Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Pathol ; 251(3): 310-322, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32315081

RESUMO

The phenotypic spectrum of colorectal cancer (CRC) is remarkably diverse, with seemingly endless variations in cell shape, mitotic figures and multicellular configurations. Despite this morphological complexity, histological grading of collective phenotype patterns provides robust prognostic stratification in CRC. Although mechanistic understanding is incomplete, previous studies have shown that the cortical protein ezrin controls diversification of cell shape, mitotic figure geometry and multicellular architecture, in 3D organotypic CRC cultures. Because ezrin is a substrate of Src tyrosine kinase that is frequently overexpressed in CRC, we investigated Src regulation of ezrin and morphogenic growth in 3D CRC cultures. Here we show that Src perturbations disrupt CRC epithelial spatial organisation. Aberrant Src activity suppresses formation of the cortical ezrin cap that anchors interphase centrosomes. In CRC cells with a normal centrosome number, these events lead to mitotic spindle misorientation, perturbation of cell cleavage, abnormal epithelial stratification, apical membrane misalignment, multilumen formation and evolution of cribriform multicellular morphology, a feature of low-grade cancer. In isogenic CRC cells with centrosome amplification, aberrant Src signalling promotes multipolar mitotic spindle formation, pleomorphism and morphological features of high-grade cancer. Translational studies in archival human CRC revealed associations between Src intensity, multipolar mitotic spindle frequency and high-grade cancer morphology. Collectively, our study reveals Src regulation of CRC morphogenic growth via ezrin-centrosome engagement and uncovers combined perturbations underlying transition to high-grade CRC morphology. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Centrossomo/enzimologia , Neoplasias Colorretais/enzimologia , Proteínas do Citoesqueleto/metabolismo , Mitose , Quinases da Família src/metabolismo , Células CACO-2 , Centrossomo/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Proteínas do Citoesqueleto/genética , Quinase 1 de Adesão Focal/genética , Quinase 1 de Adesão Focal/metabolismo , Células HCT116 , Humanos , Gradação de Tumores , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Transdução de Sinais , Quinases da Família src/genética
2.
J Biol Chem ; 293(8): 2939-2948, 2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29326161

RESUMO

Activating transcription factor 5 (ATF5) is a member of the ATF/cAMP response element-binding protein family of transcription factors. ATF5 regulates stress responses and cell survival, proliferation, and differentiation and also plays a role in viral infections, cancer, diabetes, schizophrenia, and the olfactory system. Moreover, it was found to also have a critical cell cycle-dependent structural function at the centrosome. However, the mechanism that controls the localization of ATF5 at the centrosome is unclear. Here we report that ATF5 is small ubiquitin-like modifier (SUMO) 2/3-modified at a conserved SUMO-targeting consensus site in various types of mammalian cells. We found that SUMOylation of ATF5 is elevated in the G1 phase of the cell cycle and diminished in the G2/M phase. ATF5 SUMOylation disrupted the interaction of ATF5 with several centrosomal proteins and dislodged ATF5 from the centrosome at the end of the M phase. Of note, blockade of ATF5 SUMOylation deregulated the centrosome cycle, impeded ATF5 translocation from the centrosome, and caused genomic instability and G2/M arrest in HeLa cells. Our results indicate that ATF5 SUMOylation is an essential mechanism that regulates ATF5 localization and function at the centrosome.


Assuntos
Fatores Ativadores da Transcrição/metabolismo , Centrossomo/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação , Ubiquitinas/metabolismo , Fatores Ativadores da Transcrição/química , Fatores Ativadores da Transcrição/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Linhagem Celular , Centrossomo/enzimologia , Sequência Consenso , Sequência Conservada , Deleção de Genes , Instabilidade Genômica , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Microscopia de Fluorescência , Mutagênese Sítio-Dirigida , Mutação , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Transporte Proteico , Interferência de RNA , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/antagonistas & inibidores , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/química , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Ubiquitinas/antagonistas & inibidores , Ubiquitinas/química , Ubiquitinas/genética
3.
J Pathol ; 244(4): 445-459, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29520890

RESUMO

Histological grading provides prognostic stratification of colorectal cancer (CRC) by scoring heterogeneous phenotypes. Features of aggressiveness include aberrant mitotic spindle configurations, chromosomal breakage, and bizarre multicellular morphology, but pathobiology is poorly understood. Protein kinase C zeta (PKCz) controls mitotic spindle dynamics, chromosome segregation, and multicellular patterns, but its role in CRC phenotype evolution remains unclear. Here, we show that PKCz couples genome segregation to multicellular morphology through control of interphase centrosome anchoring. PKCz regulates interdependent processes that control centrosome positioning. Among these, interaction between the cytoskeletal linker protein ezrin and its binding partner NHERF1 promotes the formation of a localized cue for anchoring interphase centrosomes to the cell cortex. Perturbation of these phenomena induced different outcomes in cells with single or extra centrosomes. Defective anchoring of a single centrosome promoted bipolar spindle misorientation, multi-lumen formation, and aberrant epithelial stratification. Collectively, these disturbances induce cribriform multicellular morphology that is typical of some categories of low-grade CRC. By contrast, defective anchoring of extra centrosomes promoted multipolar spindle formation, chromosomal instability (CIN), disruption of glandular morphology, and cell outgrowth across the extracellular matrix interface characteristic of aggressive, high-grade CRC. Because PKCz enhances apical NHERF1 intensity in 3D epithelial cultures, we used an immunohistochemical (IHC) assay of apical NHERF1 intensity as an indirect readout of PKCz activity in translational studies. We show that apical NHERF1 IHC intensity is inversely associated with multipolar spindle frequency and high-grade morphology in formalin-fixed human CRC samples. To conclude, defective PKCz control of interphase centrosome anchoring may underlie distinct categories of mitotic slippage that shape the development of low- or high-grade CRC phenotypes. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Centrossomo/enzimologia , Neoplasias Colorretais/enzimologia , Interfase , Proteína Quinase C/metabolismo , Células CACO-2 , Proliferação de Células , Forma Celular , Instabilidade Cromossômica , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Humanos , Gradação de Tumores , Fenótipo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteína Quinase C/genética , Transdução de Sinais , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/metabolismo
4.
J Biol Chem ; 292(31): 12874-12884, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28620049

RESUMO

The X-linked deubiquitinase USP9X has been implicated in multiple pathological disorders including malignancies and X-linked intellectual disability. However, its biological function and substrate repertoire remain to be investigated. In this study, we utilized the tandem mass tag labeling assay to identify USP9X-regulated proteins and revealed that the expression of multiple genes is altered in USP9X-deficient cells. Interestingly, we showed that USP9X promotes stabilization of centrosome proteins PCM1 and CEP55 through its catalytic activity. Remarkably, we demonstrated that USP9X is physically associated and spatially co-localized with PCM1 and CEP55 in the centrosome, and we revealed that either PCM1 or CEP55 loss resulted in impairment of USP9X centrosome localization. Moreover, we showed that USP9X is required for centrosome duplication, and this effect is dependent on its catalytic activity and its N-terminal module, which is responsible for physical association of USP9X with PCM1 and CEP55. Collectively, our experiments identified USP9X as an integral component of the centrosome where it functions to stabilize PCM1 and CEP55 and promote centrosome biogenesis.


Assuntos
Autoantígenos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centrossomo/enzimologia , Regulação da Expressão Gênica , Proteínas Nucleares/metabolismo , Ubiquitina Tiolesterase/metabolismo , Substituição de Aminoácidos , Autoantígenos/química , Autoantígenos/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Centrossomo/metabolismo , Deleção de Genes , Humanos , Imunoprecipitação , Mutação , Proteínas Nucleares/química , Proteínas Nucleares/genética , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Biogênese de Organelas , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Transporte Proteico , Proteômica/métodos , Interferência de RNA , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Ubiquitina Tiolesterase/antagonistas & inibidores , Ubiquitina Tiolesterase/química , Ubiquitina Tiolesterase/genética
5.
J Cell Sci ; 127(Pt 19): 4111-22, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25128564

RESUMO

The centrosome acts as the major microtubule-organizing center (MTOC) for cytoskeleton maintenance in interphase and mitotic spindle assembly in vertebrate cells. It duplicates only once per cell cycle in a highly spatiotemporally regulated manner. When the cell undergoes mitosis, the duplicated centrosomes separate to define spindle poles and monitor the assembly of the bipolar mitotic spindle for accurate chromosome separation and the maintenance of genomic stability. However, centrosome abnormalities occur frequently and often lead to monopolar or multipolar spindle formation, which results in chromosome instability and possibly tumorigenesis. A number of studies have begun to dissect the role of mitotic kinases, including NIMA-related kinases (Neks), cyclin-dependent kinases (CDKs), Polo-like kinases (Plks) and Aurora kinases, in regulating centrosome duplication, separation and maturation and subsequent mitotic spindle assembly during cell cycle progression. In this Commentary, we review the recent research progress on how these mitotic kinases are coordinated to couple the centrosome cycle with the cell cycle, thus ensuring bipolar mitotic spindle fidelity. Understanding this process will help to delineate the relationship between centrosomal abnormalities and spindle defects.


Assuntos
Ciclo Celular/fisiologia , Centrossomo/enzimologia , Proteínas Quinases/fisiologia , Fuso Acromático/enzimologia , Animais , Humanos , Mitose/fisiologia
6.
Proc Natl Acad Sci U S A ; 109(15): 5615-20, 2012 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-22451900

RESUMO

Our understanding of the molecular control of many disease pathologies requires the identification of direct substrates targeted by specific protein kinases. Here we describe an integrated proteomic strategy, termed kinase assay linked with phosphoproteomics, which combines a sensitive kinase reaction with endogenous kinase-dependent phosphoproteomics to identify direct substrates of protein kinases. The unique in vitro kinase reaction is carried out in a highly efficient manner using a pool of peptides derived directly from cellular kinase substrates and then dephosphorylated as substrate candidates. The resulting newly phosphorylated peptides are then isolated and identified by mass spectrometry. A further comparison of these in vitro phosphorylated peptides with phosphopeptides derived from endogenous proteins isolated from cells in which the kinase is either active or inhibited reveals new candidate protein substrates. The kinase assay linked with phosphoproteomics strategy was applied to identify unique substrates of spleen tyrosine kinase (Syk), a protein-tyrosine kinase with duel properties of an oncogene and a tumor suppressor in distinctive cell types. We identified 64 and 23 direct substrates of Syk specific to B cells and breast cancer cells, respectively. Both known and unique substrates, including multiple centrosomal substrates for Syk, were identified, supporting a unique mechanism that Syk negatively affects cell division through its centrosomal kinase activity.


Assuntos
Ensaios Enzimáticos/métodos , Fosfoproteínas/metabolismo , Proteínas Quinases/metabolismo , Proteômica/métodos , Motivos de Aminoácidos , Sequência de Aminoácidos , Linfócitos B/enzimologia , Neoplasias da Mama/enzimologia , Centrossomo/enzimologia , Células Epiteliais/enzimologia , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Dados de Sequência Molecular , Proteínas Tirosina Quinases/metabolismo , Reprodutibilidade dos Testes , Especificidade por Substrato , Quinase Syk
7.
Biol Cell ; 105(8): 359-71, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23718219

RESUMO

BACKGROUND: The centrosome is the primary site for microtubule nucleation in cells and orchestrates reorganisation of the microtubule cytoskeleton during the cell cycle. The activities of the centrosome must be closely aligned with progression of the cell cycle; misregulation of centrosome separation and duplication is a hallmark of cancer. In a subset of cells, including the developing spermatid, the centrosome becomes specialised to form the basal body thereby supporting growth of the axoneme in morphogenesis of cilia and flagella, structures critical for signalling and motility. Mammalian spermatogenesis is an excellent model system to investigate the transformations in cellular architecture that accompany these changes including formation of the flagellum. We have previously identified a leucine-rich repeat protein (PPP1R42) that contains a protein phosphatase-1 binding site and translocates from the apical nucleus to the centrosome at the base of the flagellum during spermiogenesis. In this manuscript, we examine localisation and function of PPP1R42 in a ciliated epithelial cell model as a first step in understanding the role of this protein in centrosome function and flagellar formation. RESULTS: We demonstrate that PPP1R42 localises to the basal body in ARPE-19 retinal epithelial cells. Co-localisation and co-immunoprecipitation experiments further show that PPP1R42 interacts with γ-tubulin. Inhibition of PPP1R42 with small interfering RNAs causes accumulation of centrosomes indicating premature centrosome separation. Importantly, the activity of two signalling molecules that regulate centrosome separation, PP1 phosphatase and NEK2 kinase, changes when PPP1R42 is inhibited: PP1 activity is reduced with a corresponding increase in NEK2 activity. CONCLUSIONS: We have identified a role for the PP1-binding protein, PPP1R42, in centrosome separation in ciliated ARPE-19 cells. Our finding that inhibition of PPP1R42 expression increases the number of centrosomes per cell is consistent with our model that PPP1R42 is a positive regulator of PP1. PPP1R42 depletion reduces the activity of PP1 leading to activation of NEK2, the kinase responsible for phosphorylation of centrosomal linker proteins promoting centrosome separation. This work identifies a new molecule localised to the centrosome and basal body with a role in the complex signalling network responsible for controlling centrosome activities.


Assuntos
Centrossomo/metabolismo , Células Epiteliais/metabolismo , Proteína Fosfatase 1/metabolismo , Proteínas/metabolismo , Retina/metabolismo , Linhagem Celular , Centrossomo/enzimologia , Cílios/enzimologia , Cílios/metabolismo , Células Epiteliais/enzimologia , Humanos , Proteínas de Repetições Ricas em Leucina , Ligação Proteica , Proteína Fosfatase 1/genética , Transporte Proteico , Proteínas/genética , Retina/enzimologia , Tubulina (Proteína)/metabolismo
8.
J Am Soc Nephrol ; 24(2): 253-67, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23334392

RESUMO

Precise positioning of the highly complex interdigitating podocyte foot processes is critical to form the normal glomerular filtration barrier, but the molecular programs driving this process are unknown. The protein atypical protein kinase C (aPKC)--a component of the Par complex, which localizes to tight junctions and interacts with slit diaphragm proteins--may play a role. Here, we found that the combined deletion of the aPKCλ/ι and aPKCζ isoforms in podocytes associated with incorrectly positioned centrosomes and Golgi apparatus and mislocalized molecules of the slit diaphragm. Furthermore, aPKC-deficient podocytes failed to form the normal network of foot processes, leading to defective glomerular maturation with incomplete capillary formation and mesangiolysis. Our results suggest that aPKC isoforms orchestrate the formation of the podocyte processes essential for normal glomerular development and kidney function. Defective aPKC signaling results in a dramatically simplified glomerular architecture, causing severe proteinuria and perinatal death.


Assuntos
Isoenzimas/metabolismo , Podócitos/enzimologia , Podócitos/patologia , Proteína Quinase C/metabolismo , Proteinúria/fisiopatologia , Animais , Capilares/metabolismo , Capilares/patologia , Capilares/ultraestrutura , Diferenciação Celular/fisiologia , Centrossomo/enzimologia , Centrossomo/patologia , Centrossomo/ultraestrutura , Feminino , Complexo de Golgi/enzimologia , Complexo de Golgi/patologia , Complexo de Golgi/ultraestrutura , Isoenzimas/genética , Glomérulos Renais/irrigação sanguínea , Glomérulos Renais/citologia , Glomérulos Renais/enzimologia , Masculino , Camundongos , Camundongos Knockout , Microscopia Eletrônica , Podócitos/ultraestrutura , Proteína Quinase C/genética , Proteinúria/metabolismo , Proteinúria/patologia , Transdução de Sinais/fisiologia , Junções Íntimas/enzimologia , Junções Íntimas/patologia , Junções Íntimas/ultraestrutura
9.
Traffic ; 12(3): 301-12, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21134080

RESUMO

Dictyostelium discoideum cells are professional phagocytes that provide an easily accessible system to gain insights into the mechanisms and the regulatory machinery controlling phagocytosis. Here, we describe a novel function for nuclear Dbf2-related (NDR) family kinases in phagocytosis of D. discoideum. Deletion of one of the four NDR kinases of D. discoideum, NdrA, resulted in impaired cell growth caused by reduced phagocytosis rates. Detailed analysis of NdrA-null cells revealed that the formation of phagocytic cups was delayed. Microscopic investigations showed that NdrA localizes to centrosomes, and NdrA was also identified in isolated centrosome preparations. The localization of NdrA is regulated during the cell cycle. In prophase, NdrA disappears from the centrosome and forms a cloud-like structure around the spindle, which is totally absent during later stages until completion of mitosis. Our results suggest that a signal which originates from the NdrA kinase at the centrosome affects the efficiency of phagocytosis. We assume that in NdrA-null cells the defects in phagocytosis may be caused by an impairment of vesicle trafficking, which is involved in providing new membrane at the sites of particle uptake.


Assuntos
Dictyostelium/enzimologia , Fagocitose/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Protozoários/metabolismo , Ciclo Celular/fisiologia , Centrossomo/enzimologia , Dictyostelium/genética , Imunofluorescência , Regulação Enzimológica da Expressão Gênica , Fagocitose/genética , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico , Proteínas de Protozoários/genética
10.
J Biol Chem ; 287(9): 6928-40, 2012 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-22223642

RESUMO

G protein-coupled receptor kinases (GRKs) are important regulators of G protein-coupled receptor function and mediate receptor desensitization, internalization, and signaling. While GRKs also interact with and/or phosphorylate many other proteins and modify their function, relatively little is known about the cellular localization of endogenous GRKs. Here we report that GRK5 co-localizes with γ-tubulin, centrin, and pericentrin in centrosomes. The centrosomal localization of GRK5 is observed predominantly at interphase and although its localization is not dependent on microtubules, it can mediate microtubule nucleation of centrosomes. Knockdown of GRK5 expression leads to G2/M arrest, characterized by a prolonged G2 phase, which can be rescued by expression of wild type but not catalytically inactive GRK5. This G2/M arrest appears to be due to increased expression of p53, reduced activity of aurora A kinase and a subsequent delay in the activation of polo-like kinase 1. Overall, these studies demonstrate that GRK5 is localized in the centrosome and regulates microtubule nucleation and normal cell cycle progression.


Assuntos
Divisão Celular/fisiologia , Centrossomo/enzimologia , Quinase 5 de Receptor Acoplado a Proteína G/metabolismo , Fase G2/fisiologia , Transdução de Sinais/fisiologia , Aurora Quinases , Membrana Celular/metabolismo , Quinase 5 de Receptor Acoplado a Proteína G/genética , Células HEK293 , Células HeLa , Humanos , Microtúbulos/metabolismo , Fosforilação/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , RNA Interferente Pequeno/genética , Proteína Supressora de Tumor p53/metabolismo
11.
J Biol Chem ; 287(33): 27670-81, 2012 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-22753416

RESUMO

Bipolar mitotic spindle organization is fundamental to faithful chromosome segregation. Furry (Fry) is an evolutionarily conserved protein implicated in cell division and morphology. In human cells, Fry localizes to centrosomes and spindle microtubules in early mitosis, and depletion of Fry causes multipolar spindle formation. However, it remains unknown how Fry controls bipolar spindle organization. This study demonstrates that Fry binds to polo-like kinase 1 (Plk1) through the polo-box domain of Plk1 in a manner dependent on the cyclin-dependent kinase 1-mediated Fry phosphorylation at Thr-2516. Fry also binds to Aurora A and promotes Plk1 activity by binding to the polo-box domain of Plk1 and by facilitating Aurora A-mediated Plk1 phosphorylation at Thr-210. Depletion of Fry causes centrosome and centriole splitting in mitotic spindles and reduces the kinase activity of Plk1 in mitotic cells and the accumulation of Thr-210-phosphorylated Plk1 at the spindle poles. Our results suggest that Fry plays a crucial role in the structural integrity of mitotic centrosomes and in the maintenance of spindle bipolarity by promoting Plk1 activity at the spindle poles in early mitosis.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Divisão Celular/fisiologia , Centrossomo/enzimologia , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fuso Acromático/enzimologia , Aurora Quinases , Proteínas de Ciclo Celular/genética , Ativação Enzimática , Células HeLa , Humanos , Proteínas Associadas aos Microtúbulos/genética , Fosforilação/fisiologia , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas/genética , Fuso Acromático/genética , Quinase 1 Polo-Like
12.
EMBO J ; 28(3): 234-47, 2009 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-19131964

RESUMO

Sgt1 was described previously in yeast and humans to be a Hsp90 co-chaperone and required for kinetochore assembly. We have identified a mutant allele of Sgt1 in Drosophila and characterized its function. Mutations in sgt1 do not affect overall kinetochore assembly or spindle assembly checkpoint. sgt1 mutant cells enter less frequently into mitosis and arrest in a prometaphase-like state. Mutations in sgt1 severely compromise the organization and function of the mitotic apparatus. In these cells, centrioles replicate but centrosomes fail to mature, and pericentriolar material components do not localize normally resulting in highly abnormal spindles. Interestingly, a similar phenotype was described previously in Hsp90 mutant cells and correlated with a decrease in Polo protein levels. In sgt1 mutant neuroblasts, we also observe a decrease in overall levels of Polo. Overexpression of the kinase results in a substantial rescue of the centrosome defects; most cells form normal bipolar spindles and progress through mitosis normally. Taken together, these findings suggest that Sgt1 is involved in the stabilization of Polo allowing normal centrosome maturation, entry and progression though mitosis.


Assuntos
Centrossomo/enzimologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/enzimologia , Proteínas de Choque Térmico HSP90/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Alelos , Sequência de Aminoácidos , Animais , Sobrevivência Celular , Centríolos/metabolismo , Proteínas de Drosophila/química , Estabilidade Enzimática , Cinetocoros/metabolismo , Mitose , Chaperonas Moleculares/química , Dados de Sequência Molecular , Mutação/genética , Neurônios/citologia , Neurônios/enzimologia , Fenótipo , Transporte Proteico , Fuso Acromático/metabolismo , Frações Subcelulares/metabolismo
13.
J Cell Sci ; 124(Pt 17): 2891-6, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21878496

RESUMO

In budding yeast, the microtubule-organizing center is called the spindle pole body (SPB) and shares structural components with the centriole, the central core of the animal centrosome. During meiotic interphase I, the SPB is duplicated when DNA replication takes place. Duplicated SPBs are linked and then separate to form a bipolar spindle required for homolog separation in meiosis I. During interphase II, SPBs are duplicated again, in the absence of DNA replication, to form four SPBs that establish two spindles for sister-chromatid separation in meiosis II. Here, we report that the Aurora kinase Ipl1, which is necessary for sister-chromatid cohesion, is also required for maintenance of a tight association between duplicated SPBs during meiosis, which we term SPB cohesion. Premature loss of cohesion leads to SPB overduplication and the formation of multipolar spindles. By contrast, the Polo-like kinase Cdc5 is necessary for SPB duplication and interacts antagonistically with Ipl1 at the meiotic SPB to ensure proper SPB separation. Our data suggest that Ipl1 coordinates SPB dynamics with the two chromosome segregation cycles during yeast meiosis.


Assuntos
Meiose/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomycetales/citologia , Fuso Acromático/enzimologia , Aurora Quinases , Centrossomo/enzimologia , Centrossomo/fisiologia , Interfase/fisiologia , Saccharomyces cerevisiae/enzimologia
14.
J Cell Sci ; 124(Pt 22): 3760-70, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22100915

RESUMO

The centrosomes in dividing cells follow a series of cyclical events of duplication and separation, which are tightly linked to the cell cycle. Serine/threonine-protein kinase NEK7 (NEK7) is a centrosomal kinase that is required for proper spindle formation during mitosis. In this study, we observed that centriole duplication was inhibited in NEK7-depleted cells. Ectopic expression of centrosome-directed NEK7 led to the formation of extra centrioles in a kinase-activity-dependent manner. We also observed extra centriole formation in centrosome-directed NEK6-expressing cells, suggesting that NEK6 and NEK7 might share biological activities that induce centriole duplication. The centrosomal pericentriolar material (PCM) proteins were significantly reduced in NEK7-depleted cells. The PCM proteins in NEK7-depleted cells did not accumulate at the centrosomes, even if the cells exited mitosis and progressed to the G2 phase. These results revealed that NEK7 is essential for PCM accumulation in a cell cycle stage-specific manner. Furthermore, HeLa cells depleted of NEK7 during S phase retained a higher quantity of PCM proteins and exhibited a less severe mitotic phenotype. On the basis of these results, we propose that NEK7 is involved in the recruitment of PCM proteins, which are necessary for both centriole duplication and spindle pole formation. Our study revealed that NEK7 activity is required for centrosome cycle progression not only at M phase, but also at G1 phase.


Assuntos
Autoantígenos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centríolos/enzimologia , Centrossomo/enzimologia , Interfase , Proteínas Serina-Treonina Quinases/metabolismo , Autoantígenos/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular , Centríolos/genética , Centríolos/metabolismo , Centrossomo/metabolismo , Humanos , Mitose , Quinases Relacionadas a NIMA , Proteínas Serina-Treonina Quinases/genética
15.
J Cell Sci ; 124(Pt 7): 1156-66, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21402878

RESUMO

The LIM-domain protein Ajuba localizes at sites of epithelial cell-cell adhesion and has also been implicated in the activation of Aurora-A (Aur-A). Despite the expected importance of Ajuba, Ajuba-deficient mice are viable, which has been attributed to functional redundancy with the related LIM-domain protein LIMD1. To gain insights into the function of Ajuba, we investigated its role in Drosophila, where a single gene (jub) encodes a protein closely related to Ajuba and LIMD1. We identified a key function in neural stem cells, where Jub localizes to the centrosome. In these cells, mutation in jub leads to centrosome separation defects and aberrant mitotic spindles, which is a phenotype similar to that of aur-A mutants. We show that in jub mutants Aur-A activity is not perturbed, but that Aur-A recruitment and maintenance at the centrosome is affected. As a consequence the active kinase is displaced from the centrosome. On the basis of our studies in Drosophila neuroblasts, we propose that a key function of Ajuba, in these cells, is to maintain active Aur-A at the centrosome during mitosis.


Assuntos
Proteínas de Transporte/metabolismo , Centrossomo/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Ativadores de Enzimas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Aurora Quinase A , Aurora Quinases , Proteínas de Transporte/genética , Centrossomo/enzimologia , Drosophila/citologia , Drosophila/enzimologia , Drosophila/genética , Proteínas de Drosophila/genética , Ativação Enzimática , Proteínas com Domínio LIM , Mitose , Mutação , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico , Fuso Acromático/genética , Fuso Acromático/metabolismo
16.
Mol Cell Proteomics ; 10(1): M110.004457, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20860994

RESUMO

Polo-like kinases regulate many aspects of mitotic and meiotic progression from yeast to man. In early mitosis, mammalian Polo-like kinase 1 (Plk1) controls centrosome maturation, spindle assembly, and microtubule attachment to kinetochores. However, despite the essential and diverse functions of Plk1, the full range of Plk1 substrates remains to be explored. To investigate the Plk1-dependent phosphoproteome of the human mitotic spindle, we combined stable isotope labeling by amino acids in cell culture with Plk1 inactivation or depletion followed by spindle isolation and mass spectrometry. Our study identified 358 unique Plk1-dependent phosphorylation sites on spindle proteins, including novel substrates, illustrating the complexity of the Plk1-dependent signaling network. Over 100 sites were validated by in vitro phosphorylation of peptide arrays, resulting in a broadening of the Plk1 consensus motif. Collectively, our data provide a rich source of information on Plk1-dependent phosphorylation, Plk1 docking to substrates, the influence of phosphorylation on protein localization, and the functional interaction between Plk1 and Aurora A on the early mitotic spindle.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteoma/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fuso Acromático/enzimologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Aurora Quinases , Centrossomo/enzimologia , Sequência Consenso , Ativação Enzimática , Células HeLa , Humanos , Cinesinas/metabolismo , Dados de Sequência Molecular , Fosfoproteínas/química , Fosforilação , Proteínas Serina-Treonina Quinases/química , Proteoma/química , RNA Interferente Pequeno/metabolismo , Reprodutibilidade dos Testes , Especificidade por Substrato , Quinase 1 Polo-Like
17.
Proc Natl Acad Sci U S A ; 107(49): 21022-7, 2010 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-21097701

RESUMO

Centrosomes are primary microtubule (MT)-organizing centers (MTOCs). During mitosis, they dramatically increase their size and MT-nucleating activity and participate in spindle assembly from spindle poles. These events require the serine/threonine kinase, Aurora A (AurA), and the centrosomal protein of 192 kDa (Cep192)/spindle defective 2 (Spd-2), but the underlying mechanism remains unclear. We have found that Cep192, unlike targeting protein for Xklp2 (TPX2), a known MT-localizing AurA activator, is an AurA cofactor in centrosome-driven spindle assembly. Cep192, through a direct interaction, targets AurA to mitotic centrosomes where the locally accumulating AurA forms homodimers or oligomers. The dimerization of endogenous AurA, in the presence of bound Cep192, triggers potent kinase activation that, in turn, drives MT assembly. Depletion of Cep192 or specific interference with AurA-Cep192 binding did not prevent AurA oligomerization on MTs but abrogated AurA recruitment to centrosomes and its activation by either sperm nuclei or anti-AurA antibody (αAurA)-induced dimerization. In these settings, MT assembly by both centrosomes and αAurA-coated beads was also abolished or severely compromised. Hence, Cep192 activates AurA by a mechanism different from that previously described for TPX2. The Cep192-mediated mechanism maximizes AurA activity at centrosomes and appears essential for the function of these organelles as MTOCs.


Assuntos
Centrossomo/metabolismo , Proteínas Cromossômicas não Histona/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Fuso Acromático/metabolismo , Animais , Aurora Quinases , Centrossomo/enzimologia , Proteínas Cromossômicas não Histona/metabolismo , Ativação Enzimática , Humanos , Microtúbulos , Dados de Sequência Molecular , Organelas/química , Organelas/metabolismo , Multimerização Proteica , Transporte Proteico , Xenopus laevis
18.
J Biol Chem ; 285(43): 32988-32998, 2010 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-20729194

RESUMO

Mps1 is a dual specificity protein kinase with key roles in regulating the spindle assembly checkpoint and chromosome-microtubule attachments. Consistent with these mitotic functions, Mps1 protein levels fluctuate during the cell cycle, peaking at early mitosis and abruptly declining during mitotic exit and progression into the G(1) phase. Although evidence in budding yeast indicates that Mps1 is targeted for degradation at anaphase by the anaphase-promoting complex (APC)-c(Cdc20) complex, little is known about the regulatory mechanisms that govern Mps1 protein levels in human cells. Here, we provide evidence for the ubiquitin ligase/proteosome pathway in regulating human Mps1 levels during late mitosis through G(1) phase. First, we showed that treatment of HEK 293T cells with the proteosome inhibitor MG132 resulted in an increase in both the polyubiquitination and the accumulation of Mps1 protein levels. Next, Mps1 was shown to co-precipitate with APC and its activators Cdc20 and Cdh1 in a cell cycle-dependent manner. Consistent with this, overexpression of Cdc20 or Cdh1 led to a marked reduction of endogenous Mps1 levels during anaphase or G(1) phase, respectively. In contrast, depletion of Cdc20 or Cdh1 by RNAi treatment both led to the stabilization of Mps1 protein during mitosis or G(1) phase, respectively. Finally, we identified a single D-box motif in human Mps1 that is required for its ubiquitination and degradation. Failure to appropriately degrade Mps1 is sufficient to trigger centrosome amplification and mitotic abnormalities in human cells. Thus, our results suggest that the sequential actions of the APC-c(Cdc20) and APC-c(Cdh1) ubiquitin ligases regulate the clearance of Mps1 levels and are critical for Mps1 functions during the cell cycle in human cells.


Assuntos
Caderinas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Motivos de Aminoácidos , Antígenos CD , Caderinas/genética , Proteínas Cdc20 , Proteínas de Ciclo Celular/genética , Linhagem Celular , Centrossomo/enzimologia , Estabilidade Enzimática/genética , Humanos , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases , Ubiquitina-Proteína Ligases/genética
19.
Stem Cells ; 28(3): 450-61, 2010 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-20104581

RESUMO

Cyclin-dependent kinase two (Cdk2) is the major regulator of the G1/S transition and the target of an activated G1 checkpoint in somatic cells. In the presence of DNA damage, Cdk2 kinase activity is abrogated by a deficiency of Cdc25A phosphatase, which is marked by Chk1/Chk2 for proteasomal degradation. Embryonic stem cells (ESCs) lack a G1 checkpoint response. In this study, we analyzed the G1 checkpoint pathways in mouse ESCs (mESCs) in the presence of DNA double-strand breaks evoked by ionizing radiation (IR). We show that checkpoint pathways, which operate during G1 phase in somatic cells, are activated in mESCs after IR; however, Cdk2 activity is not abolished. We demonstrate that Cdc25A is degraded in mESCs, but this degradation is not regulated by Chk1 and Chk2 kinases because they are sequestered to the centrosome. Instead, Cdc25A degradation is governed by glycogen synthase kinase-3beta kinase. We hypothesize that Cdc25A degradation does not inhibit Cdk2 activity because a considerable proportion of Cdk2 molecules localize to the cytoplasm and centrosomes in mESCs, where they may be sheltered from regulation by nuclear Cdc25A. Finally, we show that a high Cdk2 activity, which is irresponsive to DNA damage, is the driving force of the rapid escape of mESCs from G1 phase after DNA damage.


Assuntos
Quinase 2 Dependente de Ciclina/genética , Dano ao DNA/genética , Células-Tronco Embrionárias/enzimologia , Genes cdc/fisiologia , Fosfatases cdc25/genética , Animais , Ciclo Celular/genética , Linhagem Celular , Centrossomo/enzimologia , Quinase 1 do Ponto de Checagem , Quinase do Ponto de Checagem 2 , Citoplasma/enzimologia , DNA/genética , DNA/efeitos da radiação , Reparo do DNA , Células-Tronco Embrionárias/citologia , Ativação Enzimática/genética , Fase G1/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Camundongos , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Radiação Ionizante , Transdução de Sinais/genética
20.
Nat Cell Biol ; 3(1): 38-42, 2001 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11146624

RESUMO

Organelles called centrosomes in metazoans or spindle pole bodies (SPBs) in yeast direct the assembly of a bipolar spindle that is essential for faithful segregation of chromosomes during mitosis. Abnormal accumulation of multiple centrosomes leads to genome instability, and has been observed in both tumour cells and cells with targeted mutations in tumour-suppressor genes. The defects that lead to centrosome amplification are not understood. We have recapitulated the multiple-centrosome phenotype in budding yeast by disrupting the activity of specific cyclin-dependent kinase (CDK) complexes. Our observations are reminiscent of mechanisms that govern DNA replication, and show that specific cyclin/CDK activities function both to promote SPB duplication and to prevent SPB reduplication.


Assuntos
Transformação Celular Neoplásica/genética , Centrossomo/enzimologia , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Mitose/fisiologia , Proteínas de Saccharomyces cerevisiae , Fuso Acromático/enzimologia , Leveduras/genética , Ciclo Celular/genética , Ciclina B/genética , Ciclina B/metabolismo , Quinases Ciclina-Dependentes/genética , Ciclinas/genética , Leveduras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA