Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.423
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 606(7916): 917-921, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35551513

RESUMO

Ingestion of alkaloid metabolites from the bark of Galbulimima (GB) sp. leads to psychotropic and excitatory effects in humans1-4. Limited, variable supply of GB alkaloids5, however, has impeded their biological exploration and clinical development6. Here we report a solution to the supply of GB18, a structural outlier and putative psychotropic principle of Galbulimima bark. Efficient access to its challenging tetrahedral attached-ring motif required the development of a ligand-controlled endo-selective cross-electrophile coupling and a diastereoselective hydrogenation of a rotationally dynamic pyridine. Reliable, gram-scale access to GB18 enabled its assignment as a potent antagonist of κ- and µ-opioid receptors-the first new targets in 35 years-and lays the foundation to navigate and understand the biological activity of Galbulimima metabolites.


Assuntos
Alcaloides , Magnoliopsida , Alcaloides/síntese química , Alcaloides/farmacologia , Técnicas de Química Sintética , Humanos , Hidrogenação , Ligantes , Magnoliopsida/química , Casca de Planta/química , Piridinas , Receptores Opioides kappa/antagonistas & inibidores , Receptores Opioides mu/antagonistas & inibidores
2.
PLoS Biol ; 21(2): e3001887, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36802386

RESUMO

Outbreaks of the Eurasian spruce bark beetle (Ips typographus) have decimated millions of hectares of conifer forests in Europe in recent years. The ability of these 4.0 to 5.5 mm long insects to kill mature trees over a short period has been sometimes ascribed to two main factors: (1) mass attacks on the host tree to overcome tree defenses and (2) the presence of fungal symbionts that support successful beetle development in the tree. While the role of pheromones in coordinating mass attacks has been well studied, the role of chemical communication in maintaining the fungal symbiosis is poorly understood. Previous evidence indicates that I. typographus can distinguish fungal symbionts of the genera Grosmannia, Endoconidiophora, and Ophiostoma by their de novo synthesized volatile compounds. Here, we hypothesize that the fungal symbionts of this bark beetle species metabolize spruce resin monoterpenes of the beetle's host tree, Norway spruce (Picea abies), and that the volatile products are used as cues by beetles for locating breeding sites with beneficial symbionts. We show that Grosmannia penicillata and other fungal symbionts alter the profile of spruce bark volatiles by converting the major monoterpenes into an attractive blend of oxygenated derivatives. Bornyl acetate was metabolized to camphor, and α- and ß-pinene to trans-4-thujanol and other oxygenated products. Electrophysiological measurements showed that I. typographus possesses dedicated olfactory sensory neurons for oxygenated metabolites. Both camphor and trans-4-thujanol attracted beetles at specific doses in walking olfactometer experiments, and the presence of symbiotic fungi enhanced attraction of females to pheromones. Another co-occurring nonbeneficial fungus (Trichoderma sp.) also produced oxygenated monoterpenes, but these were not attractive to I. typographus. Finally, we show that colonization of fungal symbionts on spruce bark diet stimulated beetles to make tunnels into the diet. Collectively, our study suggests that the blends of oxygenated metabolites of conifer monoterpenes produced by fungal symbionts are used by walking bark beetles as attractive or repellent cues to locate breeding or feeding sites containing beneficial microbial symbionts. The oxygenated metabolites may aid beetles in assessing the presence of the fungus, the defense status of the host tree and the density of conspecifics at potential feeding and breeding sites.


Assuntos
Besouros , Picea , Gorgulhos , Animais , Feminino , Monoterpenos/análise , Monoterpenos/metabolismo , Árvores/microbiologia , Cânfora/análise , Cânfora/metabolismo , Casca de Planta/química , Casca de Planta/metabolismo , Casca de Planta/microbiologia , Melhoramento Vegetal , Besouros/fisiologia , Picea/química , Picea/metabolismo , Picea/microbiologia , Feromônios/metabolismo
3.
BMC Genomics ; 25(1): 714, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39048950

RESUMO

BACKGROUND: Elaeocarpus spp. stem blight, caused by Pseudocryphonectria elaeocarpicola, is a destructive disease, which will significantly reduce the productivity and longevity of Elaeocarpus spp. plants, especially in the Guangdong Province of China. However, few information is available for P. elaeocarpicola. To unravel the potential adaptation mechanism of stem adaptation, the whole genome of P. elaeocarpicola was sequenced by using the DNBSEQ and PacBio platforms. RESULTS: P. elaeocarpicola harbors 44.49 Mb genome with 10,894 predicted coding genes. Genome analysis revealed that the P. elaeocarpicola genome encodes a plethora of pathogenicity-related genes. Analysis of carbohydrate-active enzymes (CAZymes) revealed a rich variety of enzymes participated in plant cell wall degradation, which could effectively degrade cellulose, hemicellulose and xyloglucans in the plant cell wall and promote the invasion of the host plant. There are 213 CAZyme families found in P. elaeocarpicola, among which glycoside hydrolase (GH) family has the largest number, far exceeding other tested fungi by 53%. Besides, P. elaeocarpicola has twice as many genes encoding chitin and cellulose degradation as Cryphonectria parasitica, which belong to the same family. The predicted typical secreted proteins of P. elaeocarpicola are numerous and functional, including many known virulence effector factors, indicating that P. elaeocarpicola has great potential to secrete virulence effectors to promote pathogenicity on host plants. AntiSMASH revealed that the genome encoded 61 secondary metabolic gene clusters including 86 secondary metabolic core genes which was much higher than C. parasitica (49). Among them, two gene cluster of P. elaeocarpicola, cluster12 and cluster52 showed 100% similarity with the mycotoxins synthesis clusters from Aspergillus steynii and Alternaria alternata, respectively. In addition, we annotated cytochrome P450 related enzymes, transporters, and transcription factors in P. elaeocarpicola, which are important virulence determinants of pathogenic fungi. CONCLUSIONS: Taken together, our study represents the first genome assembly for P. elaeocarpicola and reveals the key virulence factors in the pathogenic process of P. elaeocarpicola, which will promote our understanding of its pathogenic mechanism. The acquired knowledge lays a foundation for further exploration of molecular interactions with the host and provide target for management strategies in future research.


Assuntos
Ascomicetos , Genoma Fúngico , Doenças das Plantas , Ascomicetos/genética , Ascomicetos/patogenicidade , Doenças das Plantas/microbiologia , Casca de Planta/microbiologia , Filogenia , Adaptação Fisiológica/genética , Sequenciamento Completo do Genoma
4.
BMC Plant Biol ; 24(1): 488, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38825683

RESUMO

BACKGROUND: The periderm is basic for land plants due to its protective role during radial growth, which is achieved by the polymers deposited in the cell walls. In most trees, like holm oak, the first periderm is frequently replaced by subsequent internal periderms yielding a heterogeneous outer bark made of a mixture of periderms and phloem tissues, known as rhytidome. Exceptionally, cork oak forms a persistent or long-lived periderm which results in a homogeneous outer bark of thick phellem cell layers known as cork. Cork oak and holm oak distribution ranges overlap to a great extent, and they often share stands, where they can hybridize and produce offspring showing a rhytidome-type bark. RESULTS: Here we use the outer bark of cork oak, holm oak, and their natural hybrids to analyse the chemical composition, the anatomy and the transcriptome, and further understand the mechanisms underlying periderm development. We also include a unique natural hybrid individual corresponding to a backcross with cork oak that, interestingly, shows a cork-type bark. The inclusion of hybrid samples showing rhytidome-type and cork-type barks is valuable to approach cork and rhytidome development, allowing an accurate identification of candidate genes and processes. The present study underscores that abiotic stress and cell death are enhanced in rhytidome-type barks whereas lipid metabolism and cell cycle are enriched in cork-type barks. Development-related DEGs showing the highest expression, highlight cell division, cell expansion, and cell differentiation as key processes leading to cork or rhytidome-type barks. CONCLUSION: Transcriptome results, in agreement with anatomical and chemical analyses, show that rhytidome and cork-type barks are active in periderm development, and suberin and lignin deposition. Development and cell wall-related DEGs suggest that cell division and expansion are upregulated in cork-type barks whereas cell differentiation is enhanced in rhytidome-type barks.


Assuntos
Casca de Planta , Quercus , Quercus/genética , Quercus/crescimento & desenvolvimento , Casca de Planta/genética , Casca de Planta/química , Casca de Planta/metabolismo , Transcriptoma , Hibridização Genética , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Lipídeos
5.
BMC Plant Biol ; 24(1): 383, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724888

RESUMO

Taxus chinensis (Taxus cuspidata Sieb. et Zucc.) is a traditional medicinal plant known for its anticancer substance paclitaxel, and its growth age is also an important factor affecting its medicinal value. However, how age affects the physiological and metabolic characteristics and active substances of T. chinensis is still unclear. In this study, carbon and nitrogen accumulation, contents of active substances and changes in primary metabolites in barks and annual leaves of T. chinensis of different diameter classes were investigated by using diameter classes instead of age. The results showed that leaves and barks of small diameter class (D1) had higher content of non-structural carbohydrates and C, which were effective in enhancing defense capacity, while N content was higher in medium (D2) and large diameter classes (D3). Active substances such as paclitaxel, baccatin III and cephalomannine also accumulated significantly in barks of large diameter classes. Moreover, 21 and 25 differential metabolites were identified in leaves and barks of different diameter classes, respectively. The differential metabolites were enhanced the TCA cycle and amino acid biosynthesis, accumulate metabolites such as organic acids, and promote the synthesis and accumulation of active substances such as paclitaxel in the medium and large diameter classes. These results revealed the carbon and nitrogen allocation mechanism of different diameter classes of T. chinensis, and its relationship with medicinal components, providing a guidance for the harvesting and utilization of wild T. chinensis.


Assuntos
Carbono , Metabolômica , Nitrogênio , Folhas de Planta , Taxus , Taxus/metabolismo , Nitrogênio/metabolismo , Carbono/metabolismo , Folhas de Planta/metabolismo , Casca de Planta/metabolismo , Casca de Planta/química
6.
BMC Plant Biol ; 24(1): 84, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308239

RESUMO

BACKGROUND: Cinnamomum cassia Presl, classified in the Lauraceae family, is widely used as a spice, but also in medicine, cosmetics, and food. Aroma is an important factor affecting the medicinal and flavoring properties of C. cassia, and is mainly determined by volatile organic compounds (VOCs); however, little is known about the composition of aromatic VOCs in C. cassia and their potential molecular regulatory mechanisms. Here, integrated transcriptomic and volatile metabolomic analyses were employed to provide insights into the formation regularity of aromatic VOCs in C. cassia bark at five different harvesting times. RESULTS: The bark thickness and volatile oil content were significantly increased along with the development of the bark. A total of 724 differentially accumulated volatiles (DAVs) were identified in the bark samples, most of which were terpenoids. Venn analysis of the top 100 VOCs in each period showed that twenty-eight aromatic VOCs were significantly accumulated in different harvesting times. The most abundant VOC, cinnamaldehyde, peaked at 120 months after planting (MAP) and dominated the aroma qualities. Five terpenoids, α-copaene, ß-bourbonene, α-cubebene, α-funebrene, and δ-cadinene, that peaked at 240 MAP could also be important in creating C. cassia's characteristic aroma. A list of 43,412 differentially expressed genes (DEGs) involved in the biosynthetic pathways of aromatic VOCs were identified, including phenylpropanoids, mevalonic acid (MVA) and methylerythritol phosphate (MEP). A gene-metabolite regulatory network for terpenoid and phenylpropanoid metabolism was constructed to show the key candidate structural genes and transcription factors involved in the biosynthesis of terpenoids and phenylpropanoids. CONCLUSIONS: The results of our research revealed the composition and changes of aromatic VOCs in C. cassia bark at different harvesting stages, differentiated the characteristic aroma components of cinnamon, and illuminated the molecular mechanism of aroma formation. These foundational results will provide technical guidance for the quality breeding of C. cassia.


Assuntos
Cinnamomum aromaticum , Cinnamomum aromaticum/química , Casca de Planta/genética , Melhoramento Vegetal , Perfilação da Expressão Gênica , Terpenos/análise
7.
Planta ; 259(6): 138, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687380

RESUMO

MAIN CONCLUSION: The identification of a functional cinnamoyl-CoA reductase enzyme from Cinnamomum cassia involved in trans-cinnamaldehyde biosynthesis offers the potential for enhancing trans-cinnamaldehyde production through genetic engineering. A significant accumulation of trans-cinnamaldehyde has been found in the bark tissues of C. cassia, used in traditional Chinese medicine. trans-Cinnamaldehyde exhibits various pharmacological properties such as anti-inflammatory, analgesic, and protection of the stomach and the digestive tract. However, further elucidation and characterization of the biosynthetic pathway for trans-cinnamaldehyde is required. In this study, we conducted an integrated analysis of trans-cinnamaldehyde accumulation profiles and transcriptomic data from five different C. cassia tissues to identify the genes involved in its biosynthesis. The transcriptome data we obtained included nearly all genes associated with the trans-cinnamaldehyde pathway, with the majority demonstrating high abundance in branch barks and trunk barks. We successfully cloned four C. cassia cinnamoyl-CoA reductases (CcCCRs), a key gene in trans-cinnamaldehyde biosynthesis. We found that the recombinant CcCCR1 protein was the only one that more efficiently converted cinnamoyl-CoA into trans-cinnamaldehyde. CcCCR1 exhibited approximately 14.7-fold higher catalytic efficiency (kcat/Km) compared to the Arabidopsis thaliana cinnamoyl-CoA reductase 1 (AtCCR1); therefore, it can be utilized for engineering higher trans-cinnamaldehyde production as previously reported. Molecular docking studies and mutagenesis experiments also validated the superior catalytic activity of CcCCR1 compared to AtCCR1. These findings provide valuable insights for the functional characterization of enzyme-coding genes and hold potential for future engineering of trans-cinnamaldehyde biosynthetic pathways.


Assuntos
Acroleína , Acroleína/análogos & derivados , Aldeído Oxirredutases , Cinnamomum aromaticum , Acroleína/metabolismo , Cinnamomum aromaticum/genética , Cinnamomum aromaticum/metabolismo , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Simulação de Acoplamento Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Casca de Planta/genética , Casca de Planta/metabolismo , Regulação da Expressão Gênica de Plantas
8.
New Phytol ; 242(1): 49-60, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37984803

RESUMO

Tree stem methane emissions are important components of lowland forest methane budgets. The potential for species-specific behaviour among co-occurring lowland trees with contrasting bark characteristics has not been investigated. We compare bark-mediated methane transport in two common lowland species of contrasting bark characteristics (Melaleuca quinquenervia featuring spongy/layered bark with longitudinally continuous airspaces and Casuarina glauca featuring hard/dense common bark) through several manipulative experiments. First, the progressive cutting through M. quinquenervia bark layers caused exponential increases in methane fluxes (c. 3 orders of magnitude); however, sapwood-only fluxes were lower, suggesting that upward/axial methane transport occurs between bark layers. Second, concentrated methane pulse-injections into exposed M. quinquenervia bark, revealed rapid axial methane transport rates (1.42 mm s-1 ), which were further supported through laboratory-simulated experiments (1.41 mm s-1 ). Laboratory-simulated radial CH4 diffusion rates (through bark) were c. 20-times slower. Finally, girdling M. quinquenervia stems caused a near-instantaneous decrease in methane flux immediately above the cut. By contrast, girdling C. glauca displayed persistent, though diminished, methane fluxes. Overall, the experiments revealed evidence for rapid 'between-bark' methane transport independent from the transpiration stream in M. quinquenervia, which facilitates diffusive axial transport from the rhizosphere and/or sapwood sources. This contrasts with the slower, radial 'through-bark' diffusive-dominated gas transportation in C. glauca.


Assuntos
Melaleuca , Árvores , Metano , Casca de Planta , Florestas , Dióxido de Carbono , Solo
9.
New Phytol ; 242(3): 1000-1017, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38433329

RESUMO

Drought affects the complex interactions between Norway spruce, the bark beetle Ips typographus and associated microorganisms. We investigated the interplay of tree water status, defense and carbohydrate reserves with the incidence of bark beetle attack and infection of associated fungi in mature spruce trees. We installed roofs to induce a 2-yr moderate drought in a managed spruce stand to examine a maximum of 10 roof and 10 control trees for resin flow (RF), predawn twig water potentials, terpene, phenolic and carbohydrate bark concentrations, and bark beetle borings in field bioassays before and after inoculation with Endoconidiophora polonica and Grosmannia penicillata. Drought-stressed trees showed more attacks and significantly longer fungal lesions than controls, but maintained terpene resin defenses at predrought levels. Reduced RF and lower mono- and diterpene, but not phenolic concentrations were linked with increased host selection. Bark beetle attack and fungi stimulated chemical defenses, yet G. penicillata reduced phenolic and carbohydrate contents. Chemical defenses did not decrease under mild, prolonged drought in our simulated small-scale biotic infestations. However, during natural mass attacks, reductions in carbon fixation under drought, in combination with fungal consumption of carbohydrates, may deplete tree defenses and facilitate colonization by I. typographus.


Assuntos
Besouros , Picea , Gorgulhos , Animais , Secas , Picea/microbiologia , Casca de Planta/química , Doenças das Plantas/microbiologia , Terpenos , Fenóis , Noruega , Água/análise , Carboidratos/análise
10.
New Phytol ; 243(1): 72-81, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38703003

RESUMO

Woody plants display some photosynthetic activity in stems, but the biological role of stem photosynthesis and the specific contributions of bark and wood to carbon uptake and oxygen evolution remain poorly understood. We aimed to elucidate the functional characteristics of chloroplasts in stems of different ages in Fraxinus ornus. Our investigation employed diverse experimental approaches, including microsensor technology to assess oxygen production rates in whole stem, bark, and wood separately. Additionally, we utilized fluorescence lifetime imaging microscopy (FLIM) to characterize the relative abundance of photosystems I and II (PSI : PSII chlorophyll ratio) in bark and wood. Our findings revealed light-induced increases in O2 production in whole stem, bark, and wood. We present the radial profile of O2 production in F. ornus stems, demonstrating the capability of stem chloroplasts to perform light-dependent electron transport. Younger stems exhibited higher light-induced O2 production and dark respiration rates than older ones. While bark emerged as the primary contributor to net O2 production under light conditions, our data underscored that wood chloroplasts are also photosynthetically active. The FLIM analysis unveiled a lower PSI abundance in wood than in bark, suggesting stem chloroplasts are not only active but also acclimate to the spectral composition of light reaching inner compartments.


Assuntos
Luz , Oxigênio , Caules de Planta , Madeira , Caules de Planta/metabolismo , Caules de Planta/efeitos da radiação , Oxigênio/metabolismo , Madeira/metabolismo , Escuridão , Fraxinus/metabolismo , Cloroplastos/metabolismo , Cloroplastos/efeitos da radiação , Casca de Planta/metabolismo , Fotossíntese/efeitos da radiação , Complexo de Proteína do Fotossistema II/metabolismo
11.
Plant Cell Environ ; 47(5): 1439-1451, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38234202

RESUMO

The properties of bark and xylem contribute to tree growth and survival under drought and other types of stress conditions. However, little is known about the functional coordination of the xylem and bark despite the influence of selection on both structures in response to drought. To this end, we examined relationships between proportions of bark components (i.e. thicknesses of tissues outside the vascular cambium) and xylem transport properties in juvenile branches of five Cupressaceae species, focusing on transport efficiency and safety from hydraulic failure via drought-induced embolism. Both xylem efficiency and safety were correlated with multiple bark traits, suggesting that xylem transport and bark properties are coordinated. Specifically, xylem transport efficiency was greater in species with thicker secondary phloem, greater phloem-to-xylem thickness ratio and phloem-to-xylem cell number ratio. In contrast, species with thicker bark, living cortex and dead bark tissues were more resistant to embolism. Thicker phellem layers were associated with lower embolism resistance. Results of this study point to an important connection between xylem transport efficiency and phloem characteristics, which are shaped by the activity of vascular cambium. The link between bark and embolism resistance affirms the importance of both tissues to drought tolerance.


Assuntos
Cupressaceae , Embolia , Casca de Planta , Água/fisiologia , Xilema/fisiologia , Árvores/fisiologia , Secas
12.
EMBO Rep ; 23(3): e53365, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34994476

RESUMO

Bark protects the tree against environmental insults. Here, we analyzed whether this defensive strategy could be utilized to broadly enhance protection against colitis. As a proof of concept, we show that exosome-like nanoparticles (MBELNs) derived from edible mulberry bark confer protection against colitis in a mouse model by promoting heat shock protein family A (Hsp70) member 8 (HSPA8)-mediated activation of the AhR signaling pathway. Activation of this pathway in intestinal epithelial cells leads to the induction of COP9 Constitutive Photomorphogenic Homolog Subunit 8 (COPS8). Utilizing a gut epithelium-specific knockout of COPS8, we demonstrate that COPS8 acts downstream of the AhR pathway and is required for the protective effect of MBELNs by inducing an array of anti-microbial peptides. Our results indicate that MBELNs represent an undescribed mode of inter-kingdom communication in the mammalian intestine through an AhR-COPS8-mediated anti-inflammatory pathway. These data suggest that inflammatory pathways in a microbiota-enriched intestinal environment are regulated by COPS8 and that edible plant-derived ELNs may hold the potential as new agents for the prevention and treatment of gut-related inflammatory disease.


Assuntos
Colite , Exossomos , Morus , Nanopartículas , Animais , Colite/induzido quimicamente , Colite/metabolismo , Colite/prevenção & controle , Modelos Animais de Doenças , Exossomos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Casca de Planta/metabolismo
13.
Physiol Plant ; 176(2): e14250, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38467566

RESUMO

The necrotrophic fungus Seiridium cardinale is the main responsible for Cypress Canker Disease (CCD), a pandemic affecting many Cupressaceae worldwide. The present study aims to elucidate the signalling of the early responses in the bark and foliage of CCD-susceptible and -resistant C. sempervirens clones to S. cardinale inoculation (SI and RI, respectively). In the bark of SI, a peaking production of ethylene (Et) and jasmonic acid (JA) occurred at 3 and 4 days post inoculation (dpi), respectively, suggesting an attempted plant response to the pathogen. A response that, however, was ineffective, as confirmed by the severe accumulation of malondialdehyde by-products at 13 dpi (i.e., lipid peroxidation). Differently, Et emission peaked in RI bark at 3 and 13 dpi, whereas abscisic acid (ABA) accumulated at 1, 4 and 13 dpi, resulting in a lower MDA accumulation (and unchanged levels of antioxidant capacity). In the foliage of SI, Et was produced at 1 and 9 dpi, whereas JA and salicylic acid (SA) accumulated at 1 and 3 dpi. Conversely, an increase of ABA and SA occurred at 1 dpi in the RI foliage. This outcome indicates that some of the observed metabolic alterations, mainly occurring as local defence mechanisms, might be able to gradually shift to a systemic resistance, although an accumulation of MDA was observed in both SI and RI foliage (but with an increased antioxidant capacity reported only in the resistant clone). We believe that the results reported here will be useful for the selection of clones able to limit the spread and damage of CCD.


Assuntos
Ascomicetos , Cupressus , Etilenos , Cupressus/metabolismo , Cupressus/microbiologia , Antioxidantes , Casca de Planta/metabolismo , Ácido Abscísico/metabolismo , Ácido Salicílico/metabolismo , Doenças das Plantas/microbiologia , Ciclopentanos/metabolismo , Oxilipinas/metabolismo
14.
Anal Bioanal Chem ; 416(1): 175-189, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37910202

RESUMO

Consumers have unprecedented access to botanical dietary supplements through online retailers, making it difficult to ensure product quality and authenticity. Therefore, methods to survey and compare chemical compositions across botanical products are needed. Nuclear magnetic resonance (NMR) spectroscopy and non-targeted mass spectrometry (MS) were used to chemically analyze commercial products labeled as containing one of three botanicals: blue cohosh, goldenseal, and yohimbe bark. Aqueous and organic phase extracts were prepared and analyzed in tandem with NMR followed by MS. We processed the non-targeted data using multivariate statistics to analyze the compositional similarity across extracts. In each case, there were several product outliers that were identified using principal component analysis (PCA). Evaluation of select known constituents proved useful to contextualize PCA subgroups, which in some cases supported or refuted product authenticity. The NMR and MS data reached similar conclusions independently but were also complementary.


Assuntos
Produtos Biológicos , Caulophyllum , Hydrastis , Pausinystalia/química , Hydrastis/química , Caulophyllum/química , Casca de Planta/química , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Massas/métodos , Espectroscopia de Ressonância Magnética , Produtos Biológicos/análise
15.
J Nat Prod ; 87(4): 1023-1035, 2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38536967

RESUMO

The plant Goniothalamus leiocarpus of the Annonaceae family is used as an alternative medicine in tropical regions. Applying high-speed counter current chromatography (HSCCC), eight new bioactive styrylpyrone isomers, including 6R,7S,8R,2'S-goniolactone B (1), 6S,7S,8S,2'S-goniolactone B (2), 6R,7R,8R,2'S-goniolactone B (3), 6R,7S,8S,2'S-goniolactone C (4), 6R,7S,8R,2'S-goniolactone C (5), 6S,7R,8S,2'S-goniolactone C (6), and two positional isomers, 6R,7R,8R,2'S-goniolactone G (7) and 6S,7R,8R,2'S-goniolactone G (8), were isolated from a chloroform fraction (2.1 g) of G. leiocarpus, which had a prominent spot by TLC analysis. The structures of the new compounds were elucidated by MS, NMR, IR, and UV spectra, and their absolute configurations were determined by Mosher's method, ECD, and X-ray diffraction analysis. The isolates are characteristic components found in plants of the genus Goniothalamus and consist of two structural moieties: a styrylpyrone and a dihydroflavone unit. The isolation of the eight new compounds demonstrates the effectiveness of HSCCC in separating the isomers of natural styrylpyrone. In a bioactivity assessment, compounds 1 and 6 exhibited cytotoxic effects against the human colon carcinoma cell lines LS513 and SW620 with IC50 values ranging from 1.6 to 3.9 µM. Compounds 1, 2, 7, and 8 showed significant synergistic activity against antibiotic-resistant Staphylococcus aureus strains.


Assuntos
Goniothalamus , Casca de Planta , Pironas , Goniothalamus/química , Pironas/química , Pironas/farmacologia , Pironas/isolamento & purificação , Estrutura Molecular , Estereoisomerismo , Casca de Planta/química , Humanos , Distribuição Contracorrente/métodos , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação
16.
J Nat Prod ; 87(6): 1628-1634, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38869194

RESUMO

The unfolded protein response (UPR) is a key component of fungal virulence. The prenylated xanthone γ-mangostin isolated from Garcinia mangostana (Clusiaceae) fruit pericarp, has recently been described to inhibit this fungal adaptative pathway. Considering that Calophyllum caledonicum (Calophyllaceae) is known for its high prenylated xanthone content, its stem bark extract was fractionated using a bioassay-guided procedure based on the cell-based anti-UPR assay. Four previously undescribed xanthone derivatives were isolated, caledonixanthones N-Q (3, 4, 8, and 12), among which compounds 3 and 8 showed promising anti-UPR activities with IC50 values of 11.7 ± 0.9 and 7.9 ± 0.3 µM, respectively.


Assuntos
Calophyllum , Resposta a Proteínas não Dobradas , Xantonas , Xantonas/farmacologia , Xantonas/química , Xantonas/isolamento & purificação , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Calophyllum/química , Estrutura Molecular , Humanos , Casca de Planta/química
17.
Environ Res ; 250: 118455, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38367838

RESUMO

Cork oak and pine bark, two of the most prolific byproducts of the European forestry sector, were assessed as biosorbents for eliminating potentially toxic elements (PTEs) from water-based solutions. Our research suggests that bioadsorption stands out as a viable and environmental eco-friendly technology, presenting a sustainable method for the extraction of PTEs from polluted water sources. This study aimed to evaluate and compare the efficiency of cork powder and pine bark powder as biosorbents. Specifically, the adsorption of Fe, Cu, Zn, Cd, Ni, Pb and Sn at equilibrium were studied through batch experiments by varying PTEs concentrations, pH, and ionic strength. Results from adsorption-desorption experiments demonstrate the remarkable capacity of both materials to retain the studied PTE. Cork powder and pine bark powder exhibited the maximum retention capacity for Fe and Cd, while they performed poorly for Pb and Sn, respectively. Nevertheless, pine bark showed a slightly lower retention capacity than cork. Increasing the pH resulted in cork showing the highest adsorption for Zn and the lowest for Sn, while for pine bark, Cd was the most adsorbed, and Sn was the least adsorbed, respectively. The highest adsorption of both materials occurred at pH 3.5-5, depending on the PTE tested. The ionic strength also influenced the adsorption of the various PTEs for both materials, with decreased adsorption as ionic strength increased. The findings suggest that both materials could be effective for capturing and eliminating the examined PTEs, albeit with different efficiencies. Remarkably, pine bark demonstrated superior adsorption capabilities, which were observed to vary based on the specific element and the experimental conditions. These findings contribute to elucidating the bio-adsorption potential of these natural materials, specifically their suitability in mitigating PTEs pollution, and favoring the recycling and revalorization of byproducts that might otherwise be considered residue.


Assuntos
Pinus , Casca de Planta , Quercus , Poluentes Químicos da Água , Pinus/química , Quercus/química , Casca de Planta/química , Adsorção , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Pós/química , Concentração de Íons de Hidrogênio , Metais Pesados/análise , Metais Pesados/química
18.
Environ Res ; 252(Pt 3): 119048, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38697595

RESUMO

Adsorption is considered an interesting option for removing antibiotics from the environment because of its simple design, low cost, and potential efficiency. In this work we evaluated three by-products (pine bark, oak ash, and mussel shell) as bio-adsorbents for the antibiotic azithromycin (AZM). Furthermore, they were added at doses of 48 t ha-1 to four different soils, then comparing AZM removal for soils with and without bio-adsorbents. Batch-type experiments were used, adding AZM concentrations between 2.5 and 600 µmol L-1 to the different bio-adsorbents and soil + bio-adsorbent mixtures. Regarding the bio-adsorbents, oak ash showed the best adsorption scores (9600 µmol kg-1, meaning >80% retention), followed by pine bark (8280 µmol kg-1, 69%) and mussel shell (between 3000 and 6000 µmol kg-1, 25-50% retention). Adsorption data were adjusted to different models (Linear, Freundlich and Langmuir), showing that just mussel shell presented an acceptable fitting to the Freundlich equation, while pine bark and oak ash did not present a good adjustment to any of the three models. Regarding desorption, the values were always below the detection limit, indicating a rather irreversible adsorption of AZM onto these three by-products. Furthermore, the results showed that when the lowest concentrations of AZM were added to the not amended soils they adsorbed 100% of the antibiotic, whereas when the highest concentrations of AZM were spread, the adsorption decreased to 55%. However, when any of the three bio-adsorbents was added to the soils, AZM adsorption reached 100% for all the antibiotic concentrations used. Desorption was null in all cases for both soils with and without bio-adsorbents. These results, corresponding to an investigation carried out for the first time for the antibiotic AZM, can be seen as relevant in the search of low-cost alternative treatments to face environmental pollution caused by this emerging contaminant.


Assuntos
Antibacterianos , Azitromicina , Bivalves , Pinus , Casca de Planta , Quercus , Animais , Adsorção , Quercus/química , Casca de Planta/química , Antibacterianos/química , Antibacterianos/análise , Azitromicina/química , Azitromicina/análise , Pinus/química , Bivalves/química , Poluentes do Solo/análise , Poluentes do Solo/química , Exoesqueleto/química
19.
Environ Res ; 243: 117861, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38070851

RESUMO

This research was performed to evaluate the antimicrobial activity of methanol extract of Lannea coromandelica bark against fruit damage causing microbes such as fungi: Alternaria sp., Aspergillus sp., Botrytis sp., Cladosporium sp., Fusarium sp., Penicillium sp., Phytophthora sp., and Trichoderma sp. The bacteria: such as Chromobacter sp., Enterobacter sp., Erwinia sp., Flavobacterium sp., Lactobacillus sp., Pseudomonas sp., and Xanthomonas sp. was investigated. Furthermore, their biocompatibility nature was determined through animal (rat) model study and their fruit preserving potential was determined by edible coating preparation with chitosan and other substances. Interestingly, the extract showed dose dependent (1000 µg mL-1) activity against these microbes in the following order: Enterobacter sp. (26.4 ± 1.5) > Chromobacter sp. (25.4 ± 1.6) > Pseudomonas sp. (24.5 ± 1.3) > Flavobacterium sp. (24.3 ± 1.4) > Xanthomonas sp. (23.6 ± 1.6) > Erwinia sp. (23.6 ± 1.6) > Lactobacillus sp. (19.6 ± 1.3). Similarly, the antifungal activity was found as Penicillium sp. (32.6 ± 1.3) > Cladosporium sp. (32.6 ± 1.5) > Alternaria sp. (30.3 ± 1.2) > Aspergillus sp. (29.9 ± 1.8) > Botrytis sp. (29.8 ± 1.2) > Fusarium sp. (28.6 ± 1.5) > Trichoderma sp. (19.8 ± 1.4) > Phytophthora sp. (16.2 ± 1.1). The acute toxicity and histopathological study results revealed that the extract possesses biocompatible in nature. The illumination transmittance and active functional groups involved in interaction among test methanol extract and chitosan investigated by UV-vis and Fourier-transform infrared spectroscopy (FTIR) analyses and found average light transmittance and few vital functional groups accountable for optimistic interaction to creak edible coating. Approximately four (set I-IV) treatment sets were prepared, and it was discovered that all of the coated Citrus maxima fruit quality characteristics including total soluble solids (TSS), weight loss (%), pH of fruit pulp juice, and decay percentage were significantly (p>0.05) better than uncoated fruit.


Assuntos
Quitosana , Citrus , Filmes Comestíveis , Animais , Ratos , Metanol/análise , Frutas/química , Frutas/microbiologia , Quitosana/química , Casca de Planta , Antifúngicos/análise , Antifúngicos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química
20.
BMC Vet Res ; 20(1): 102, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38481214

RESUMO

BACKGROUND: Effective therapy for many infections is becoming difficult due to the evolutionary development of drug resistance, and hence, the development of alternative treatment options mainly from herbs is crucial. The objective of this study was to investigate the antibacterial effects of ethanol extracts of stem bark, leaves and roots of Combretum molle against Streptococcus equi isolated from clinical cases of strangles using in vitro tests. METHODS: Plant extraction was performed using a maceration technique with 80% ethanol. The mean zone of inhibition was determined using the agar well diffusion method. Six serial dilutions with different concentrations (10%, 5%, 2.5%, 1.25%, 0.625% and 0.3125%) of each plant extract were prepared using dimethyl sulfoxide (DMSO). A modified agar microdilution method was used to determine the minimum inhibitory concentration (MICs) of the extracts. RESULTS: The results revealed that all plant extracts showed significant antibacterial activity. The root extract showed the best antibacterial effect compared to the others at all concentrations, with MZI values of 27.5, 23.225, 20.5, 17.9, 15.65 and 12.25 for the respective concentrations mentioned above and an MIC of 250 µg/ml. It was followed by the stem bark extract, which had MZI values of 24.67, 22.35, 18.225, 16.175, 11.125 and 8.2 millimeters and an MIC of 375 µg/ml. The leaf extract also had significant activity, with MZI values of 20.175, 18.25, 15.7, 13.125, 9.4 and 6.75 in millimeters and an MIC of 500 µg/ml. There was a direct relationship between the concentrations of the plant extracts and the level of inhibition. CONCLUSION: The test plant extracts were compared with the conventional antibiotic penicillin G, and the results indicated that the parts of the test plant have significant antibacterial activity, which may support traditional claims and could be candidates for alternative drug discoveries.


Assuntos
Combretum , Streptococcus equi , Cavalos , Animais , Equidae , Casca de Planta , Ágar , Extratos Vegetais/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Testes de Sensibilidade Microbiana/veterinária , Etanol
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA