Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 403
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 623(7988): 757-764, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37968390

RESUMO

Extreme weather events perturb ecosystems and increasingly threaten biodiversity1. Ecologists emphasize the need to forecast and mitigate the impacts of these events, which requires knowledge of how risk is distributed among species and environments. However, the scale and unpredictability of extreme events complicate risk assessment1-4-especially for large animals (megafauna), which are ecologically important and disproportionately threatened but are wide-ranging and difficult to monitor5. Traits such as body size, dispersal ability and habitat affiliation are hypothesized to determine the vulnerability of animals to natural hazards1,6,7. Yet it has rarely been possible to test these hypotheses or, more generally, to link the short-term and long-term ecological effects of weather-related disturbance8,9. Here we show how large herbivores and carnivores in Mozambique responded to Intense Tropical Cyclone Idai, the deadliest storm on record in Africa, across scales ranging from individual decisions in the hours after landfall to changes in community composition nearly 2 years later. Animals responded behaviourally to rising floodwaters by moving upslope and shifting their diets. Body size and habitat association independently predicted population-level impacts: five of the smallest and most lowland-affiliated herbivore species declined by an average of 28% in the 20 months after landfall, while four of the largest and most upland-affiliated species increased by an average of 26%. We attribute the sensitivity of small-bodied species to their limited mobility and physiological constraints, which restricted their ability to avoid the flood and endure subsequent reductions in the quantity and quality of food. Our results identify general traits that govern animal responses to severe weather, which may help to inform wildlife conservation in a volatile climate.


Assuntos
Tamanho Corporal , Tempestades Ciclônicas , Mamíferos , Animais , Altitude , Biodiversidade , Carnivoridade , Conservação dos Recursos Naturais , Dieta/veterinária , Ecossistema , Clima Extremo , Inundações , Previsões , Herbivoria , Mamíferos/anatomia & histologia , Mamíferos/fisiologia , Moçambique
2.
Nature ; 603(7903): 852-857, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35322229

RESUMO

Secondary aquatic adaptations evolved independently more than 30 times from terrestrial vertebrate ancestors1,2. For decades, non-avian dinosaurs were believed to be an exception to this pattern. Only a few species have been hypothesized to be partly or predominantly aquatic3-11. However, these hypotheses remain controversial12,13, largely owing to the difficulty of identifying unambiguous anatomical adaptations for aquatic habits in extinct animals. Here we demonstrate that the relationship between bone density and aquatic ecologies across extant amniotes provides a reliable inference of aquatic habits in extinct species. We use this approach to evaluate the distribution of aquatic adaptations among non-avian dinosaurs. We find strong support for aquatic habits in spinosaurids, associated with a marked increase in bone density, which precedes the evolution of more conspicuous anatomical modifications, a pattern also observed in other aquatic reptiles and mammals14-16. Spinosaurids are revealed to be aquatic specialists with surprising ecological disparity, including subaqueous foraging behaviour in Spinosaurus and Baryonyx, and non-diving habits in Suchomimus. Adaptation to aquatic environments appeared in spinosaurids during the Early Cretaceous, following their divergence from other tetanuran theropods during the Early Jurassic17.


Assuntos
Dinossauros , Adaptação Fisiológica , Animais , Evolução Biológica , Carnivoridade , Dinossauros/anatomia & histologia , Fósseis , Mamíferos , Filogenia
3.
Nature ; 601(7892): 263-267, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34937938

RESUMO

Cancer is a ubiquitous disease of metazoans, predicted to disproportionately affect larger, long-lived organisms owing to their greater number of cell divisions, and thus increased probability of somatic mutations1,2. While elevated cancer risk with larger body size and/or longevity has been documented within species3-5, Peto's paradox indicates the apparent lack of such an association among taxa6. Yet, unequivocal empirical evidence for Peto's paradox is lacking, stemming from the difficulty of estimating cancer risk in non-model species. Here we build and analyse a database on cancer-related mortality using data on adult zoo mammals (110,148 individuals, 191 species) and map age-controlled cancer mortality to the mammalian tree of life. We demonstrate the universality and high frequency of oncogenic phenomena in mammals and reveal substantial differences in cancer mortality across major mammalian orders. We show that the phylogenetic distribution of cancer mortality is associated with diet, with carnivorous mammals (especially mammal-consuming ones) facing the highest cancer-related mortality. Moreover, we provide unequivocal evidence for the body size and longevity components of Peto's paradox by showing that cancer mortality risk is largely independent of both body mass and adult life expectancy across species. These results highlight the key role of life-history evolution in shaping cancer resistance and provide major advancements in the quest for natural anticancer defences.


Assuntos
Animais de Zoológico , Dieta , Mamíferos , Neoplasias , Envelhecimento , Animais , Animais de Zoológico/classificação , Tamanho Corporal , Peso Corporal , Carnivoridade , Dieta/veterinária , Longevidade , Mamíferos/classificação , Neoplasias/mortalidade , Neoplasias/patologia , Neoplasias/veterinária , Filogenia , Fatores de Risco , Especificidade da Espécie
4.
PLoS Biol ; 21(11): e3002400, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37988381

RESUMO

Nutritional deprivation triggers a switch from a saprotrophic to predatory lifestyle in soil-dwelling nematode-trapping fungi (NTF). In particular, the NTF Arthrobotrys oligospora secretes food and sex cues to lure nematodes to its mycelium and is triggered to develop specialized trapping devices. Captured nematodes are then invaded and digested by the fungus, thus serving as a food source. In this study, we examined the transcriptomic response of A. oligospora across the stages of sensing, trap development, and digestion upon exposure to the model nematode Caenorhabditis elegans. A. oligospora enacts a dynamic transcriptomic response, especially of protein secretion-related genes, in the presence of prey. Two-thirds of the predicted secretome of A. oligospora was up-regulated in the presence of C. elegans at all time points examined, and among these secreted proteins, 38.5% are predicted to be effector proteins. Furthermore, functional studies disrupting the t-SNARE protein Sso2 resulted in impaired ability to capture nematodes. Additionally, genes of the DUF3129 family, which are expanded in the genomes of several NTF, were highly up-regulated upon nematode exposure. We observed the accumulation of highly expressed DUF3129 proteins in trap cells, leading us to name members of this gene family as Trap Enriched Proteins (TEPs). Gene deletion of the most highly expressed TEP gene, TEP1, impairs the function of traps and prevents the fungus from capturing prey efficiently. In late stages of predation, we observed up-regulation of a variety of proteases, including metalloproteases. Following penetration of nematodes, these metalloproteases facilitate hyphal growth required for colonization of prey. These findings provide insights into the biology of the predatory lifestyle switch in a carnivorous fungus and provide frameworks for other fungal-nematode predator-prey systems.


Assuntos
Caenorhabditis elegans , Nematoides , Animais , Caenorhabditis elegans/genética , Carnivoridade , Perfilação da Expressão Gênica , Metaloproteases
5.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35074877

RESUMO

The appearance of Homo erectus shortly after 2.0 Ma is widely considered a turning point in human dietary evolution, with increased consumption of animal tissues driving the evolution of larger brain and body size and a reorganization of the gut. An increase in the size and number of zooarchaeological assemblages after the appearance of H. erectus is often offered as a central piece of archaeological evidence for increased carnivory in this species, but this characterization has yet to be subject to detailed scrutiny. Any widespread dietary shift leading to the acquisition of key traits in H. erectus should be persistent in the zooarchaeological record through time and can only be convincingly demonstrated by a broad-scale analysis that transcends individual sites or localities. Here, we present a quantitative synthesis of the zooarchaeological record of eastern Africa from 2.6 to 1.2 Ma. We show that several proxies for the prevalence of hominin carnivory are all strongly related to how well the fossil record has been sampled, which constrains the zooarchaeological visibility of hominin carnivory. When correcting for sampling effort, there is no sustained increase in the amount of evidence for hominin carnivory between 2.6 and 1.2 Ma. Our observations undercut evolutionary narratives linking anatomical and behavioral traits to increased meat consumption in H. erectus, suggesting that other factors are likely responsible for the appearance of its human-like traits.


Assuntos
Tamanho Corporal/fisiologia , Carnivoridade/fisiologia , Arqueologia/métodos , Evolução Biológica , Encéfalo/fisiologia , Dieta/métodos , Fósseis , Humanos
6.
Proc Biol Sci ; 291(2014): 20230921, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38196370

RESUMO

Large carnivores (order Carnivora) are among the world's most threatened mammals due to a confluence of ecological and social forces that have unfolded over centuries. Combining specimens from natural history collections with documents from archival records, we reconstructed the factors surrounding the extinction of the California grizzly bear (Ursus arctos californicus), a once-abundant brown bear subspecies last seen in 1924. Historical documents portrayed California grizzlies as massive hypercarnivores that endangered public safety. Yet, morphological measurements on skulls and teeth generate smaller body size estimates in alignment with extant North American grizzly populations (approx. 200 kg). Stable isotope analysis (δ13C, δ15N) of pelts and bones (n = 57) revealed that grizzlies derived less than 10% of their nutrition from terrestrial animal sources and were therefore largely herbivorous for millennia prior to the first European arrival in this region in 1542. Later colonial land uses, beginning in 1769 with the Mission era, led grizzlies to moderately increase animal protein consumption (up to 26% of diet), but grizzlies still consumed far less livestock than otherwise claimed by contemporary accounts. We show how human activities can provoke short-term behavioural shifts, such as heightened levels of carnivory, that in turn can lead to exaggerated predation narratives and incentivize persecution, triggering rapid loss of an otherwise widespread and ecologically flexible animal.


Assuntos
Ursidae , Animais , Humanos , Tamanho Corporal , California , Carnivoridade , Herbivoria
7.
J Exp Bot ; 75(1): 334-349, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37708289

RESUMO

The carnivorous plants in the order Caryophyllales co-opted jasmonate signalling from plant defence to botanical carnivory. However, carnivorous plants have at least 11 independent origins, and here we ask whether jasmonate signalling has been co-opted repeatedly in different evolutionary lineages. We experimentally wounded and fed the carnivorous plants Sarracenia purpurea (order Ericales), Cephalotus follicularis (order Oxalidales), Drosophyllum lusitanicum (order Caryophyllales), and measured electrical signals, phytohormone tissue level, and digestive enzymes activity. Coronatine was added exogenously to confirm the role of jasmonates in the induction of digestive process. Immunodetection of aspartic protease and proteomic analysis of digestive fluid was also performed. We found that prey capture induced accumulation of endogenous jasmonates only in D. lusitanicum, in accordance with increased enzyme activity after insect prey or coronatine application. In C. follicularis, the enzyme activity was constitutive while in S. purpurea was regulated by multiple factors. Several classes of digestive enzymes were identified in the digestive fluid of D. lusitanicum. Although carnivorous plants from different evolutionary lineages use the same digestive enzymes, the mechanism of their regulation differs. All investigated genera use jasmonates for their ancient role, defence, but jasmonate signalling has been co-opted for botanical carnivory only in some of them.


Assuntos
Planta Carnívora , Carnivoridade , Proteômica
8.
Oecologia ; 204(4): 805-813, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38564073

RESUMO

Mesocarnivores face interspecific competition and risk intraguild predation when sharing resources with apex carnivores. Within a landscape, carnivores across trophic levels may use the same communication hubs, which provide a mix of risks (injury/death) and rewards (gaining information) for subordinate species. We predicted that mesocarnivores would employ different strategies to avoid apex carnivores at shared communication hubs, depending on their trophic position. To test our prediction, we examined how different subordinate carnivore species in the Santa Cruz Mountains of California, USA, manage spatial overlap with pumas (Puma concolor), both at communication hubs and across a landscape-level camera trap array. We estimated species-specific occurrence, visitation rates, temporal overlap, and Avoidance-Attraction Ratios from camera traps and tested for differences between the two types of sites. We found that mesocarnivores generally avoided pumas at communication hubs, and this became more pronounced when pumas scent-marked during their most recent visit. Coyotes (Canis latrans), the pumas' closest subordinate competitor in our system, exhibited the strongest avoidance at communication hubs. Gray foxes (Urocyon cinereoargenteus) avoided pumas the least, which may suggest possible benefits from pumas suppressing coyotes. Overall, mesocarnivores exhibited various spatiotemporal avoidance strategies at communication hubs rather than outright avoidance, likely because they benefit from information gained while 'eavesdropping' on puma activity. Variability in avoidance strategies may be due to differential predation risks, as apex carnivores often interact more aggressively with their closest competitors. Combined, our results show how apex carnivores trigger complex species interactions across the entire carnivore guild and how trophic position determines behavioral responses and subsequent space use of subordinate mesocarnivores across the landscape.


Assuntos
Comportamento Predatório , Puma , Animais , Carnívoros , Raposas/fisiologia , Coiotes , California , Carnivoridade , Cadeia Alimentar
9.
BMC Plant Biol ; 23(1): 660, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38124058

RESUMO

BACKGROUND: Independent origins of carnivory in multiple angiosperm families are fabulous examples of convergent evolution using a diverse array of life forms and habitats. Previous studies have indicated that carnivorous plants have distinct evolutionary trajectories of plastid genome (plastome) compared to their non-carnivorous relatives, yet the extent and general characteristics remain elusive. RESULTS: We compared plastomes from 9 out of 13 carnivorous families and their non-carnivorous relatives to assess carnivory-associated evolutionary patterns. We identified inversions in all sampled Droseraceae species and four species of Utricularia, Pinguicula, Darlingtonia and Triphyophyllum. A few carnivores showed distinct shifts in inverted repeat boundaries and the overall repeat contents. Many ndh genes, along with some other genes, were independently lost in several carnivorous lineages. We detected significant substitution rate variations in most sampled carnivorous lineages. A significant overall substitution rate acceleration characterizes the two largest carnivorous lineages of Droseraceae and Lentibulariaceae. We also observe moderate substitution rates acceleration in many genes of Cephalotus follicularis, Roridula gorgonias, and Drosophyllum lusitanicum. However, only a few genes exhibit significant relaxed selection. CONCLUSION: Our results indicate that the carnivory of plants have different effects on plastome evolution across carnivorous lineages. The complex mechanism under carnivorous habitats may have resulted in distinctive plastome evolution with conserved plastome in the Brocchinia hechtioides to strongly reconfigured plastomes structures in Droseraceae. Organic carbon obtained from prey and the efficiency of utilizing prey-derived nutrients might constitute possible explanation.


Assuntos
Droseraceae , Genomas de Plastídeos , Lamiales , Magnoliopsida , Humanos , Magnoliopsida/genética , Carnivoridade , Lamiales/genética , Droseraceae/genética , Filogenia , Evolução Molecular
10.
Mol Genet Genomics ; 298(6): 1419-1434, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37690047

RESUMO

Digestion is driven by digestive enzymes and digestive enzyme gene copy number can provide insights on the genomic underpinnings of dietary specialization. The "Adaptive Modulation Hypothesis" (AMH) proposes that digestive enzyme activity, which increases with increased gene copy number, should correlate with substrate quantity in the diet. To test the AMH and reveal some of the genetics of herbivory vs carnivory, we sequenced, assembled, and annotated the genome of Anoplarchus purpurescens, a carnivorous prickleback fish in the family Stichaeidae, and compared the gene copy number for key digestive enzymes to that of Cebidichthys violaceus, a herbivorous fish from the same family. A highly contiguous genome assembly of high quality (N50 = 10.6 Mb) was produced for A. purpurescens, using combined long-read and short-read technology, with an estimated 33,842 protein-coding genes. The digestive enzymes that we examined include pancreatic α-amylase, carboxyl ester lipase, alanyl aminopeptidase, trypsin, and chymotrypsin. Anoplarchus purpurescens had fewer copies of pancreatic α-amylase (carbohydrate digestion) than C. violaceus (1 vs. 3 copies). Moreover, A. purpurescens had one fewer copy of carboxyl ester lipase (plant lipid digestion) than C. violaceus (4 vs. 5). We observed an expansion in copy number for several protein digestion genes in A. purpurescens compared to C. violaceus, including trypsin (5 vs. 3) and total aminopeptidases (6 vs. 5). Collectively, these genomic differences coincide with measured digestive enzyme activities (phenotypes) in the two species and they support the AMH. Moreover, this genomic resource is now available to better understand fish biology and dietary specialization.


Assuntos
Carnivoridade , Perciformes , Animais , Tripsina/metabolismo , Filogenia , alfa-Amilases Pancreáticas/metabolismo , Peixes , Dieta , Lipase/metabolismo , Ésteres/metabolismo
11.
New Phytol ; 239(3): 1140-1152, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37191044

RESUMO

Triphyophyllum peltatum, a rare tropical African liana, is unique in its facultative carnivory. The trigger for carnivory is yet unknown, mainly because the plant is difficult to propagate and cultivate. This study aimed at identifying the conditions that result in the formation of carnivorous leaves. In vitro shoots were subjected to abiotic stressors in general and deficiencies of the major nutrients nitrogen, potassium and phosphorus in particular, to trigger carnivorous leaves' development. Adventitious root formation was improved to allow verification of the trigger in glasshouse-grown plants. Among all the stressors tested, only under phosphorus deficiency, the formation of carnivorous leaves was observed. These glandular leaves fully resembled those found under natural growing conditions including the secretion of sticky liquid by mature capture organs. To generate plants for glasshouse experiments, a pulse of 55.4 µM α-naphthaleneacetic acid was essential to achieve 90% in vitro rooting. This plant material facilitated the confirmation of phosphorus starvation to be essential and sufficient for carnivory induction, also under ex vitro conditions. Having established the cultivation of T. peltatum and the induction of carnivory, future gene expression profiles from phosphorus starvation-induced leaves will provide important insight to the molecular mechanism of carnivory on demand.


Assuntos
Dioncophyllaceae , Fósforo , Carnivoridade , Plantas , Folhas de Planta
12.
Anim Cogn ; 26(1): 37-58, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36333496

RESUMO

The field of animal cognition has advanced rapidly in the last 25 years. Through careful and creative studies of animals in captivity and in the wild, we have gained critical insights into the evolution of intelligence, the cognitive capacities of a diverse array of taxa, and the importance of ecological and social environments, as well as individual variation, in the expression of cognitive abilities. The field of animal cognition, however, is still being influenced by some historical tendencies. For example, primates and birds are still the majority of study species in the field of animal cognition. Studies of diverse taxa improve the generalizability of our results, are critical for testing evolutionary hypotheses, and open new paths for understanding cognition in species with vastly different morphologies. In this paper, we review the current state of knowledge of cognition in mammalian carnivores. We discuss the advantages of studying cognition in Carnivorans and the immense progress that has been made across many cognitive domains in both lab and field studies of carnivores. We also discuss the current constraints that are associated with studying carnivores. Finally, we explore new directions for future research in studies of carnivore cognition.


Assuntos
Carnivoridade , Cognição , Mamíferos , Animais , Inteligência , Mamíferos/psicologia , Primatas , Meio Social
13.
Am J Bot ; 110(10): e16230, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37807697

RESUMO

PREMISE: The evolution of carnivorous pitcher traps across multiple angiosperm lineages represents a classic example of morphological convergence. Nevertheless, no comparative study to-date has examined pitcher evolution from a quantitative morphometric perspective. METHODS: In the present study, we used comparative morphometric approaches to quantify the shape space occupied by Heliamphora pitchers and to trace evolutionary trajectories through this space to examine patterns of divergence and convergence within the genus. We also investigated pitcher development, and, how the packing of pitchers is affected by crowding, a common condition in their natural environments. RESULTS: Our results showed that Heliamphora pitchers have diverged along three main axes in morphospace: (1) pitcher curvature; (2) nectar spoon elaboration; and (3) pitcher stoutness. Both curvature and stoutness are correlated with pitcher size, suggesting structural constraints in pitcher morphological evolution. Among the four traits (curvature, spoon elaboration, stoutness, and size), all but curvature lacked phylogenetic signal and showed marked convergence across the phylogeny. We also observed tighter packing of pitchers in crowded conditions, and this effect was most pronounced in curved, slender pitchers. CONCLUSIONS: Overall, our study demonstrates that diversification and convergent evolution of carnivory-related traits extends to finer evolutionary timescales, reinforcing the notion that ecological specialization may not necessarily be an evolutionary dead end.


Assuntos
Magnoliopsida , Sarraceniaceae , Filogenia , Áreas Alagadas , Carnivoridade , Magnoliopsida/genética , América do Sul
14.
Evol Anthropol ; 32(6): 359-372, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37844154

RESUMO

Chimpanzees regularly hunt and consume prey smaller than themselves. It seems therefore likely that early hominins also consumed small vertebrate meat before they started using and producing stone tools. Research has focused on cut marks and large ungulates, but there is a small body of work that has investigated the range of bone modifications produced on small prey by chimpanzee mastication that, by analogy, can be used to identify carnivory in pre-stone tool hominins. Here, we review these works along with behavioral observations and other neo-taphonomic research. Despite some equifinality with bone modifications produced by baboons and the fact that prey species used in experiments seldom are similar to the natural prey of chimpanzees, we suggest that traces of chimpanzee mastication are sufficiently distinct from those of other predators that they can be used to investigate mastication of vertebrate prey by early hominins.


Assuntos
Hominidae , Animais , Pan troglodytes , Carnivoridade , Mamíferos , Vertebrados , Papio
15.
Nature ; 543(7646): 501-506, 2017 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-28332513

RESUMO

For 130 years, dinosaurs have been divided into two distinct clades-Ornithischia and Saurischia. Here we present a hypothesis for the phylogenetic relationships of the major dinosaurian groups that challenges the current consensus concerning early dinosaur evolution and highlights problematic aspects of current cladistic definitions. Our study has found a sister-group relationship between Ornithischia and Theropoda (united in the new clade Ornithoscelida), with Sauropodomorpha and Herrerasauridae (as the redefined Saurischia) forming its monophyletic outgroup. This new tree topology requires redefinition and rediagnosis of Dinosauria and the subsidiary dinosaurian clades. In addition, it forces re-evaluations of early dinosaur cladogenesis and character evolution, suggests that hypercarnivory was acquired independently in herrerasaurids and theropods, and offers an explanation for many of the anatomical features previously regarded as notable convergences between theropods and early ornithischians.


Assuntos
Classificação , Dinossauros/classificação , Modelos Biológicos , Filogenia , Animais , Osso e Ossos/anatomia & histologia , Carnivoridade , Dinossauros/anatomia & histologia , Dinossauros/fisiologia , Especiação Genética
16.
Nature ; 544(7650): 357-361, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28273061

RESUMO

Recent genomic data have revealed multiple interactions between Neanderthals and modern humans, but there is currently little genetic evidence regarding Neanderthal behaviour, diet, or disease. Here we describe the shotgun-sequencing of ancient DNA from five specimens of Neanderthal calcified dental plaque (calculus) and the characterization of regional differences in Neanderthal ecology. At Spy cave, Belgium, Neanderthal diet was heavily meat based and included woolly rhinoceros and wild sheep (mouflon), characteristic of a steppe environment. In contrast, no meat was detected in the diet of Neanderthals from El Sidrón cave, Spain, and dietary components of mushrooms, pine nuts, and moss reflected forest gathering. Differences in diet were also linked to an overall shift in the oral bacterial community (microbiota) and suggested that meat consumption contributed to substantial variation within Neanderthal microbiota. Evidence for self-medication was detected in an El Sidrón Neanderthal with a dental abscess and a chronic gastrointestinal pathogen (Enterocytozoon bieneusi). Metagenomic data from this individual also contained a nearly complete genome of the archaeal commensal Methanobrevibacter oralis (10.2× depth of coverage)-the oldest draft microbial genome generated to date, at around 48,000 years old. DNA preserved within dental calculus represents a notable source of information about the behaviour and health of ancient hominin specimens, as well as a unique system that is useful for the study of long-term microbial evolution.


Assuntos
DNA Antigo/análise , Cálculos Dentários/química , Dieta/história , Preferências Alimentares , Saúde/história , Homem de Neandertal/microbiologia , Homem de Neandertal/psicologia , Animais , Bélgica , Carnivoridade , Cavernas , Enterocytozoon/genética , Enterocytozoon/isolamento & purificação , Genoma Bacteriano/genética , História Antiga , Humanos , Intestinos/microbiologia , Carne/história , Methanobrevibacter/genética , Methanobrevibacter/isolamento & purificação , Boca/microbiologia , Pan troglodytes/microbiologia , Penicillium/química , Perissodáctilos , Ovinos , Espanha , Estômago/microbiologia , Simbiose , Fatores de Tempo , Vegetarianos/história
17.
Proc Natl Acad Sci U S A ; 117(52): 33325-33333, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33288693

RESUMO

Human-wildlife conflicts occur worldwide. Although many nonlethal mitigation solutions are available, they rarely use the behavioral ecology of the conflict species to derive effective and long-lasting solutions. Here, we use a long-term study with 106 GPS-collared free-ranging cheetahs (Acinonyx jubatus) to demonstrate how new insights into the socio-spatial organization of this species provide the key for such a solution. GPS-collared territory holders marked and defended communication hubs (CHs) in the core area of their territories. The CHs/territories were distributed in a regular pattern across the landscape such that they were not contiguous with each other but separated by a surrounding matrix. They were kept in this way by successive territory holders, thus maintaining this overdispersed distribution. The CHs were also visited by nonterritorial cheetah males and females for information exchange, thus forming hotspots of cheetah activity and presence. We hypothesized that the CHs pose an increased predation risk to young calves for cattle farmers in Namibia. In an experimental approach, farmers shifted cattle herds away from the CHs during the calving season. This drastically reduced their calf losses by cheetahs because cheetahs did not follow the herds but instead preyed on naturally occurring local wildlife prey in the CHs. This implies that in the cheetah system, there are "problem areas," the CHs, rather than "problem individuals." The incorporation of the behavioral ecology of conflict species opens promising areas to search for solutions in other conflict species with nonhomogenous space use.


Assuntos
Acinonyx/fisiologia , Comunicação Animal , Carnivoridade/fisiologia , Animais , Feminino , Geografia , Humanos , Masculino , Namíbia
18.
Artigo em Inglês | MEDLINE | ID: mdl-37625480

RESUMO

What an animal ingests and what it digests can be different. Thus, we examined the nutritional physiology of Lumpenus sagitta, a member of the family Stichaeidae, to better understand whether it could digest algal components like its better studied algivorous relatives. Although L. sagitta ingests considerable algal content, we found little evidence of algal digestion. This fish species has a short gut that doesn't show positive allometry with body size, low amylolytic activity that actually decreases as the fish grow, no ontogenetic changes in digestive enzyme gene expression, elevated N-acetyl-glucosaminidase activity (indicative of chitin breakdown), and an enteric microbial community that is consistent with carnivory and differs from members of its family that consume and digest algae. Hence, we are left concluding that L. sagitta is not capable of digesting the algae it consumes, and instead, are likely targeting epibionts on the algae itself, and other invertebrates consumed with the algae. Our study expands the coverage of dietary and digestive information for the family Stichaeidae, which is becoming a model for fish digestive physiology and genomics, and shows the power of moving beyond gut content analyses to better understand what an animal can actually digest and use metabolically.


Assuntos
Carnivoridade , Perciformes , Animais , Dieta , Fenômenos Fisiológicos do Sistema Digestório , Tamanho Corporal
19.
Cell Tissue Res ; 388(2): 399-416, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35260936

RESUMO

Lycopodina hypogea is a carnivorous sponge that tolerates laboratory husbandry very well. During a digestion cycle, performed without any digestive cavity, this species undergoes spectacular morphological changes leading to a total regression of long filaments that ensure the capture of prey and their reformation at the end of the cycle. This phenomenon is a unique opportunity to analyze the molecular and cellular determinants that ensure digestion in the sister group of all other metazoans. Using differential transcriptomic analysis coupled with cell biology studies of proliferation, differentiation, and programmed cell deaths (i.e., autophagy and the destructive/constructive function of apoptosis), we demonstrate that the molecular and cellular actors that ensure digestive homeostasis in a sister group of all remaining animals are similar in variety and complexity to those controlling tissue homeostasis in higher vertebrates. During a digestion cycle, most of these actors are finely tuned in a coordinated manner. Our data benefits from complementary approaches coupling in silico and cell biology studies and demonstrate that the nutritive function is provided by the coordination of molecular network that impacts the cells turnover in the entire organism.


Assuntos
Apoptose , Carnivoridade , Animais , Expressão Gênica
20.
J Evol Biol ; 35(2): 225-239, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34882899

RESUMO

The inactivation of ancestral protein-coding genes (gene loss) can be associated with phenotypic modifications. Within placental mammals, repeated losses of PNLIPRP1 (gene inhibiting fat digestion) occurred preferentially in strictly herbivorous species, whereas repeated NR1I3 losses (gene involved in detoxification) occurred preferentially in strictly carnivorous species. It was hypothesized that lower fat contents of herbivorous diets and lower toxin contents of carnivorous diets cause relaxed selection pressure on these genes, resulting in the accumulation of mutations and ultimately to convergent gene losses. However, because herbivorous and carnivorous diets differ vastly in their composition, a fine-grained analysis is required for hypothesis testing. We generated a trait matrix recording diet and semi-quantitative estimates of fat and toxin consumption for 52 placental species. By including data from 31 fossil taxa, we reconstructed the ancestral diets in major lineages (grundplan reconstruction). We found support that PNLIPRP1 loss is primarily associated with low levels of fat intake and not simply with herbivory/carnivory. In particular, PNLIPRP1 loss also occurred in carnivorous lineages feeding on a fat-poor diet, suggesting that the loss of this gene may be beneficial for occupying ecological niches characterized by fat-poor food resources. Similarly, we demonstrated that carnivorous species are indeed less exposed to diet-related toxins, suggesting that the loss of NR1I3 and related genes (NR1I2 and UGT1A6) resulted from relaxed selection pressure. This study illustrates the need of detailed phenotype studies to obtain a deeper understanding of factors underlying gene losses and to progress in understanding genomic causes of phenotypic variation in mammals.


Assuntos
Placenta , Xenobióticos , Animais , Carnivoridade/fisiologia , Dieta , Feminino , Lipase , Mamíferos/genética , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA