Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.005
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(13): e2306814121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38513102

RESUMO

Triple-negative breast cancer (TNBC) is a subtype of breast cancer with aggressive behavior and poor prognosis. Current therapeutic options available for TNBC patients are primarily chemotherapy. With our evolving understanding of this disease, novel targeted therapies, including poly ADP-ribose polymerase (PARP) inhibitors, antibody-drug conjugates, and immune-checkpoint inhibitors, have been developed for clinical use. Previous reports have demonstrated the essential role of estrogen receptor ß (ERß) in TNBC, but the detailed molecular mechanisms downstream ERß activation in TNBC are still far from elucidated. In this study, we demonstrated that a specific ERß agonist, LY500307, potently induces R-loop formation and DNA damage in TNBC cells. Subsequent interactome experiments indicated that the residues 151 to 165 of U2 small nuclear RNA auxiliary factor 1 (U2AF1) and the Trp439 and Lys443 of ERß were critical for the binding between U2AF1 and ERß. Combined RNA sequencing and ribosome sequencing analysis demonstrated that U2AF1-regulated downstream RNA splicing of 5-oxoprolinase (OPLAH) could affect its enzymatic activity and is essential for ERß-induced R-loop formation and DNA damage. In clinical samples including 115 patients from The Cancer Genome Atlas (TCGA) and 32 patients from an in-house cohort, we found a close correlation in the expression of ESR2 and U2AF1 in TNBC patients. Collectively, our study has unraveled the molecular mechanisms that explain the therapeutic effects of ERß activation in TNBC, which provides rationale for ERß activation-based single or combined therapy for patients with TNBC.


Assuntos
Processamento Alternativo , Benzopiranos , Receptor beta de Estrogênio , Estruturas R-Loop , Fator de Processamento U2AF , Neoplasias de Mama Triplo Negativas , Humanos , Receptor beta de Estrogênio/agonistas , Receptor beta de Estrogênio/metabolismo , Fator de Processamento U2AF/química , Fator de Processamento U2AF/genética , Fator de Processamento U2AF/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Terapia Combinada , Células MDA-MB-231 , Processamento Alternativo/efeitos dos fármacos , Benzopiranos/farmacologia , Benzopiranos/uso terapêutico , Ligação Proteica , Sítios de Ligação
2.
PLoS Genet ; 18(2): e1009564, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35113854

RESUMO

The olfactory system combines input from multiple receptor types to represent odor information, but there are few explicit examples relating olfactory receptor (OR) activity patterns to odor perception. To uncover these relationships, we performed genome-wide scans on odor-perception phenotypes for ten odors in 1000 Han Chinese and validated results for six of these odors in an ethnically diverse population (n = 364). In both populations, consistent with previous studies, we replicated three previously reported associations (ß-ionone/OR5A1, androstenone/OR7D4, cis-3-hexen-1-ol/OR2J3 LD-band), but not for odors containing aldehydes, suggesting that olfactory phenotype/genotype studies are robust across populations. Two novel associations between an OR and odor perception contribute to our understanding of olfactory coding. First, we found a SNP in OR51B2 that associated with trans-3-methyl-2-hexenoic acid, a key component of human underarm odor. Second, we found two linked SNPs associated with the musk Galaxolide in a novel musk receptor, OR4D6, which is also the first human OR shown to drive specific anosmia to a musk compound. We noticed that SNPs detected for odor intensity were enriched with amino acid substitutions, implying functional changes of odor receptors. Furthermore, we also found that the derived alleles of the SNPs tend to be associated with reduced odor intensity, supporting the hypothesis that the primate olfactory gene repertoire has degenerated over time. This study provides information about coding for human body odor, and gives us insight into broader mechanisms of olfactory coding, such as how differential OR activation can converge on a similar percept.


Assuntos
Percepção Olfatória , Polimorfismo de Nucleotídeo Único , Receptores Odorantes , Adolescente , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Povo Asiático/genética , Benzopiranos/farmacologia , Odor Corporal , Caproatos/farmacologia , Percepção Olfatória/efeitos dos fármacos , Percepção Olfatória/genética , Receptores Odorantes/genética , Reprodutibilidade dos Testes , Olfato/genética
3.
BMC Plant Biol ; 24(1): 703, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39054445

RESUMO

BACKGROUND: Fulvic acid enhances plant growth and interacts synergistically with phosphate fertilizer to alleviate the agricultural production problem of low phosphorus fertilizer utilization efficiency. However, the underlying mechanism of its action remains poorly understood. In this study, we investigated the impact of fulvic acid application with varying concentrations (0, 40, 60, 80 and 120 mg/L) on rice performance in plants grown in a hydroponic system subjected to low phosphorus stress. The rice growth phenotypes, biomass, root morphology, phosphorus uptake, and the impact of fulvic acid on the rhizosphere environment of rice, were assessed. RESULTS: The findings showed that adding appropriate concentrations of exogenous fulvic acid could promote the growth performance of rice under low phosphorus stress. Particularly at T1 (40 mg/L) and T2 (60 mg/L) over the control effectively increased rice biomass by 25.42% and 24.56%, respectively. Fulvic acid treatments stimulated root morphogenesis, up-regulated phosphate transporter genes, and facilitated phosphorus absorption and accumulation. Especially T1 (20.52%), T2 (18.10%) and T3 (20.48%) treatments significantly increased phosphorus uptake in rice, thereby alleviating low phosphorus stress. Additionally, fulvic acid elevated organic acids concentration in roots and up-regulated plasma membrane H+-ATPase genes, promoting organic acids secretion. This metabolic alteration can also alleviate low phosphorus stress in rice. CONCLUSIONS: The effect of exogenous fulvic acid on physiological indicators is concentration-dependent under low phosphorus stress, enhances rice performance and reduces reliance on phosphorus fertilizer. This provides new insights to shed light on the mechanism of alleviating low phosphorus stress in rice through fulvic acid application, an eco-friendly tool.


Assuntos
Benzopiranos , Oryza , Fósforo , Plântula , Oryza/efeitos dos fármacos , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Fósforo/metabolismo , Benzopiranos/farmacologia , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Fertilizantes , Rizosfera , Hidroponia
4.
Bioorg Med Chem Lett ; 111: 129912, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39089526

RESUMO

Alzheimer's disease (AD) presents a growing global health concern. In recent decades, natural and synthetic chromenone have emerged as promising drug candidates due to their multi-target potential. Natural chromenone, quercetin, scopoletin, esculetin, coumestrol, umbelliferone, bergapten, and methoxsalen (xanthotoxin), and synthetic chromenone hybrids comprising structures like acridine, 4-aminophenyl, 3-arylcoumarins, quinoline, 1,3,4-oxadiazole, 1,2,3-triazole, and tacrine, have been explored for their potential to combat AD. Key reactions used for synthesis of chromenone hybrids include Perkin and Pechmann condensation. The activity of chromenone hybrids has been reported against several drug targets, including AChE, BuChE, BACE-1, and MAO-A/B. This review comprehensively explores natural, semisynthetic, and synthetic chromenone, elucidating their synthetic routes, possible mode of action/drug targets and structure-activity relationships (SAR). The acquired knowledge provides valuable insights for the development of new chromenone hybrids against AD.


Assuntos
Doença de Alzheimer , Descoberta de Drogas , Animais , Humanos , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Benzopiranos/química , Benzopiranos/farmacologia , Benzopiranos/síntese química , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/síntese química , Estrutura Molecular , Relação Estrutura-Atividade , Acridinas/síntese química , Acridinas/química , Acridinas/farmacologia
5.
Bioorg Med Chem Lett ; 106: 129770, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38677560

RESUMO

We have previously reported the total synthesis and structure-activity relationships (SAR) of 2-prenylated benzopyrans with PPAR agonist activity. Herein, we have described the synthesis and PPAR activity of 2-prenylated benzopyrans and 2-prenylated quinolines. The benzopyran nucleus was generated via enamine-catalyzed Kabbe condensation, and the quinoline nucleus via Friedländer condensation. Results demonstrated that both benzopyran (5a) and quinoline (4b) derivatives bearing a γ,δ-unsaturated ester displayed a pan-PPAR agonism. They were full PPARα agonists, but showed different preferences for PPARγ and PPARß/δ activation. It was noteworthy that quinoline 4b displayed full hPPARα activation (2-fold than WY-14,643), weak PPARß/δ and partial PPARγ activation. In addition, quinoline 4b showed anti-inflammatory effects on macrophages by reducing LPS-induced expression of both MCP-1 and IL-6. Therefore, 4b emerges as a first-in-class promising hit compound for the development of potential therapeutics aimed at treating metabolic syndrome, metabolic dysfunction-associated fatty liver disease (MAFLD), and its associated cardiovascular comorbidities.


Assuntos
Síndrome Metabólica , Quinolinas , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/metabolismo , Quinolinas/química , Quinolinas/farmacologia , Quinolinas/síntese química , Relação Estrutura-Atividade , Humanos , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/agonistas , Estrutura Molecular , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/antagonistas & inibidores , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Relação Dose-Resposta a Droga , Benzopiranos/farmacologia , Benzopiranos/síntese química , Benzopiranos/química , Animais , Camundongos
6.
Physiol Plant ; 176(4): e14455, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39073158

RESUMO

Nanoparticles are promising alternatives to synthetic fertilizers in the context of climate change and sustainable agriculture. Maize plants were grown under gradient concentrations (50 µM, 100 µM, 200 µM, 500 µM, and 1 mM) of chitosan (Ch), fulvic acid (FA) or chitosan-fulvic acid nanoparticles (Ch-FANPs). Based on the overall phenotypic assessment, 100 µM was selected for downstream experiments. Maize plants grown under this optimized concentration were thereafter subjected to drought stress by water withholding for 14 days. Compared to the individual performances, the combined treatment of Ch-FANPs supported the best plant growth over chitosan, fulvic acid, or sole watered plants and alleviated the adverse effects of drought by enhancing root and shoot growth, and biomass by an average 20%. In addition, Ch-FANPs-treated plants exhibited a significant reduction in hydrogen peroxide (H2O2) content (~10%), with a concomitant increase in ascorbate peroxidase (APX) activity (>100%) while showing a reduced lipid peroxidation level observed by the decrease in malondialdehyde (MDA) content (~100%) and low electrolyte leakage level. Furthermore, chlorophyll content increased significantly (>100%) in maize plants treated with Ch-FANPs compared to Ch or FA and control in response to drought. The expression of drought-induced transcription factors, ZmDREB1A, ZmbZIP1, and ZmNAC28, and the ABA-dependent ZmCIPK3 was upregulated by Ch-FANPs. Owing to the above, Ch-FANPs are proposed as a growth-promoting agent and elicitor of drought tolerance in maize via activation of antioxidant machinery and transcriptional reprogramming of drought-related genes.


Assuntos
Antioxidantes , Benzopiranos , Quitosana , Secas , Regulação da Expressão Gênica de Plantas , Nanopartículas , Zea mays , Zea mays/efeitos dos fármacos , Zea mays/fisiologia , Zea mays/genética , Quitosana/farmacologia , Antioxidantes/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Benzopiranos/farmacologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Peróxido de Hidrogênio/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Clorofila/metabolismo , Resistência à Seca
7.
Org Biomol Chem ; 22(22): 4521-4527, 2024 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-38752482

RESUMO

Ten azaphilones including one pair of new epimers and three new ones, penineulones A-E (1-5) with the same structural core of angular deflectin, were obtained from a deep-sea derived Penicillium sp. SCSIO41030 fermented on a liquid medium. Their structures including absolute configurations were elucidated using chiral-phase HPLC analysis, extensive NMR spectroscopic and HRESIMS data, ECD and NMR calculations, and by comparing NMR data with literature data. Biological assays showed that the azaphilones possessed no antitumor and anti-viral (HSV-1/2) activities at concentrations of 5.0 µM and 20 µM, respectively. In addition, azaphilones 8 and 9 showed neuroprotective effects against Aß25-35-induced neurotoxicity in primary cultured cortical neurons at a concentration of 10 µM. Azaphilones 8 and 9 dramatically promoted axonal regrowth against Aß25-35-induced axonal atrophy. Our study indicated that azaphilones could be promising lead compounds for neuroprotection.


Assuntos
Benzopiranos , Fármacos Neuroprotetores , Penicillium , Penicillium/química , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/isolamento & purificação , Benzopiranos/farmacologia , Benzopiranos/química , Benzopiranos/isolamento & purificação , Animais , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/farmacologia , Pigmentos Biológicos/farmacologia , Pigmentos Biológicos/química , Pigmentos Biológicos/isolamento & purificação , Humanos , Neurônios/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Fragmentos de Peptídeos/química , Estrutura Molecular
8.
J Immunol ; 208(1): 38-48, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34862257

RESUMO

RNA-binding protein HuR (ELAVL1) is a master regulator of gene expression in human pathophysiology. Its dysregulation plays an important role in many diseases. We hypothesized that HuR plays an important role in Th2 inflammation in asthma in both mouse and human. To address this, we used a model of airway inflammation in a T cell-specific knockout mouse model, distal lck-Cre HuRfl/fl, as well as small molecule inhibitors in human peripheral blood-derived CD4+ T cells. Peripheral CD4+ T cells were isolated from 26 healthy control subjects and 45 asthmatics (36 type 2 high and 9 non-type 2 high, determined by blood eosinophil levels and fraction of exhaled NO). Our mouse data showed conditional ablation of HuR in T cell-abrogated Th2 differentiation, cytokine production, and lung inflammation. Studies using human T cells showed that HuR protein levels in CD4+ T cells were significantly higher in asthmatics compared with healthy control subjects. The expression and secretion of Th2 cytokines were significantly higher in asthmatics compared with control subjects. AMP-activated protein kinase activator treatment reduced the expression of several cytokines in both type 2 high and non-type 2 high asthma groups. However, the effects of CMLD-2 (a HuR-specific inhibitor) were more specific to endotype-defining cytokines in type 2 high asthmatics. Taken together, these data suggest that HuR plays a permissive role in both allergen and non-allergen-driven airway inflammation by regulating key genes, and that interfering with its function may be a novel method of asthma treatment.


Assuntos
Asma/metabolismo , Proteína Semelhante a ELAV 1/metabolismo , Células Th2/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Alérgenos/imunologia , Animais , Anti-Inflamatórios/farmacologia , Asma/genética , Asma/terapia , Benzopiranos/farmacologia , Células Cultivadas , Modelos Animais de Doenças , Proteína Semelhante a ELAV 1/antagonistas & inibidores , Proteína Semelhante a ELAV 1/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Ovalbumina/imunologia , Pirrolidinas/farmacologia , Adulto Jovem
9.
Bioorg Chem ; 143: 107064, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38150937

RESUMO

Alzheimer's disease, the commonest cause of dementia, is a growing global health concern with huge implications for individuals and society. Stroke has still been a significant challenge in clinics for a long time, which is the second leading cause of death in the world, especially ischemic stroke. Both Alzheimer's disease and stroke are closely related to oxidative stress and HIF-1 signaling pathways in nerve cells. Herein, we describe our structure-based design, synthesis, and biological evaluation of a new class of 8-biaryl-2,2-dimethylbenzopyranamide derivatives as natural product derivatives. Our efforts have resulted in the discovery of highly potent neuroprotective agents, as exemplified by compound D13 as a HIF-1α inhibitor, which significant improvement in the behavior of Alzheimer's disease mice and shows great potential improvement of brain infarct volume in pMCAO model rats, improves the increase of blood-brain barrier permeability after cerebral ischemia in rats, neuroprotective effect, reduce the level of apoptotic cells in rats after cerebral ischemia, better than Edaravone.


Assuntos
Doença de Alzheimer , Benzopiranos , Isquemia Encefálica , AVC Isquêmico , Fármacos Neuroprotetores , Acidente Vascular Cerebral , Animais , Camundongos , Ratos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Barreira Hematoencefálica , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/metabolismo , Benzopiranos/química , Benzopiranos/farmacologia
10.
Bioorg Chem ; 148: 107434, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38744168

RESUMO

Azaphilones represent a particular group of fascinating pigments from fungal source, with easier industrialization and lower cost than the traditional plant-derived pigments, and they also display a wide range of pharmacological activities. Herein, 28 azaphilone analogs, including 12 new ones, were obtained from the fermentation culture of a marine fungus Penicillium sclerotium UJNMF 0503. Their structures were elucidated by MS, NMR and ECD analyses, together with NMR and ECD calculations and biogenetic considerations. Among them, compounds 1 and 2 feature an unusual natural benzo[d][1,3]dioxepine ring embedded with an orthoformate unit, while 3 and 4 represent the first azaphilone examples incorporating a novel rearranged 5/6 bicyclic core and a tetrahydropyran ring on the side chain, respectively. Our bioassays revealed that half of the isolates exhibited neuroprotective potential against H2O2-induced injury on RSC96 cells, while compound 13 displayed the best rescuing capacity toward the cell viability by blocking cellular apoptosis, which was likely achieved by upregulating the PI3K/Akt signaling pathway.


Assuntos
Apoptose , Benzopiranos , Relação Dose-Resposta a Droga , Peróxido de Hidrogênio , Fármacos Neuroprotetores , Penicillium , Fosfatidilinositol 3-Quinases , Pigmentos Biológicos , Proteínas Proto-Oncogênicas c-akt , Apoptose/efeitos dos fármacos , Penicillium/química , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/isolamento & purificação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Fosfatidilinositol 3-Quinases/metabolismo , Pigmentos Biológicos/farmacologia , Pigmentos Biológicos/química , Pigmentos Biológicos/isolamento & purificação , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/antagonistas & inibidores , Estrutura Molecular , Benzopiranos/farmacologia , Benzopiranos/química , Benzopiranos/isolamento & purificação , Relação Estrutura-Atividade , Animais , Sobrevivência Celular/efeitos dos fármacos , Ratos , Transdução de Sinais/efeitos dos fármacos
11.
Bioorg Chem ; 147: 107419, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703440

RESUMO

We formerly reported that EZH2 inhibitors sensitized HIF-1 inhibitor-resistant cells and inhibited HIF-1α to promote SUZ12 transcription, leading to enhanced EZH2 enzyme activity and elevated H3K27me3 levels, and conversely, inhibition of EZH2 promoted HIF-1α transcription. HIF-1α and EZH2 interacted to form a negative feedback loop that reinforced each other's activity. In this paper, a series of 2,2- dimethylbenzopyran derivatives containing pyridone structural fragments were designed and synthesized with DYB-03, a HIF-1α inhibitor previously reported by our group, and Tazemetostat, an EZH2 inhibitor approved by FDA, as lead compounds. Among these compounds, D-01 had significant inhibitory activities on HIF-1α and EZH2. In vitro experiments showed that D-01 significantly inhibited the migration of A549 cells, clone, invasion and angiogenesis. Moreover, D-01 had good pharmacokinetic profiles. All the results about compound D-01 could lay a foundation for the research and development of HIF-1α and EZH2 dual-targeting compounds.


Assuntos
Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Proteína Potenciadora do Homólogo 2 de Zeste , Subunidade alfa do Fator 1 Induzível por Hipóxia , Neoplasias Pulmonares , Piridonas , Humanos , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Piridonas/química , Piridonas/farmacologia , Piridonas/síntese química , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Estrutura Molecular , Relação Dose-Resposta a Droga , Proliferação de Células/efeitos dos fármacos , Animais , Benzopiranos/química , Benzopiranos/farmacologia , Benzopiranos/síntese química , Movimento Celular/efeitos dos fármacos
12.
Mar Drugs ; 22(6)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38921552

RESUMO

Developing novel, safe, and efficient proangiogenic drugs is an important approach for the prevention and treatment of cardiovascular diseases. In this study, 4 new compounds, including 3 azaphilones (1-3) and 1 dihydroisocoumarin (4), as well as 13 known compounds (5-17), were isolated from the sea-mud-derived fungus Neopestalotiopsis sp. HN-1-6 from the Beibu Gulf of China. The structures of the new compounds were determined by NMR, MS, ECD, and NMR calculations. Compounds 3, 5, and 7 exhibited noteworthy proangiogenic activities in a zebrafish model at a concentration of 40 µM, without displaying cytotoxicity toward five human cell lines. In addition, some compounds demonstrated antibacterial effects against Staphylococcus aureus, Escherichia coli, and Candida albicans, with MIC values ranging from 64 µg/mL to 256 µg/mL.


Assuntos
Antibacterianos , Benzopiranos , Testes de Sensibilidade Microbiana , Pigmentos Biológicos , Peixe-Zebra , Animais , Benzopiranos/farmacologia , Benzopiranos/química , Benzopiranos/isolamento & purificação , Humanos , Antibacterianos/farmacologia , Antibacterianos/isolamento & purificação , Antibacterianos/química , Pigmentos Biológicos/farmacologia , Pigmentos Biológicos/isolamento & purificação , Pigmentos Biológicos/química , Staphylococcus aureus/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Organismos Aquáticos , Escherichia coli/efeitos dos fármacos , China , Linhagem Celular
13.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34140407

RESUMO

In 2006, GRN mutations were first linked to frontotemporal dementia (FTD), the leading cause of non-Alzheimer dementias. While much research has been dedicated to understanding the genetic causes of the disease, our understanding of the mechanistic impacts of GRN deficiency has only recently begun to take shape. With no known cure or treatment available for GRN-related FTD, there is a growing need to rapidly advance genetic and/or small-molecule therapeutics for this disease. This issue is complicated by the fact that, while lysosomal dysfunction seems to be a key driver of pathology, the mechanisms linking a loss of GRN to a pathogenic state remain unclear. In our attempt to address these key issues, we have turned to the nematode, Caenorhabditis elegans, to model, study, and find potential therapies for GRN-deficient FTD. First, we show that the loss of the nematode GRN ortholog, pgrn-1, results in several behavioral and molecular defects, including lysosomal dysfunction and defects in autophagic flux. Our investigations implicate the sphingolipid metabolic pathway in the regulation of many of the in vivo defects associated with pgrn-1 loss. Finally, we utilized these nematodes as an in vivo tool for high-throughput drug screening and identified two small molecules with potential therapeutic applications against GRN/pgrn-1 deficiency. These compounds reverse the biochemical, cellular, and functional phenotypes of GRN deficiency. Together, our results open avenues for mechanistic and therapeutic research into the outcomes of GRN-related neurodegeneration, both genetic and molecular.


Assuntos
Autofagia/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Lisossomos/genética , Progranulinas/metabolismo , Acetofenonas/farmacologia , Animais , Benzopiranos/farmacologia , Vias Biossintéticas , Caenorhabditis elegans/citologia , Proteínas de Caenorhabditis elegans/genética , Avaliação Pré-Clínica de Medicamentos , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Mutação/genética , Fenótipo , Progranulinas/genética , Rivastigmina/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Esfingolipídeos/metabolismo
14.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34389675

RESUMO

To identify regulators of triple-negative breast cancer (TNBC), gene expression profiles of malignant parts of TNBC (mTNBC) and normal adjacent (nadj) parts of the same breasts have been compared. We are interested in the roles of estrogen receptor ß (ERß) and the cytochrome P450 family (CYPs) as drivers of TNBC. We examined by RNA sequencing the mTNBC and nadj parts of five women. We found more than a fivefold elevation in mTNBC of genes already known to be expressed in TNBC: BIRC5/survivin, Wnt-10A and -7B, matrix metalloproteinases (MMPs), chemokines, anterior gradient proteins, and lysophosphatidic acid receptor and the known basal characteristics of TNBC, sox10, ROPN1B, and Col9a3. There were two unexpected findings: 1) a strong induction of CYPs involved in activation of fatty acids (CYP4), and in inactivation of calcitriol (CYP24A1) and retinoic acid (CYP26A1); and 2) a marked down-regulation of FOS, FRA1, and JUN, known tethering partners of ERß. ERß is expressed in 20 to 30% of TNBCs and is being evaluated as a target for treating TNBC. We used ERß+ TNBC patient-derived xenografts in mice and found that the ERß agonist LY500703 had no effect on growth or proliferation. Expression of CYPs was confirmed by immunohistochemistry in formalin-fixed and paraffin-embedded (FFPE) TNBC. In TNBC cell lines, the CYP4Z1-catalyzed fatty acid metabolite 20-hydroxyeicosatetraenoic acid (20-HETE) increased proliferation, while calcitriol decreased proliferation but only after inhibition of CYP24A1. We conclude that CYP-mediated pathways can be drivers of TNBC but that ERß is unlikely to be a tumor suppressor because the absence of its main tethering partners renders ERß functionless on genes involved in proliferation and inflammation.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Receptor beta de Estrogênio/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/metabolismo , Proteínas de Anfíbios/genética , Proteínas de Anfíbios/metabolismo , Animais , Benzopiranos/farmacologia , Calcitriol/farmacologia , Sistema Enzimático do Citocromo P-450/genética , Regulação para Baixo , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/genética , Ácidos Graxos/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Camundongos , Neoplasias Experimentais , Distribuição Aleatória , Survivina/genética , Survivina/metabolismo , Transcriptoma , Tretinoína/farmacologia , Neoplasias de Mama Triplo Negativas/genética , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
15.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34301901

RESUMO

Enhancer of zeste homolog 2 (EZH2) is a histone H3 lysine 27 methyltransferase that has been shown to function as an oncogene in some cancers. Previous reports have largely focused on the ability of EZH2 to regulate cell-intrinsic tumor regulatory pathways as its mechanism-of-oncogenic action. However, the role that EZH2-mediated immune suppression plays in its oncogenic activity is not fully known. In particular, the role of natural killer (NK) cells in EZH2-driven tumor growth remains incompletely understood. Here, we demonstrate that genetic or pharmacological inhibition of EZH2 induces reexpression of the chemokine CXCL10 in hepatic tumor cells. We find that histone deacetylase 10 (HDAC10) is necessary for EZH2 recruitment to the CXCL10 promoter, leading to CXCL10 transcriptional repression. Critically, CXCL10 is necessary and sufficient for stimulating NK cell migration, and EZH2's ability to inhibit NK cell migration via CXCL10 suppression is conserved in other EZH2-dependent cancers. NK cell depletion in an immunocompetent syngeneic mouse model of hepatic tumorigenesis reverses the tumor inhibitory effects of an EZH2 inhibitor (GSK343), and inhibitor-mediated reexpression of CXCL10 is required for its tumor suppressive effects in the same mouse model. Collectively, these results reveal a decisive role for NK cells and CXCL10 in mediating the oncogenic function of EZH2.


Assuntos
Carcinoma Hepatocelular/imunologia , Quimiocina CXCL10/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Histona Desacetilases/metabolismo , Animais , Benzopiranos/farmacologia , Linhagem Celular Tumoral , Movimento Celular , Quimiocina CXCL10/genética , Quimiocinas/genética , Quimiocinas/metabolismo , Decitabina/farmacologia , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Inibidores Enzimáticos/farmacologia , Regulação Neoplásica da Expressão Gênica/imunologia , Histona Desacetilases/genética , Humanos , Indazóis/farmacologia , Indóis/farmacologia , Células Matadoras Naturais , Neoplasias Hepáticas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Experimentais/tratamento farmacológico , Fenóis/farmacologia , Piridonas/farmacologia , Sulfonas/farmacologia , Triazóis/farmacologia
16.
Chem Pharm Bull (Tokyo) ; 72(5): 498-506, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38735699

RESUMO

Using (S)-decursinol isolated from root of Angelica gigas Nakai (AGN), we semi-synthesized and evaluated a series of both enantiomerically pure decursin derivatives for their antiproliferative activities against A549 human lung cancer cells. All synthesized compounds showed a broad spectrum of inhibitory activities against the growth of A549 cells. Especially, compound (S)-2d with (E)-(furan-3-yl)acryloyl group showed the most potent activity (IC50: 14.03 µM) against A549 cancer cells as compared with the reference compound, decursin (IC50: 43.55 µM) and its enantiomer, (R)-2d (IC50: 151.59 µM). Western blotting assays indicated that (S)-2d more strongly inhibited Janus kinase 1 (JAK1) and signal transducer and activator of transcription activation 3 (STAT3) phosphorylation than decursin in a dose-dependent manner, while having no effect on CXCR7 overexpression and total STAT3 level. In addition, (S)-2d induced cell cycle arrest at G1 phase and subsequent apoptotic cell death in A549 cancer cells. Our combined analysis of molecular docking studies and biological data suggests that the inhibition of JAK1 with (S)-2d resulted in loss of STAT3 phosphorylation and inhibition of cell growth in A549 cancer cells. These overall results strongly suggest that (S)-2d (MRC-D-004) as a novel JAK1 inhibitor may have therapeutic potential in the treatment of A549 human lung cancers by targeting the JAK1/STAT3 signaling pathway.


Assuntos
Apoptose , Benzopiranos , Butiratos , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Simulação de Acoplamento Molecular , Fator de Transcrição STAT3 , Humanos , Proliferação de Células/efeitos dos fármacos , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/metabolismo , Benzopiranos/farmacologia , Benzopiranos/química , Benzopiranos/síntese química , Butiratos/farmacologia , Butiratos/química , Butiratos/síntese química , Apoptose/efeitos dos fármacos , Células A549 , Estereoisomerismo , Relação Dose-Resposta a Droga , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Relação Estrutura-Atividade , Janus Quinase 1/antagonistas & inibidores , Janus Quinase 1/metabolismo , Estrutura Molecular , Angelica/química , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/síntese química , Antineoplásicos Fitogênicos/química
17.
Chem Biodivers ; 21(1): e202301392, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38050777

RESUMO

In this study, indolyl-4H-chromene derivatives are designed and synthesised using an eco-friendly multicomponent one-pot synthesis using benzaldehydes, nitroketene N, S-acetals, and indoles combine with InCl3 , a Lewis acid catalyst, and ethanol, an environmentally acceptable solvent. Due to antibiotic resistance, assessed these Indolyl-4H-chromene derivatives for their in vitro antibacterial activity against Gram-positive and Gram-negative bacteria, including Streptococcus pyogenes, Staphylococcus aureus, Clostridium pyrogenes, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa, using the agar well diffusion method and Minimum Inhibition Concentration (MIC) assay. Three compounds, 4-(1H-indol-3-yl)-6-methoxy-N-methyl-3-nitro-4H-chromen-2-amine, 4-(1H-indol-3-yl)-3-nitro-N-phenyl-4H-chromen-2-amine and 4-(6-Fluoro-1H-Indol-3-yl)-N-methyl-3-nitro-4H-chromen-2-amine showed better zone of inhibition (mm) and Minimum Inhibition Concentration (MIC) values of 10 µg/mL to 25 µg/mL against all bacterial types. The Ki values of 278.60 nM and 2.21 nM for compound 4-(1H-indol-3-yl)-3-nitro-N-phenyl-4H-chromen-2-amine showed improved interactions with DNA gyrase B and topoIV ParE's ATP binding sites in in silico studies.


Assuntos
Antibacterianos , Benzopiranos , Antibacterianos/farmacologia , Antibacterianos/química , Benzopiranos/farmacologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Aminas , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade
18.
Int J Mol Sci ; 25(8)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38673904

RESUMO

Chagas disease is one of the world's neglected tropical diseases, caused by the human pathogenic protozoan parasite Trypanosoma cruzi. There is currently a lack of effective and tolerable clinically available therapeutics to treat this life-threatening illness and the discovery of modern alternative options is an urgent matter. T. cruzi glucokinase (TcGlcK) is a potential drug target because its product, d-glucose-6-phosphate, serves as a key metabolite in the pentose phosphate pathway, glycolysis, and gluconeogenesis. In 2019, we identified a novel cluster of TcGlcK inhibitors that also exhibited anti-T. cruzi efficacy called the 3-nitro-2-phenyl-2H-chromene analogues. This was achieved by performing a target-based high-throughput screening (HTS) campaign of 13,040 compounds. The selection criteria were based on first determining which compounds strongly inhibited TcGlcK in a primary screen, followed by establishing on-target confirmed hits from a confirmatory assay. Compounds that exhibited notable in vitro trypanocidal activity over the T. cruzi infective form (trypomastigotes and intracellular amastigotes) co-cultured in NIH-3T3 mammalian host cells, as well as having revealed low NIH-3T3 cytotoxicity, were further considered. Compounds GLK2-003 and GLK2-004 were determined to inhibit TcGlcK quite well with IC50 values of 6.1 µM and 4.8 µM, respectively. Illuminated by these findings, we herein screened a small compound library consisting of thirteen commercially available 3-nitro-2-phenyl-2H-chromene analogues, two of which were GLK2-003 and GLK2-004 (compounds 1 and 9, respectively). Twelve of these compounds had a one-point change from the chemical structure of GLK2-003. The analogues were run through a similar primary screening and confirmatory assay protocol to our previous HTS campaign. Subsequently, three in vitro biological assays were performed where compounds were screened against (a) T. cruzi (Tulahuen strain) infective form co-cultured within NIH-3T3 cells, (b) T. brucei brucei (427 strain) bloodstream form, and (c) NIH-3T3 host cells alone. We report on the TcGlcK inhibitor constant determinations, mode of enzyme inhibition, in vitro antitrypanosomal IC50 determinations, and an assessment of structure-activity relationships. Our results reveal that the 3-nitro-2-phenyl-2H-chromene scaffold holds promise and can be further optimized for both Chagas disease and human African trypanosomiasis early-stage drug discovery research.


Assuntos
Benzopiranos , Glucoquinase , Tripanossomicidas , Trypanosoma cruzi , Animais , Humanos , Camundongos , Benzopiranos/farmacologia , Benzopiranos/química , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Descoberta de Drogas/métodos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Glucoquinase/metabolismo , Glucoquinase/antagonistas & inibidores , Ensaios de Triagem em Larga Escala , Simulação de Acoplamento Molecular , Células NIH 3T3 , Relação Estrutura-Atividade , Tripanossomicidas/farmacologia , Tripanossomicidas/química , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/enzimologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia
19.
Molecules ; 29(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38792180

RESUMO

The goal of this study was directed to synthesize a novel class of annulated compounds containing difuro[3,2-c:3',2'-g]chromene. Friedländer condensation of o-aminoacetyl derivative 3 was performed with some active methylene ketones, namely, 1,3-cyclohexanediones, pyrazolones, 1,3-thiazolidinones and barbituric acids, furnished furochromenofuroquinolines (4,5), furochromenofuropyrazolopyridines (6-8), furochromenofurothiazolopyridines (9,10) and furochromenofuropyridopyrimidines (11, 12), respectively. Also, condensation of substrate 3 with 5-amine-3-methyl-1H-pyrazole and 6-amino-1,3-dimethyluracil, as cyclic enamines, resulted in polyfused systems 13 and 14, respectively. In vitro antimicrobial efficiency of the prepared heterocycles against microbial strains exhibited variable inhibition action, where compound 3 was the most effective against all kinds of microorganisms. A significant cytotoxic activity was seen upon the annulation of the starting compound with thiazolopyridine (9 and 10) as well as pyridopyrimidine moieties (11, 12 and 14). The spectroscopic and analytical results were used to infer the structures of the novel synthesized compounds.


Assuntos
Anti-Infecciosos , Antineoplásicos , Benzopiranos , Testes de Sensibilidade Microbiana , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Benzopiranos/farmacologia , Benzopiranos/química , Benzopiranos/síntese química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/síntese química , Linhagem Celular Tumoral , Estrutura Molecular , Relação Estrutura-Atividade , Bactérias/efeitos dos fármacos
20.
Toxicol Mech Methods ; 34(5): 484-494, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38223921

RESUMO

The new technological applications of nickel (Ni) raise concerns over its harmful effects on the environment and human health. Pomiferin isolated from Osage orange is evaluated in in vitro and in vivo laboratory bioassays. This study focused the effects of pomiferin on Ni-caused hepatic injury and its underlying mechanisms. With this aim, Sprague-Dawley rats received 10 mg/kg nickel chloride (NiCl2) for 7 d by intraperitoneal injections. Pomiferin was given orally once a day at different doses (75, 150, and 300 mg/kg) for 20 d after exposure to NiCl2. Animals were anesthetized and livers were carefully collected to evaluate oxidative stress, inflammation, vascular injury, and hepatic function. Also, immunofluorescence analysis of apoptosis and DNA damage was performed on rat hepatic tissues. NiCl2 increased MDA production while reducing SOD, CAT, and GPx activity. NiCl2 induced the production of inflammatory cytokines and also platelet activation in hepatic tissue. Moreover, there were significant increases in AST, ALT, and LDH levels. NiCl2 also caused significant pathological changes in hepatic. Additionally, it remarkably induced up-regulations of apoptotic marker and 8-OHdG expressions by immunofluorescence labeling in liver cells. Whereas, pomiferin significantly attenuated lipid peroxidation and increased antioxidant defense system in liver. Also, the use of pomiferin prevented deregulated inflammatory process by signaling pathways nuclear factor kappa B (NFκB)/COX-2/TNF-α/IL-1ß/IL-6. In addition, pomiferin diminished histopathologic evidence of hepatic toxicity and significantly lower expressions of caspase 3 and 8-OHdG were observed in liver cells. Pomiferin seems to counteract the deleterious effects of NiCl2 on hepatic tissue through different cellular and signaling mechanisms.


NiCl2 induced the production of inflammatory cytokines and also platelet activation in hepatic tissue.NiCl2 increased MDA production while reducing SOD, CAT, and GPx activity.NiCl2 induced the production of inflammatory cytokines and also platelet activation in hepatic tissue.NiCl2 caused significant pathological changes in the liver and also up-regulation of apoptotic marker and 8-OHdG expressions by immunofluorescence staining.Pomiferin attenuated lipid peroxidation and increased antioxidant defense system in liver.The use of pomiferin prevented deregulated inflammatory process by signaling pathways nuclear factor kappa B (NFκB)/COX-2/TNF-α/IL-1ß/IL-6.Pomiferin diminished histopathologic evidence of hepatic toxicity and significantly lower expressions of caspase 3 and 8-OHdG were observed in liver cells.Pomiferin seems to counteract the deleterious effects of NiCl2 on hepatic tissue through different cellular and signaling mechanisms and thus can be used as a therapeutic practice against metal toxicity.


Assuntos
Apoptose , Doença Hepática Induzida por Substâncias e Drogas , Fígado , Níquel , Estresse Oxidativo , Ratos Sprague-Dawley , Transdução de Sinais , Animais , Níquel/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Transdução de Sinais/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo , Masculino , Apoptose/efeitos dos fármacos , Benzopiranos/farmacologia , Antioxidantes/farmacologia , Ratos , Dano ao DNA/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA