Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.142
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Renal Physiol ; 326(3): F338-F351, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38095023

RESUMO

A major complication of heat-related illness is the development of acute kidney injury (AKI) and damage to kidney tubular cells. Because kidney tubular cells use fatty acids as a major energy source, impaired fatty acid oxidation (FAO) may be associated with kidney injury due to heat stress. Carnitine is essential in the transportation of fatty acid into mitochondria for FAO. To date, there has been little attention given to the role of carnitine in heat-related illness and AKI. To evaluate the relationship between carnitine inadequacy and heat-related illness severity or AKI, we examined serum carnitine levels in patients with heat-related illness. We also used heat-stressed mice to investigate the effect of l-carnitine pretreatment on various kidney functions such as mitochondrial activity, proinflammatory changes in kidney macrophages, and histological damage. We observed an elevation in serum acylcarnitine levels, indicating carnitine insufficiency in patients with severe heat-related illness and/or AKI. l-Carnitine pretreatment ameliorated ATP production in murine tubular cell mitochondria and prevented a change in the kidney macrophage population dynamics observed in AKI: a decrease in tissue-resident macrophages, influx of bone marrow-derived macrophages, and change toward proinflammatory M1 polarization. In conclusion, carnitine insufficiency may be closely associated with severe heat-related illness and related AKI. Enhancement of the FAO pathway by l-carnitine pretreatment may prevent heat stress-induced AKI by restoring mitochondrial function.NEW & NOTEWORTHY Enhancing fatty acid oxidation (FAO) after acute kidney injury (AKI) improves renal outcomes. This report shows that carnitine insufficiency, which could inhibit FAO, correlates to severe heat-related illness and AKI in a clinical study. We also demonstrate that administering l-carnitine to mice improves mitochondrial respiratory function and prevents deleterious changes in renal macrophage, resulting in improved renal outcomes of heat-induced AKI. l-Carnitine may be an effective preventive treatment for severe heat-related illness and related AKI.


Assuntos
Injúria Renal Aguda , Humanos , Camundongos , Animais , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/prevenção & controle , Rim/metabolismo , Carnitina/farmacologia , Carnitina/metabolismo , Carnitina/uso terapêutico , Mitocôndrias/metabolismo , Resposta ao Choque Térmico , Ácidos Graxos/metabolismo
2.
J Nanobiotechnology ; 22(1): 130, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532399

RESUMO

Traditional eye drops are administered via topical instillation. However, frequent dosing is needed due to their relatively rapid precorneal removal and low ocular bioavailability. To address these issues, stearoyl L-carnitine-modified nanoemulsions (SC-NEs) were fabricated. The physicochemical properties of SC-NEs in terms of size, morphology, zeta potential, encapsulation efficiency, and in vitro drug release behavior were characterized. The cellular uptake and mechanisms of SC-NEs were comprehensively studied in human corneal epithelial cells and the stearoyl L-carnitine ratio in SC-NEs was optimized. The optimized SC-NEs could target the novel organic cation/carnitine transporter 2 (OCTN2) and amino acid transporter B (0 +) (ATB0,+) on the corneal epithelium, which led to superior corneal permeation, ocular surface retention ability, ocular bioavailability. Furthermore, SC-NEs showed excellent in vivo anti-inflammatory efficacy in a rabbit model of endotoxin-induced uveitis. The ocular safety test indicated that the SC-NEs were biocompatible. In general, the current study demonstrated that OCTN2 and ATB0,+-targeted nanoemulsions were promising ophthalmologic drug delivery systems that can improve ocular drug bioavailability and boost the therapeutic effects of drugs for eye diseases.


Assuntos
Sistemas de Liberação de Medicamentos , Células Epiteliais , Animais , Humanos , Coelhos , Membro 5 da Família 22 de Carreadores de Soluto/metabolismo , Transporte Biológico , Células Epiteliais/metabolismo , Carnitina/metabolismo , Carnitina/farmacologia
3.
Cryobiology ; 115: 104884, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38460835

RESUMO

l-carnitine (LC) transports fatty acids to the mitochondria for energy production, reducing lipid availability for peroxidation through ß-oxidation. This research examines the effect of LC supplementation to two skimmed milk-based extenders on the cryosurvival of chilled (5°C) and frozen-thawed Peruvian Paso horse spermatozoa .An initial experiment determined the optimal LC concentration (0, 1, 5, 10, 25, and 50 mM) when added to INRA-96® and UHT (skimmed milk + 6% egg yolk) extenders, using nine ejaculates from three stallions chilled for up to 96 h. Subsequently, the effect of 25 mM LC supplementation (the optimal concentration) on chilling (INRA-96) and freezing (INRA-Freeze®) extenders was evaluated using eight pooled samples from sixteen ejaculates (2 ejaculates/pool) from four stallions. Results indicated that all LC concentrations produced significantly higher values (P<0.05) for kinematic variables (total [TM] and progressive motilities, curvilinear [VCL] and straight-line [VSL] velocity, and beat-cross frequency [BCF]), and the integrity of plasma/acrosome membranes (IPIA) compared to non-supplemented chilled sperm samples for up to 96 h with both extenders. Moreover, the use of 25 mM LC was more efficient (P<0.05) in preserving the post-chilled values of velocity, BCF, and IPIA for the long term than lower LC concentrations (1-10 mM). Post-thaw values of total motility, the amplitude of lateral head displacement (ALH), and IPIA were significantly improved (P<0.05) when INRA-Freeze extender was supplemented with 25 mM LC. In conclusion, supplementation of l-carnitine to skimmed milk-based extenders enhanced kinematic variables and protected the membrane integrity in chilled and frozen-thawed Peruvian Paso horse spermatozoa.


Assuntos
Carnitina , Membrana Celular , Criopreservação , Crioprotetores , Preservação do Sêmen , Motilidade dos Espermatozoides , Espermatozoides , Animais , Masculino , Cavalos , Preservação do Sêmen/métodos , Preservação do Sêmen/veterinária , Criopreservação/métodos , Criopreservação/veterinária , Espermatozoides/efeitos dos fármacos , Carnitina/farmacologia , Crioprotetores/farmacologia , Motilidade dos Espermatozoides/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Congelamento , Fenômenos Biomecânicos/efeitos dos fármacos
4.
Skin Res Technol ; 30(6): e13788, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38881052

RESUMO

PURPOSE: This study aimed to develop a novel exfoliating material with high efficacy and low irritation by synthesizing the Mandelic acid_Carnitine ion pairing complex (M_C complex) and evaluating its exfoliating properties. Additionally, the study assessed the skin improvement effects of the M_C complex through clinical evaluations. METHODS: The M_C complex was synthesized in a 1:1 molar ratio of Mandelic acid and Carnitine. Structural characterization was performed using dynamic light scattering and Fourier-transform infrared spectroscopy. Exfoliating efficacy was evaluated on porcine skin, and clinical assessments were conducted on human subjects to measure various skin improvement parameters. RESULTS: The formation of the M_C complex was confirmed through particle size analysis, zeta-potential measurements, and FT-IR spectroscopy. The M_C complex demonstrated superior exfoliating efficacy compared to Mandelic acid alone, especially at pH 4.5. Clinical evaluations showed significant improvements in blackheads, whiteheads, pore volume, depth, density, count, and affected area, as well as skin texture. No adverse reactions were observed. CONCLUSION: The M_C complex exhibits high exfoliating efficacy and minimal irritation, making it a promising cosmetic ingredient for improving skin health. These findings support its potential as a low-irritation exfoliating material under mildly acidic conditions, contributing to overall skin health enhancement.


Assuntos
Carnitina , Cosméticos , Ácidos Mandélicos , Ácidos Mandélicos/química , Ácidos Mandélicos/farmacologia , Humanos , Carnitina/farmacologia , Carnitina/química , Animais , Suínos , Cosméticos/farmacologia , Cosméticos/química , Feminino , Adulto , Pele/efeitos dos fármacos , Pele/química , Masculino , Pessoa de Meia-Idade , Espectroscopia de Infravermelho com Transformada de Fourier
5.
Reprod Domest Anim ; 59(1): e14504, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37942917

RESUMO

This study evaluated the effects of melatonin (MLT) and L-carnitine supplementation on sperm quality and antioxidant capacity during chilled and cryopreservation. Twenty-four ejaculates were collected from six Damascus bucks, 4 ejaculates each, from mid-September to mid-October 2022. The pooled semen from each collecting session was divided into 5 equal aliquots after being diluted (1:10) with Tris-citric acid egg yolk extender. The first aliquot served as a control (treatment-free). MLT was added to the second and third aliquots at low and high doses (LD: 4 and HD: 8 µL/mL) (v/v), respectively, while L-carnitine (LC) was added to the fourth and fifth aliquots at the same aforementioned doses. The aliquots were stored at 4°C for 48 h to assess sperm physical and morphological characteristics, alongside lipids peroxidase (LP) production and glutathione peroxidase (GPX) activity. The optimum doses of MLT and LC that showed potential for maintaining sperm characteristics throughout the chilled storage period were further investigated for protecting the spermatozoa after exposure to cryopreservation stress compared to the control. The results showed higher sperm motility (%) in the MLT-HD group, higher (p ≤ .05) sperm viability (%) in the MLT-LD, and both aliquots of LC at T24 hours of chilled preservation. Normal sperm (%) was higher (p ≤ .05) in both LC-LD and MLT-LD groups than other groups, while sperm acrosome integrity (%) was higher (p ≤ .05) in the LC-LD group. Morphological abnormalities (%) were improved (p ≤ .05) in all treated aliquots compared with control. The mean value of GPX activity was higher (p ≤ .05) in both MLT groups, while the concentration of LP increased (p ≤ .05) in the LC-HD or control groups. Furthermore, supplementing buck sperm medium with 4 µL/mL of MLT or LC improved (p < .05) the sperm characteristics and decreased (p < .05) DNA fragmentation index after thawing.


Assuntos
Melatonina , Preservação do Sêmen , Masculino , Animais , Sêmen , Melatonina/farmacologia , Carnitina/farmacologia , Motilidade dos Espermatozoides , Crioprotetores/farmacologia , Preservação do Sêmen/veterinária , Preservação do Sêmen/métodos , Espermatozoides , Criopreservação/veterinária , Criopreservação/métodos , Antioxidantes/farmacologia
6.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38612401

RESUMO

Miconazole is an antimycotic drug showing anti-cancer effects in several cancers. However, little is known on its effects in melanoma. A375 and SK-MEL-28 human melanoma cell lines were exposed to miconazole and clotrimazole (up to 100 mM). Proliferation, viability with MTT assay and vascular mimicry were assayed at 24 h treatment. Molecular effects were measured at 6 h, namely, ATP-, ROS-release and mitochondria-related cytofluorescence. A metabolomic profile was also investigated at 6 h treatment. Carnitine was one of the most affected metabolites; therefore, the expression of 29 genes involved in carnitine metabolism was investigated in the public platform GEPIA2 on 461 melanoma patients and 558 controls. After 24 h treatments, miconazole and clotrimazole strongly and significantly inhibited proliferation in the presence of 10% serum on either melanoma cell lines; they also strongly reduced viability and vascular mimicry. After 6 h treatment, ATP reduction and ROS increase were observed, as well as a significant reduction in mitochondria-related fluorescence. Further, in A375, miconazole strongly and significantly altered expression of several metabolites including carnitines, phosphatidyl-cholines, all amino acids and several other small molecules, mostly metabolized in mitochondria. The expression of 12 genes involved in carnitine metabolism was found significantly modified in melanoma patients, 6 showing a significant impact on patients' survival. Finally, miconazole antiproliferation activity on A375 was found completely abrogated in the presence of carnitine, supporting a specific role of carnitine in melanoma protection toward miconazole effect, and was significantly reversed in the presence of caspases inhibitors such as ZVAD-FMK and Ac-DEVD-CHO, and a clear pro-apoptotic effect was observed in miconazole-treated cells, by FACS analysis of Annexin V-FITC stained cells. Miconazole strongly affects proliferation and other biological features in two human melanoma cell lines, as well as mitochondria-related functions such as ATP- and ROS-release, and the expression of several metabolites is largely dependent on mitochondria function. Miconazole, likely acting via carnitine and mitochondria-dependent apoptosis, is therefore suggested as a candidate for further investigations in melanoma treatments.


Assuntos
Melanoma , Humanos , Melanoma/tratamento farmacológico , Miconazol/farmacologia , Clotrimazol , Espécies Reativas de Oxigênio , Mitocôndrias , Carnitina/farmacologia , Trifosfato de Adenosina
7.
Inflammopharmacology ; 32(1): 715-731, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37994991

RESUMO

Osteoarthritis (OA) is a degenerative joint disease, whereas the underlying molecular trails involved in its pathogenesis are not fully elucidated. Hence, the current study aimed to investigate the role of miRNA-373/P2X7/NLRP3/NF-κB trajectory in its pathogenesis as well as the possible anti-inflammatory effects of probenecid and l-carnitine in ameliorating osteoarthritis via modulating this pathway. In the current study, male Sprague Dawley rats were used and monoiodoacetate (MIA)-induced knee osteoarthritis model was adopted. Probenecid and/or L-carnitine treatments for 14 days succeeded in reducing OA knee size and reestablishing motor coordination and joint mobility assessed by rotarod testing. Moreover, different treatments suppressed the elevated serum levels of IL-1ß, IL-18, IL-6, and TNF-α via tackling the miRNA-373/P2X7/NLRP3/NF-κB, witnessed as reductions in protein expressions of P2X7, NLRP3, cleaved caspase-1 and NF-κB. These were accompanied by increases in procaspase-1 and IκB protein expression and in miRNA-373 gene expression OA knee to various extents. In addition, different regimens reversed the abnormalities observed in the H and E as well as Safranin O-Fast green OA knees stained sections. Probenecid or l-carnitine solely showed comparable results on the aforementioned parameters, whereas the combination therapy had the most prominent effect on ameliorating the aforementioned parameters. In conclusion, l-carnitine augmented the probenecid's anti-inflammatory effect to attenuate MIA-induced osteoarthritis in rats by provoking the miRNA-373 level and inhibiting the P2X7/NLRP3/NF-κB milieu, leading to the suppression of serum inflammatory cytokines: IL-1ß, IL-18, IL-6, and TNF-α. These findings suggest the possibility of using probenecid and l-carnitine as a useful therapeutic option for treatment of osteoarthritis.


Assuntos
Carnitina , MicroRNAs , Osteoartrite do Joelho , Animais , Masculino , Ratos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Interleucina-18 , Interleucina-6 , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Osteoartrite do Joelho/tratamento farmacológico , Probenecid/farmacologia , Probenecid/uso terapêutico , Ratos Sprague-Dawley , Transdução de Sinais , Fator de Necrose Tumoral alfa/farmacologia , Carnitina/farmacologia , Carnitina/uso terapêutico
8.
J Anim Physiol Anim Nutr (Berl) ; 108(2): 300-309, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37867377

RESUMO

Current study hypothesized that dietary l-carnitine (LC) inclusion during the mating period ameliorates both metabolic status and reproductive performance of ewes. Seventy Baluchi ewes (52 ± 4.2 kg of bodyweight and 18 ± 6 months old of age) were enrolled in this study. Animals were randomly allocated into two dietary treatments, control (only basal diet) or basal diet plus supplementation with a rumen-protected LC (Carneon 20 Rumin-pro; 20% LC; Kaesler Nutrition GmbH) at the rate of 10 g/head/day from 21 days before until 35 days after introducing rams to the ewes (MP). Feed intake was monitored by subtracting the ort from feed offered. Blood sample collection was conducted on Days -10, +10 and +20 relative to MP. Pregnancy was confirmed on Day 30 post-MP. Feed intake of the ewes in the LC group was higher than the control (p < 0.05). LC supplementation increased the cholesterol concentration in the ewes (p < 0.05). Blood urea concentration of animals in the LC group was significantly lower than the control (p < 0.05). The mRNA expression of toll-like receptor 4 was evidently lower in animals supplemented with LC than the control (p < 0.05). Both lambing and fecundity rates in the LC group tended to be higher compared with the control. LC supplementation showed potential to alter certain metabolites in the ewes. A tendency for higher lambing rate may partly be driven by dams efficient energy partitioning to support foetal growth and maintaining pregnancy.


Assuntos
Carnitina , Rúmen , Gravidez , Ovinos , Animais , Feminino , Masculino , Carnitina/farmacologia , Reprodução , Suplementos Nutricionais , Dieta/veterinária , Ração Animal/análise
9.
Fish Physiol Biochem ; 50(1): 77-96, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36604356

RESUMO

The widely available crop oil is an effective alternative to the increasingly scarce marine fish oil. However, simple alternative strategies have led to declining growth and the edible value of farmed fish. It is worthwhile to explore the effects of micro supplements in diets to improve the tolerance of fish to different dietary lipid sources, which finally optimizes the feeding strategies. This study aimed to investigate the regulation of L-carnitine and dietary oil conditions on nutrient composition, lipid metabolism, and glucose regulation of Rhynchocypris lagowskii. Four diets were prepared according to fish oil, fish oil supplemented with L-carnitine, corn oil, and corn oil supplemented with L-carnitine, and FO, LCFO, CO, and LCCO were labeled, respectively. R. lagowskii was fed experimental diets for 8 weeks, and the glucose tolerance test was performed. The CO diet significantly resulted in higher crude lipid content in muscle but a lower level of serum lipid parameters of R. lagowskii than the FO diet. However, dietary L-carnitine supplementation significantly reduced the crude lipid content in the hepatopancreas and muscle of the fish fed with the CO diet yet increased the serum lipid parameters. Additionally, the crude lipid content of muscle was reduced in the fish fed with an FO diet supplemented with L-carnitine. Compared with the FO diet, the CO diet significantly reduced the ratio of n3/n6 polyunsaturated fatty acid in the hepatopancreas and muscle of R.lagowskii. Dietary L-carnitine supplementation significantly reduced the contents of total saturated fatty acids and total monounsaturated fatty acids in hepatopancreas under both dietary lipid sources. The CO diet significantly up-regulated the expression of genes related to lipid uptake and adipogenesis in hepatopancreas, including lipoprotein lipase (lpl), acetyl-coenzyme A carboxylase alpha (accα), and sterol regulatory element binding protein-1 (srebp1), compared with the FO diet. While dietary L-carnitine supplementation significantly down-regulated the expressions of lpl, accα, srebp1, and fatty acid synthase in hepatopancreas and muscle of fish under both dietary lipid sources, along with up-regulated expression of carnitine palmitoyltransferase 1 in hepatopancreas. Moreover, the fish fed with a CO diet significantly increased the expression of glucose uptake and clearance and significantly down-regulated the expressions of glucose regulation-related genes, including glucose transporter 1, glycogen synthase 1, and phosphofructokinase in hepatopancreas and muscle, resulting in slower glucose uptake and clearance than fish fed with FO diet. Nevertheless, dietary L-carnitine supplementation up-regulated the expression of gluconeogenesis-related genes, including glucose-6-phosphatase and phosphoenolpyruvate carboxykinase in the hepatopancreas of R. lagowskii under both dietary lipid sources. In conclusion, a higher dietary n6 PUFA resulted in lipid deposition, decreased serum lipid parameters, and limited serum glucose utilization of R. lagowskii. While the regulatory effect of L-carnitine on lipid metabolism and glucose utilization of R. lagowskii varies with dietary lipid sources and tissues.


Assuntos
Ácidos Graxos Ômega-3 , Metabolismo dos Lipídeos , Animais , Óleo de Milho , Carnitina/farmacologia , Glucose , Gorduras na Dieta , Dieta/veterinária , Óleos de Peixe , Suplementos Nutricionais
10.
Fish Physiol Biochem ; 50(3): 1141-1155, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38401031

RESUMO

Autophagy is a cellular process that involves the fusion of autophagosomes and lysosomes to degrade damaged proteins or organelles. Triglycerides are hydrolyzed by autophagy, releasing fatty acids for energy through mitochondrial fatty acid oxidation (FAO). Inhibited mitochondrial FAO induces autophagy, establishing a crosstalk between lipid catabolism and autophagy. Peroxisome proliferator-activated receptor α (PPARα), a transcription factor, stimulates lipid catabolism genes, including fatty acid transport and mitochondrial FAO, while also inducing autophagy through transcriptional regulation of transcription factor EB (TFEB). Therefore, the study explores whether PPARα regulates autophagy through TFEB transcriptional control or mitochondrial FAO. In aquaculture, addressing liver lipid accumulation in fish is crucial. Investigating the link between lipid catabolism and autophagy is significant for devising lipid-lowering strategies and maintaining fish health. The present study investigated the impact of dietary fenofibrate and L-carnitine on autophagy by activating Pparα and enhancing FAO in Nile tilapia (Oreochromis niloticus), respectively. The dietary fenofibrate and L-carnitine reduced liver lipid content and enhanced ATP production, particularly fenofibrate. FAO enhancement by L-carnitine showed no changes in autophagic protein levels and autophagic flux. Moreover, fenofibrate-activated Pparα promoted the expression and nuclear translocation of Tfeb, upregulating autophagic initiation and lysosomal biogenesis genes. Pparα activation exhibited an increasing trend of LC3II protein at the basal autophagy and cumulative p62 protein trends after autophagy inhibition in zebrafish liver cells. These data show that Pparα activation-induced autophagic flux should be independent of lipid catabolism.


Assuntos
Autofagia , Fenofibrato , Metabolismo dos Lipídeos , PPAR alfa , Animais , PPAR alfa/metabolismo , PPAR alfa/genética , Autofagia/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fenofibrato/farmacologia , Carnitina/farmacologia , Fígado/metabolismo , Fígado/efeitos dos fármacos , Ciclídeos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Ácidos Graxos/metabolismo
11.
J Hepatol ; 78(3): 627-642, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36462680

RESUMO

BACKGROUND & AIMS: Alterations of multiple metabolites characterize distinct features of metabolic reprograming in hepatocellular carcinoma (HCC). However, the role of most metabolites, including propionyl-CoA (Pro-CoA), in metabolic reprogramming and hepatocarcinogenesis remains elusive. In this study, we aimed to dissect how Pro-CoA metabolism affects these processes. METHODS: TCGA data and HCC samples were used to analyze ALDH6A1-mediated Pro-CoA metabolism and its correlation with HCC. Multiple metabolites were assayed by targeted mass spectrometry. The role of ALDH6A1-generated Pro-CoA in HCC was evaluated in HCC cell lines as well as xenograft nude mouse models and primary liver cancer mouse models. Non-targeted metabolomic and targeted energy metabolomic analyses, as well as multiple biochemical assays, were performed. RESULTS: Decreases in Pro-CoA and its derivative propionyl-L-carnitine due to ALDH6A1 downregulation were tightly associated with HCC. Functionally, ALDH6A1-mediated Pro-CoA metabolism suppressed HCC proliferation in vitro and impaired hepatocarcinogenesis in mice. The aldehyde dehydrogenase activity was indispensable for this function of ALDH6A1, while Pro-CoA carboxylases antagonized ALDH6A1 function by eliminating Pro-CoA. Mechanistically, ALDH6A1 caused a signature enrichment of central carbon metabolism in cancer and impaired energy metabolism: ALDH6A1-generated Pro-CoA suppressed citrate synthase activity, which subsequently reduced tricarboxylic acid cycle flux, impaired mitochondrial respiration and membrane potential, and decreased ATP production. Moreover, Pro-CoA metabolism generated 2-methylcitric acid, which mimicked the inhibitory effect of Pro-CoA on citrate synthase and dampened mitochondrial respiration and HCC proliferation. CONCLUSIONS: The decline of ALDH6A1-mediated Pro-CoA metabolism contributes to metabolic remodeling and facilitates hepatocarcinogenesis. Pro-CoA, propionyl-L-carnitine and 2-methylcitric acid may serve as novel metabolic biomarkers for the diagnosis and treatment of HCC. Pro-CoA metabolism may provide potential targets for development of novel strategies against HCC. IMPACT AND IMPLICATIONS: Our study presents new insights on the role of propionyl-CoA metabolism in metabolic reprogramming and hepatocarcinogenesis. This work has uncovered potential diagnostic and predictive biomarkers, which could be used by physicians to improve clinical practice and may also serve as targets for the development of therapeutic strategies against HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Camundongos , Animais , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Citrato (si)-Sintase , Carnitina/metabolismo , Carnitina/farmacologia
12.
Histochem Cell Biol ; 160(4): 341-347, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37329457

RESUMO

L-Carnitine (ß-hydroxy-γ-trimethylaminobutyric acid, LC) is a crucial molecule for the mitochondrial oxidation of fatty acids. It facilitates the transport of long-chain fatty acids into the mitochondrial matrix. The reduction in LC levels during the aging process has been linked to numerous cardiovascular disorders, including contractility dysfunction, and disrupted intracellular Ca2+ homeostasis. The aim of this study was to examine the effects of long-term (7 months) LC administration on cardiomyocyte contraction and intracellular Ca2+ transients ([Ca2+]i) in aging rats. Male albino Wistar rats were randomly assigned to either the control or LC-treated groups. LC (50 mg/kg body weight/day) was dissolved in distilled water and orally administered for a period of 7 months. The control group received distilled water alone. Subsequently, ventricular single cardiomyocytes were isolated, and the contractility and Ca2+ transients were recorded in aging (18 months) rats. This study demonstrates, for the first time, a novel inotropic effect of long-term LC treatment on rat ventricular cardiomyocyte contraction. LC increased cardiomyocyte cell shortening and resting sarcomere length. Furthermore, LC supplementation led to a reduction in resting [Ca2+]i level and an increase in the amplitude of [Ca2+]i transients, indicative of enhanced contraction. Consistent with these results, decay time of Ca2+ transients also decreased significantly in the LC-treated group. The long-term administration of LC may help restore the Ca2+ homeostasis altered during aging and could be used as a cardioprotective medication in cases where myocyte contractility is diminished.


Assuntos
Carnitina , Miócitos Cardíacos , Ratos , Masculino , Animais , Miócitos Cardíacos/metabolismo , Carnitina/farmacologia , Carnitina/metabolismo , Sinalização do Cálcio/fisiologia , Ratos Wistar , Envelhecimento , Homeostase , Água/metabolismo , Água/farmacologia , Cálcio/metabolismo
13.
J Transl Med ; 21(1): 487, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474946

RESUMO

BACKGROUND: Lipid metabolism plays an important role in liver regeneration, but its regulation still requires further research. In this study, lipid metabolites involved in mouse liver regeneration at different time points were sequenced and analyzed to study their influence on liver regeneration and its mechanism. METHODS: Our experiment was divided into two parts. The first part examined lipid metabolites during liver regeneration in mice. In this part, lipid metabolites were sequentially analyzed in the livers of 70% mouse hepatectomy models at 0, 1, 3and 7 days after operation to find the changes of lipid metabolites in the process of liver regeneration. We screened L-carnitine as our research object through metabolite detection. Therefore, in the second part, we analyzed the effects of carnitine on mouse liver regeneration and lipid metabolism during liver regeneration. We divided the mouse into four groups: control group (70% hepatectomy group); L-carnitine group (before operation) (L-carnitine were given before operation); L-carnitine group (after operation)(L-carnitine were given after operation) and L-carnitine + perhexiline maleate (before operation) group. Weighing was performed at 24 h, 36 and 48 h in each group, and oil red staining, HE staining and MPO staining were performed. Tunnel fluorescence staining, Ki67 staining and serological examination. RESULTS: Sequencing analysis of lipid metabolites in 70% of mouse livers at different time points after hepatectomy showed significant changes in carnitine metabolites. The results showed that, compared with the control group the mouse in L-carnitine group (before operation) at 3 time points, the number of fat drops in oil red staining was decreased, the number of Ki67 positive cells was increased, the number of MPO positive cells was decreased, the number of Tunnel fluorescence positive cells was decreased, and the liver weight was increased. Serum enzymes were decreased. Compared with control group, L-carnitine group (after operation) showed similar trends in all indexes at 36 and 48 h as L-carnitine group (before operation). L-carnitine + perhexiline maleate (before operation) group compared with control group, the number of fat drops increased, the number of Ki67 positive cells decreased, and the number of MPO positive cells increased at 3 time points. The number of Tunnel fluorescent positive cells increased and serum enzyme increased. However, both liver weights increased. CONCLUSION: L-carnitine can promote liver cell regeneration by promoting lipid metabolism and reduce aseptic inflammation caused by excessive lipid accumulation.


Assuntos
Hepatectomia , Regeneração Hepática , Camundongos , Animais , Regeneração Hepática/fisiologia , Metabolismo dos Lipídeos , Carnitina/farmacologia , Carnitina/metabolismo , Antígeno Ki-67/metabolismo , Fígado/metabolismo , Lipídeos
14.
FASEB J ; 36(8): e22461, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35838582

RESUMO

Brown adipose tissue (BAT) is an important component of energy expenditure and necessary to maintain body temperature for newborn mammals. In the previous study, we found that L-carnitine was enriched in BAT and promoted BAT adipogenesis and thermogenesis in goat brown adipocytes. However, whether dietary L-carnitine regulates BAT heat production and energy expenditure in lambs remains unclear. In this study, maternal L-carnitine supplementation elevated the rectal temperature, as well as the expression of UCP1 and mitochondrial DNA content to promote BAT thermogenesis in newborn goats. Moreover, maternal L-carnitine supplementation increased the levels of triglycerides (TG), non-esterified fatty acids (NEFA), and lactate in plasma, as well as the content of lipid droplet and glycogen in BAT of newborn goats. Lipidomic analysis showed that maternal L-carnitine supplementation remodeled the lipid composition of BAT in newborn goats. L-carnitine significantly increased the levels of TG and diglyceride (DG) and decreased the levels of glycerophospholipids and sphingolipids in BAT. Further studies showed that L-carnitine promoted TG and glycogen deposition in brown adipocytes through AMPKα. Our results indicate that maternal L-carnitine supplementation promotes BAT development and thermogenesis in newborn goats and provides new evidence for newborn goats to maintain body temperature in response to cold exposure.


Assuntos
Tecido Adiposo Marrom , Carnitina , Tecido Adiposo Marrom/metabolismo , Animais , Animais Recém-Nascidos , Carnitina/metabolismo , Carnitina/farmacologia , Temperatura Baixa , Suplementos Nutricionais , Metabolismo Energético , Glicogênio/metabolismo , Cabras/metabolismo , Ovinos , Termogênese/fisiologia , Triglicerídeos/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
15.
Amino Acids ; 55(5): 619-638, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36894749

RESUMO

Worldwide, estimated counts of about 7.9 million children are born with serious birth defects. In addition to genetic factors, prenatal exposure to drugs and environmental toxicants represents a major contributing factor to congenital malformations. In earlier investigation, we explored cardiac malformation caused by valproic acid (VPA) during early developing stages of zebrafish. Since heart depends on mitochondrial fatty acid oxidative metabolism for energy demands in which carnitine shuttle has a major role, the present study aimed to investigate the effect of acetyl-L-carnitine (AC) against VPA-induced cardiac malformation in developing zebrafish. Initially, AC was subjected to toxicological evaluation, and two micromolar concentrations (25 µM and 50 µM) were selected for evaluation. A sub-lethal concentration of VPA (50 µM) was selected to induce cardiac malformation. The embryos were grouped and the drug exposures were made at 2.5 h post-fertilization (hpf). The cardiac development and functioning was monitored. A progressive decline in cardiac functioning was noted in group exposed to VPA 50 µM. At 96 hpf and 120 hpf, the morphology of heart was severely affected with the chambers which became elongated and string-like accompanied by histological changes. Acridine orange staining showed accumulation of apoptotic cells. Group exposed to VPA 50 µM with AC 50 µM showed a significant reduction in pericardial sac edema with morphological, functional and histological recovery in developing heart. Moreover, reduced number of apoptotic cells was noted. The improvement with AC might be due to restoration of carnitine homeostasis for cardiac energy metabolism in developing heart.


Assuntos
Ácido Valproico , Peixe-Zebra , Animais , Peixe-Zebra/genética , Ácido Valproico/toxicidade , Acetilcarnitina/farmacologia , Coração , Carnitina/farmacologia
16.
Neurochem Res ; 48(11): 3316-3326, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37495838

RESUMO

Excessive consumption of nutrients, as well as obesity, leads to an inflammatory process, especially in adipose tissue. This inflammation reaches the systemic level and, subsequently, the central nervous system (CNS), which can lead to oxidative stress and mitochondrial dysfunction, resulting in brain damage. Thus, adequate treatment for obesity is necessary, including lifestyle changes (diet adequation and physical activity) and pharmacotherapy. However, these drugs can adversely affect the individual's health. In this sense, searching for new therapeutic alternatives for reestablishing metabolic homeostasis is necessary. L-carnitine (LC) and acetyl-L-carnitine (LAC) have neuroprotective effects against oxidative stress and mitochondrial dysfunction in several conditions, including obesity. Therefore, this study aimed to conduct a narrative review of the literature on the effect of LC and LAC on brain damage caused by obesity, in particular, on mitochondrial dysfunction and oxidative stress. Overall, these findings highlight that LC and LAC may be a promising treatment for recovering REDOX status and mitochondrial dysfunction in the CNS in obesity. Future work should focus on better elucidating the molecular mechanisms behind this treatment.


Assuntos
Acetilcarnitina , Carnitina , Humanos , Acetilcarnitina/uso terapêutico , Acetilcarnitina/farmacologia , Carnitina/uso terapêutico , Carnitina/farmacologia , Sistema Nervoso Central , Estresse Oxidativo , Obesidade/tratamento farmacológico
17.
Reprod Biomed Online ; 46(6): 887-902, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37095039

RESUMO

RESEARCH QUESTION: Is the membrane lipid profile of mice blastocysts affected by ovarian stimulation, IVF and oocyte vitrification? Could supplementation of vitrification media with L-carnitine and fatty acids prevent membrane phospholipid changes in blastocysts from vitrified oocytes? DESIGN: Experimental study comparing the lipid profile of murine blastocysts produced from natural mating, superovulated cycles or after IVF submitted or not to vitrification. For in-vitro experiments, 562 oocytes from superovulated females were randomly divided into four groups: fresh oocytes fertilized in vitro and vitrified groups: Irvine Scientific (IRV); Tvitri-4 (T4) or T4 supplemented with L-carnitine and fatty acids (T4-LC/FA). Fresh or vitrified-warmed oocytes were inseminated and cultured for 96 h or 120 h. The lipid profile of nine of the best quality blastocysts from each experimental group was assessed by multiple reaction monitoring profiling method. Significantly different lipids or transitions between groups were found using univariate statistics (P < 0.05; fold change = 1.5) and multivariate statistical methods. RESULTS: A total of 125 lipids in blastocysts were profiled. Statistical analysis revealed several classes of phospholipids affected in the blastocysts by ovarian stimulation, IVF, oocyte vitrification, or all. L-carnitine and fatty acid supplements prevented, to a certain extent, changes in phospholipid and sphingolipid contents in the blastocysts. CONCLUSION: Ovarian stimulation alone, or in association with IVF, promoted changes in phospholipid profile and abundance of blastocysts. A short exposure time to the lipid-based solutions during oocyte vitrification was sufficient to induce changes in the lipid profile that were sustained until the blastocyst stage.


Assuntos
Lipídeos de Membrana , Vitrificação , Animais , Feminino , Camundongos , Blastocisto/fisiologia , Carnitina/farmacologia , Criopreservação/métodos , Ácidos Graxos , Fertilização in vitro , Oócitos , Indução da Ovulação , Fosfolipídeos/farmacologia
18.
J Thromb Thrombolysis ; 55(1): 60-66, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36380102

RESUMO

Platelet storage lesions may occur in Platelet concentrates (PCs) storage time, reducing PCs' quality. Mitochondrial damage causes mitochondrial DNA (mtDNA) to be released into the extracellular space. In this study, we evaluated the effect of L-carnitine (LC) as an antioxidant on free mtDNA DAMPs release in PCs during storage. Ten PCs prepared by the PRP method were studied. The copy numbers of free mtDNA, total reactive oxygen species (ROS), lactate dehydrogenase (LDH) enzyme activity, pH, and platelet counts were measured on days 0, 3, 5, and 7 of PCs storage in LC-treated and untreated platelets. LDH activity was significantly lower than the control group during 7 days of PCs storage (p = 0.041). Also, ROS production decreased in LC-treated PCs compared to the control group during storage (p = 0.026), and the difference mean of ROS between the two groups was significant on day 3, 5, and 7 (Pday3 = 0.02, Pday5 = 0.0001, Pday7 = 0.031). Moreover, LC decreased the copy numbers of free mtDNA during 7 days of storage (p = 0.021), and the difference mean of the copy numbers of free mtDNA in LC-treated PCs compared to the control group was significant on day 5 and 7 (Pday5 = 0.041، Pday7 = 0.022). It seems that LC can maintain the metabolism and antioxidant capacity of PCs and thus can reduce mitochondrial damage and mtDNA release; consequently, it can decrease DAMPs in PCs. Therefore, it may be possible to use this substance as a platelet additive solution in the future.


Assuntos
Antioxidantes , DNA Mitocondrial , Humanos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Carnitina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Plaquetas , Preservação de Sangue/métodos
19.
Cell Biochem Funct ; 41(4): 490-500, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37170672

RESUMO

Phenylketonuria (PKU) was the first genetic disease to have an effective therapy, which consists of phenylalanine intake restriction. However, there are patients who do not adhere to treatment and/or are not submitted to neonatal screening. PKU patients present L-carnitine (L-car) deficiency, compound that has demonstrated an antioxidant and anti-inflammatory role in metabolic diseases. This study evaluated the effect caused by exposure time to high Phe levels in PKU patients at early and late diagnosis, through pro- and anti-inflammatory cytokines, as well as the L-car effect in patients under treatment. It was observed that there was a decrease in phenylalanine levels in treated patients compared to patients at diagnosis, and an increase in L-car levels in the patients under treatment. Inverse correlation between Phe versus L-car and nitrate plus nitrite versus L-car in PKU patients was also showed. We found increased proinflammatory cytokines levels: interleukin (IL)-1ß, interferons (IFN)-gamma, IL-2, tumor necrosis factor (TNF)-alpha, IL-8 and IL-6 in the patients at late diagnosis compared to controls, and IL-8 in the patients at early diagnosis and treatment compared to controls. Increased IL-2, TNF-alpha, IL-6 levels in the patients at late diagnosis compared to early diagnosis were shown, and reduced IL-6 levels in the treated patients compared to patients at late diagnosis. Moreover, it verified a negative correlation between IFN-gamma and L-car in treated patients. Otherwise, it was observed that there were increased IL-4 levels in the patients at late diagnosis compared to early diagnosis, and reduction in treated patients compared to late diagnosed patients. In urine, there was an increase in 8-isoprostane levels in the patients at diagnosis compared to controls and a decrease in oxidized guanine species in the treated patients compared to the diagnosed patients. Our results demonstrate for the first time in literature that time exposure to high Phe concentrations generates a proinflammatory status, especially in PKU patients with late diagnosis. A pro-oxidant status was verified in not treated PKU patients. Our results demonstrate the importance of early diagnosis and prompt start of treatment, in addition to the importance of L-car supplementation, which can improve cellular defense against inflammation and oxidative damage in PKU patients.


Assuntos
Citocinas , Fenilcetonúrias , Recém-Nascido , Humanos , Fenilalanina , Diagnóstico Tardio , Interleucina-2 , Interleucina-6 , Interleucina-8 , Carnitina/farmacologia , Fenilcetonúrias/diagnóstico , Fenilcetonúrias/tratamento farmacológico , Fenilcetonúrias/urina , Fator de Necrose Tumoral alfa
20.
Anim Biotechnol ; 34(2): 413-423, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34154517

RESUMO

Early embryo development is driven first by the maternal RNAs and proteins accumulated during the oocyte's cytoplasmic maturation and then after the embryo genome activation. In mammalian cells, ATP generation occurs via oxidative pathways or by glycolysis, whereas in embryonic stem cells, the consumption of glucose, pyruvate, lipids, and amino acids results in ATP synthesis. Although the bovine embryo has energy reserves in glycogen and lipids, the glycogen concentration is deficient. Conversely, lipids represent the most abundant energy reservoir of bovine embryos, where lipid droplets-containing triacylglycerols are the main fatty acid stores. Oocytes of many mammalian species contain comparatively high amounts of lipids stored as droplets in the ooplasm. L-carnitine has been described as a cofactor that facilitates the mobilization of fatty acids present in the oocyte's cytoplasm into the mitochondria to facilitate ß-oxidation processes. However, the L-carnitine effects by addition to media in the in vitro produced embryos on the quality are highly disputed and contradictory by different researchers. This review's objective was to explore the effect that the addition of L-carnitine on culture media could have on the overall bovine embryo production in vitro, from the oocyte metabolism to the modulation of gene expression in the developing embryos.


Assuntos
Carnitina , Células-Tronco Embrionárias , Animais , Bovinos , Carnitina/farmacologia , Suplementos Nutricionais , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA