 57% at room temperature to 89% at 70 °C, with added pyridine during and after 7.5 min, displaying a 43% CR compared to the bulk reaction. Evaluation of various aromatic aldehydes as derivatization agents highlighted the importance of specific oxygen substituents for achieving higher conversion rates. Furthermore, diverse derivatization agents unveiled unique fragmentation pathways, aiding in-depth annotation of the target analyte. Successfully applied to quantify AAs in human and rat plasma, this reactive PS-MS approach showcases promising potential in efficiently detecting conventionally challenging compounds in PS-MS analysis.


Assuntos
Aminoácidos , Bases de Schiff , Humanos , Animais , Ratos , Espectrometria de Massas/métodos , Aminas , Aldeídos/análise
10.
Anal Chem ; 96(32): 13131-13139, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39096243

RESUMO

Redox nanozymes have exhibited various applications in recognizing environmental pollutants but not aromatic amines (a type of typical pollutant). Herein, with Cu2+ as a node and tryptophan (Trp) as a linker, Cu-Trp as a specific ascorbic acid oxidase mimic was synthesized, which could catalyze ascorbic acid (AA) oxidation to dehydroascorbic acid (DHAA). Alternatively, with other natural amino acids as linkers to synthesize Cu-based nanozymes, such catalytic performances are also observed. The as-produced DHAA could react with o-phenylenediamine (OPD) and its derivatives (2,3-naphthalene diamine (NDA), 4-nitro-o-phenylenediamine (4-NO2-OPD), 4-fluoro-o-phenylenediamine (4-F-OPD), 4-chloro-o-phenylenediamine(4-Cl-OPD), and 4-bromo-o-phenylenediamine(4-Br-OPD)) to form a Schiff base and emit fluorescence. Based on the results, with Cu-Trp + AA and Cu-Arg (with arginine (Arg) as a linker) + AA as two sensing channels and extracted red, green, and blue (RGB) values from emitted fluorescence as read-out signals, a visual sensor array was constructed to efficiently distinguish OPD, NDA, 4-NO2-OPD, 4-F-OPD, 4-Cl-OPD, and 4-Br-OPD as low as 10 µM. Such detecting performance was further confirmed through discriminating binary, ternary, quinary, and senary mixtures with various concentration ratios, recognizing 18 unknown samples, and even quantitatively analyzing single aromatic amine. Finally, the discriminating ability was further validated in environmental waters, providing an efficient assay for large-scale scanning levels of multiple aromatic amines.


Assuntos
Aminas , Ascorbato Oxidase , Bases de Schiff , Bases de Schiff/química , Aminas/química , Aminas/análise , Ascorbato Oxidase/química , Ascorbato Oxidase/metabolismo , Cobre/química , Cobre/análise , Ácido Ascórbico/química , Ácido Ascórbico/análise , Fenilenodiaminas/química , Oxirredução
11.
J Pharmacol Exp Ther ; 388(2): 596-604, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38182416

RESUMO

There do not appear to be any established therapeutics for treating azide poisoning at this time, and presently available antidotes to cyanide poisoning are far from ideal, being particularly impractical for use if multiple victims present. The cobalt (II/III) complex of the Schiff-base ligand trans-[14]-diene (5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene (CoN4[14]) is shown to act as an effective antidote to both azide and cyanide toxicity in mice. Groups of animals challenged with an LD40 dose of NaCN (100 µmol/kg i.p.) exhibited significantly faster recovery from knockdown and fewer (zero) deaths if given CoN4[14] (50 µmol/kg i.p.) 2 minutes after the toxicant. Groups of animals challenged with an essentially lethal dose of NaCN (1.5 x LD50 = 150 µmol/kg i.p.) all survived if given the CoN4[14] (75 µmol/kg i.p.) 5 minutes before the toxicant dose. These data represent improved antidotal capability over the Food and Drug Administration-approved cobalt-based cyanide antidote hydroxocobalamin. Recovery of animals challenged sublethally with NaN3 (415 µmol/kg i.p.) was assessed employing a modified pole-climbing test. Mice given the CoN4[14] antidote (70 µg/kg i.p.) 5 minutes after the toxicant dose recovered twice as fast as the controls given no antidote. The interactions of cyanide and azide with CoN4[14] in vitro (buffered aqueous solutions) have been further investigated by a combination of spectroscopic approaches. The Co(II) form of the complex is able to bind two CN- anions while only binding a single N3 -, providing a reasonable explanation for the difference between their therapeutic abilities. SIGNIFICANCE STATEMENT: The Schiff-base complex CoN4[14] is shown to be an effective antidote to cyanide in mice, with improved therapeutic capabilities compared to the Food and Drug Administration-approved cobalt-containing hydroxocobalamin. CoN4[14] is also antidotal in mice toward azide poisoning, for which there is seemingly no approved therapy currently available. The activity toward cyanide involves a "redox-switching" mechanism that could be a common, but largely unrecognized, feature of all cobalt-based cyanide antidotes in use and under development.


Assuntos
Antídotos , Hidroxocobalamina , Estados Unidos , Animais , Camundongos , Antídotos/farmacologia , Antídotos/uso terapêutico , Hidroxocobalamina/farmacologia , Hidroxocobalamina/uso terapêutico , Azidas , Cobalto/química , Cianetos/química , Bases de Schiff/química
12.
Invest New Drugs ; 42(4): 405-417, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38880855

RESUMO

Radioresistance is an inevitable obstacle in the clinical treatment of inoperable patients with non-small cell lung cancer (NSCLC). Combining treatment with radiosensitizers may improve the efficacy of radiotherapy. Previously, the quinoline derivative 10E as new exporter of Nur77 has shown superior antitumor activity in hepatocellular carcinoma. Here, we aimed to investigate the radiosensitizing activity and acting mechanisms of 10E. In vitro, A549 and H460 cells were treated with control, ionizing radiation (IR), 10E, and 10E + IR. Cell viability, apoptosis, and cycle were examined using CCK-8 and flow cytometry assays. Protein expression and localization were examined using western blotting and immunofluorescence. Tumor xenograft models were established to evaluate the radiosensitizing effect of 10E in vivo. 10E significantly inhibited cell proliferation and increased their radiosensitivity while reducing level of p-BCRA1, p-DNA-PKs, and 53BP1 involved in the DNA damage repair pathway, indicating that its radiosensitizing activity is closely associated with repressing DNA damage repair. A549 cells showed low level of Nur77 and a low response to IR but 10E-treated A549 cells showed high level of Nur77 indicating that Nur77 is a core radiosensitivity factor and 10E restores the expression of Nur77. Nur77 and Ku80 extranuclear co-localization in the 10E-treated A549 cells suggested that 10E-modulated Nur77 nuclear exportation inhibits DNA damage repair pathways and increases IR-triggered apoptosis. The combination of 10E and IR significantly inhibits tumor growth in a tumor xenograft model. Our findings suggest that 10E acts as a radiosensitizer and that combining 10E with radiotherapy may be a potential strategy for NSCLC treatment.


Assuntos
Apoptose , Carcinoma Pulmonar de Células não Pequenas , Proliferação de Células , Neoplasias Pulmonares , Camundongos Nus , Quinolinas , Radiossensibilizantes , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Animais , Radiossensibilizantes/farmacologia , Radiossensibilizantes/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Quinolinas/farmacologia , Quinolinas/uso terapêutico , Apoptose/efeitos dos fármacos , Camundongos , Proliferação de Células/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Bases de Schiff/farmacologia , Bases de Schiff/uso terapêutico , Indóis/farmacologia , Indóis/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Tolerância a Radiação/efeitos dos fármacos
13.
Microb Pathog ; 188: 106548, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38262493

RESUMO

A trinuclear Zn (II) complex, [(ZnL{N(CN)2})2Zn], termed complex 1 has been synthesized by the reaction of an aqueous solution of sodium dicyanamide to the methanolic solution of Zn (CH3COO)2, 2H2O and corresponding Schiff base (H2L) which is derived from 1:2 condensation of 1, 4 butane diamine with 3-ethoxy salicylaldehyde. Complex 1 is characterized by elemental analysis, IR, UV and Single X-ray diffraction study. Drug resistance is a growing global public health concern that has prompted researchers to look into advanced alternative treatment modalities. In this context, complex 1 has shown promising antibacterial and antibiofilm efficacy against gram-positive Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus strains. Complex 1 attenuated Staphylococcal biofilm formation by reducing several virulence factors including the formation of extracellular polysaccharide matrix, slime, haemolysin, staphyloxanthin, auto-aggregation, cell surface hydrophobicity, and motility. Notably, complex 1 mechanistically potentiated Reactive Oxygen Species (ROS) generation within the bacterial cells, leading to the damage of bacterial cell membrane followed by DNA leakage and thereby impeding the growth of Staphylococcus aureus. Furthermore, complex 1 significantly exhibited anticancer activity by reducing the growth of prostate adenocarcinoma cells. It obstructed the migration of cancer cells by potentiating apoptosis and arresting the cell cycle at the G2/M phase. In summary, complex 1 could act as a potent candidate for the generation of novel antibacterial, antibiofilm as well as anticancer treatment regimens for the management of drug-resistant biofilm-mediated Staphylococcus aureus infection and lethal prostate malignancy.


Assuntos
Cianamida , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Masculino , Humanos , Espécies Reativas de Oxigênio , Bases de Schiff/farmacologia , Antibacterianos/farmacologia , Staphylococcus aureus , Biofilmes , Bactérias , Infecções Estafilocócicas/microbiologia , Zinco/farmacologia , Testes de Sensibilidade Microbiana
14.
J Biol Inorg Chem ; 29(3): 303-314, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38727821

RESUMO

This study demonstrates the potential of sono-photodynamic therapy as an effective approach for enhancing singlet oxygen generation using the synthesized Schiff-base diaxially substituted silicon phthalocyanines. In photochemical studies, the singlet oxygen quantum yields (Φ∆) were determined as 0.43 for Si1a, 0.94 for Q-Si1a, 0.58 for S-Si1a, and 0.49 for B-Sia1. In sono-photochemical studies, the Φ∆ values were reached to 0.67 for Si1a, 1.06 for Q-Si1a, 0.65 for S-Si1a, and 0.67 for B-Sia1. In addition, this study demonstrates the therapeutic efficacy of phthalocyanines synthesized as sensitizers on the PC3 prostate cancer cell line through in vitro experiments. The application of these treatment modalities exhibited notable outcomes, leading to a substantial decrease in cell viability within the PC3 prostate cancer cell line. These findings highlight the potential of utilizing these synthesized phthalocyanines as promising therapeutic agents for prostate cancer treatment.


Assuntos
Sobrevivência Celular , Indóis , Compostos de Organossilício , Neoplasias da Próstata , Bases de Schiff , Oxigênio Singlete , Humanos , Indóis/química , Indóis/farmacologia , Bases de Schiff/química , Bases de Schiff/farmacologia , Masculino , Oxigênio Singlete/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Compostos de Organossilício/química , Compostos de Organossilício/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Ensaios de Seleção de Medicamentos Antitumorais , Células PC-3 , Fotoquimioterapia , Processos Fotoquímicos , Linhagem Celular Tumoral , Estrutura Molecular
15.
Chem Res Toxicol ; 37(2): 216-219, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38232149

RESUMO

Histones catalyze DNA strand incision at apurinic/apyrimidinic (AP) sites accompanied by the formation of reversible but long-lived DNA-protein cross-links at 3'-termini (3'-histone-DPCs). However, the chemical structures of 3'-histone-DPCs are not well characterized, and whether they are formed in cells is uncertain. In this study, we developed a liquid chromatography with tandem mass spectrometry workflow to characterize DPCs produced from the reaction of histones with AP sites and wish to report evidence that histones cross-link to incised AP sites via Schiff bases. We also demonstrated for the first time that 3'-histone-DPCs are produced endogenously in human embryonic kidney 293T cells.


Assuntos
Histonas , Bases de Schiff , Humanos , Histonas/metabolismo , Bases de Schiff/química , DNA/química , Dano ao DNA , Espectrometria de Massas em Tandem , Reparo do DNA
16.
Biomacromolecules ; 25(3): 1838-1849, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38378470

RESUMO

Considering the complexity of physiological microenvironments and the risks of surgical infection, there still remains critical demand to develop a hydrogel as a drug release platform with multifunctional properties, including good neutral stability and sensitive multiple stimuli-responsive behaviors, as well as injectable and self-healing properties. Herein, we present a facile preparation of injectable, self-healing hydrogels with acid and glutathione (GSH) dual-responsiveness for controlled drug delivery. Initially, the anticancer drug camptothecin (CPT) was premodified with disulfide bonds and attached to poly(ethylenimine) (PEI) via the Schiff base reaction, resulting in PEI-CPT. Subsequently, OSA-IR780 was synthesized through the Schiff base reaction involving IR780 with amine groups (IR780-NH2) and oxidized sodium alginate with aldehyde groups (OSA). The formation of PEI-CPT/OSA-IR780 hydrogels with various solid contents occurred rapidly within 40 s through a simple mixing process of the aqueous solution of PEI-CPT and OSA-IR780. These hydrogels exhibited remarkable stability under neutral conditions and controlled release of CPT upon exposure to simulated tumor environments characterized by acidic conditions and elevated GSH concentrations. Furthermore, they had significant injectable and self-healing properties due to the dynamically imine-cross-linked networks. In addition, the prepared hydrogels exhibited long-term biodegradability and biocompatibility. Collectively, these features indicate the great potential of PEI-CPT/OSA-IR780 hydrogels as therapeutic delivery vehicles.


Assuntos
Antineoplásicos , Hidrogéis , Hidrogéis/química , Bases de Schiff , Sistemas de Liberação de Medicamentos , Glutationa/metabolismo , Liberação Controlada de Fármacos
17.
Biomacromolecules ; 25(2): 1084-1095, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38289249

RESUMO

Benzaldehyde-conjugated chitosan (CH-CBA) was synthesized by a coupling reaction between chitosan (CH) and carboxybenzaldehyde (CBA). The pH-sensitive self-cross-linking can be achieved through the Schiff base reaction. The degree of substitution (DS) of CH-CBA was controlled at 1.4-12.7% by optimizing the pH and reagent stoichiometry. The dynamic Schiff base linkages conferred strong shear-thinning and self-healing properties to the hydrogels. The viscosity of the 2 wt/v % CH-CBA hydrogel decreased from 5.3 × 107 mPa·s at a shear rate of 10-2 s-1 to 2.0 × 103 mPa·s at 102 s-1 at pH 7.4. The CH-CBA hydrogel exhibited excellent biocompatibility in vitro and in vivo. Moreover, the hydrogel adhered strongly to porcine small intestine, colon, and cecum samples, comparable to commercial fibrin glue, and exhibited effective in vivo tissue sealing in a mouse cecal ligation and puncture model, highlighting its potential as a biomaterial for application in tissue adhesives, tissue engineering scaffolds, etc.


Assuntos
Quitosana , Adesivos Teciduais , Camundongos , Animais , Suínos , Quitosana/química , Adesivos Teciduais/química , Benzaldeídos , Hidrogéis/química , Bases de Schiff/química , Camundongos Endogâmicos CBA
18.
Photochem Photobiol Sci ; 23(8): 1435-1443, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38886314

RESUMO

Photoisomerization is a key photochemical reaction in microbial and animal rhodopsins. It is well established that such photoisomerization is highly selective; all-trans to 13-cis, and 11-cis to all-trans forms in microbial and animal rhodopsins, respectively. Nevertheless, unusual photoisomerization pathways have been discovered recently in microbial rhodopsins. In an enzymerhodopsin NeoR, the all-trans chromophore is isomerized into the 7-cis form exclusively, which is stable at room temperature. Although, the 7-cis form is produced by illumination of retinal, formation of the 7-cis form was never reported for a protonated Schiff base of all-trans retinal in solution. Present HPLC analysis of retinal oximes prepared by hydroxylamine reaction revealed that all-trans and 7-cis forms cannot be separated from the syn peaks under the standard HPLC conditions, while it is possible by the analysis of the anti-peaks. Consequently, we found formation of the 7-cis form by the photoreaction of all-trans chromophore in solution, regardless of the protonation state of the Schiff base. Upon light absorption of all-trans protonated retinal Schiff base in solution, excited-state relaxation accompanies double-bond isomerization, producing 7-cis, 9-cis, 11-cis, or 13-cis form. In contrast, specific chromophore-protein interaction enforces selective isomerization into the 13-cis form in many microbial rhodopsins, but into 7-cis in NeoR.


Assuntos
Bases de Schiff , Isomerismo , Bases de Schiff/química , Processos Fotoquímicos , Soluções , Rodopsinas Microbianas/química , Rodopsinas Microbianas/metabolismo , Retinaldeído/química , Retinaldeído/metabolismo , Luz , Cromatografia Líquida de Alta Pressão
19.
J Fluoresc ; 34(2): 787-794, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37368079

RESUMO

A simple imine derivative based sensor (IDP) has been synthesized and characterized by 1 H NMR, 13 C NMR and mass spectral techniques. IDP is more capable of detecting perfluorooctanoic acid (PFOA) in a selective and sensitive manner. The PFOA as a biomarker interacts with IDP and shows "TURN-ON" response by colorimetric and fluorimetric method. Under optimized experimental observations, the selective determination of PFOA using IDP among other competitors as biomolecules has been noticed. The detection limit is 0.31 × 10- 8 mol/L. The practical applications of the IDP is effectively evaluated in human biofluids and water samples.


Assuntos
Técnicas Biossensoriais , Fluorocarbonos , Humanos , Bases de Schiff , Caprilatos , Técnicas Biossensoriais/métodos
20.
Methods ; 217: 27-35, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37399850

RESUMO

Schiff base probes (1 and 2) made from o-phenylenediamine and o-aminophenol were appeared as highly selective fluorimetric chemosensor of Cu2+ and Al3+ ions respectively. Strong fluorescence emission of probe 1 at 415 nm (excitation at 350 nm) was instantly turned off on addition of Cu2+. Very weak fluorescence of probe 2 at 506 nm (excitation at 400 nm) was immediately turned on specifically by Al3+. Job's plot and ESI-MS results suggested 1:1 molar stoichiometric ratio of metal ion and probe in their respective complexes. Probe 1 and 2 had demonstrated very low detection limit (9.9 and 2.5 nM respectively). Binding of Cu2+ with probe 1 was found chemically reversible on addition of EDTA, while complexation between Al3+ and probe 2 was not reversible. On the basis of density functional theory (DFT) and spectroscopic results, probable mode of sensing of the metal ions by the probes were proposed. Quenching of the fluorescence of probe 1 by Cu2+ was attributed to the extensive transfer of charge from the probe molecule to paramagnetic copper ion. Whereas, in the Al3+-complex of probe 2, photo-induced electron transfer (PET) process from the imine nitrogen to salicylaldehyde moiety was restricted and thereby the weak emission intensity of probe 2 was enhanced significantly. Effective pH range of sensing the metal ions by probe 1 and 2 were 4 to 8 and 6 to 10 respectively. Probe 1 was also applied in the design of a logic gate for Cu2+ detection. Moreover, probe 1 and 2 was also used in water sample analysis for quantitative estimation of Cu2+ and Al3+ respectively.


Assuntos
Cobre , Bases de Schiff , Cobre/química , Bases de Schiff/química , Metais , Íons , Espectrometria de Fluorescência/métodos , Corantes Fluorescentes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA