RESUMO
Quiescence (G0) allows cycling cells to reversibly cease proliferation. A decision to enter quiescence is suspected of occurring early in G1, before the restriction point (R). Surprisingly, we have identified G2 as an interval during which inhibition of the protein phosphatase PP2A results in failure to exhibit stable quiescence. This effect is accompanied by shortening of the ensuing G1. The PP2A subcomplex required for stable G0 contains the B56γ B subunit. After PP2A inhibition in G2, aberrant overexpression of cyclin E occurs during mitosis and is responsible for overriding quiescence. Strikingly, suppression of Ras signaling re-establishes normal cyclin E levels during M and restores G0. These data point to PP2A-B56γ-driven Ras signaling modulation in G2 as essential for suppressing aberrant cyclin E expression during mitosis and thereby achieving normal G0 control. Thus, G2 is an interval during which the length and growth factor dependence of the next G1 interval are established.
Assuntos
Fase G1/genética , Fase G2/genética , Proteína Oncogênica p21(ras)/genética , Proteína Fosfatase 2/genética , Fase de Repouso do Ciclo Celular/fisiologia , Linhagem Celular , Ciclina E/biossíntese , Humanos , Células MCF-7 , Mitose/genética , Subunidades Proteicas/genética , Interferência de RNA , RNA Interferente Pequeno , Transdução de Sinais/genéticaRESUMO
Adult C. elegans germline stem cells (GSCs) and mouse embryonic stem cells (mESCs) exhibit a non-canonical cell cycle structure with an abbreviated G1 phase and phase-independent expression of Cdk2 and cyclin E. Mechanisms that promote the abbreviated cell cycle remain unknown, as do the consequences of not maintaining an abbreviated cell cycle in these tissues. In GSCs, we discovered that loss of gsk-3 results in reduced GSC proliferation without changes in differentiation or responsiveness to GLP-1/Notch signaling. We find that DPL-1 transcriptional activity inhibits CDK-2 mRNA accumulation in GSCs, which leads to slower S-phase entry and progression. Inhibition of dpl-1 or transgenic expression of CDK-2 via a heterologous germline promoter rescues the S-phase entry and progression defects of the gsk-3 mutants, demonstrating that transcriptional regulation rather than post-translational control of CDK-2 establishes the abbreviated cell cycle structure in GSCs. This highlights an inhibitory cascade wherein GSK-3 inhibits DPL-1 and DPL-1 inhibits cdk-2 transcription. Constitutive GSK-3 activity through this cascade maintains an abbreviated cell cycle structure to permit the efficient proliferation of GSCs necessary for continuous tissue output.
Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/embriologia , Quinase 2 Dependente de Ciclina/biossíntese , Células Germinativas/citologia , Quinase 3 da Glicogênio Sintase/metabolismo , Fase S/fisiologia , Células-Tronco/citologia , Fatores de Transcrição/genética , Animais , Caenorhabditis elegans/citologia , Proteínas de Caenorhabditis elegans/metabolismo , Diferenciação Celular/genética , Proliferação de Células/genética , Ciclina E/biossíntese , Quinase 2 Dependente de Ciclina/genética , Quinase 3 da Glicogênio Sintase/genética , Interferência de RNA , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Receptores Notch/metabolismo , Transdução de Sinais/genética , Transcrição Gênica/genéticaRESUMO
E-type cyclins E1 (CcnE1) and E2 (CcnE2) are regulatory subunits of cyclin-dependent kinase 2 (Cdk2) and thought to control the transition of quiescent cells into the cell cycle. Initial findings indicated that CcnE1 and CcnE2 have largely overlapping functions for cancer development in several tumor entities including hepatocellular carcinoma (HCC). In the present study, we dissected the differential contributions of CcnE1, CcnE2, and Cdk2 for initiation and progression of HCC in mice and patients. To this end, we tested the HCC susceptibility in mice with constitutive deficiency for CcnE1 or CcnE2 as well as in mice lacking Cdk2 in hepatocytes. Genetic inactivation of CcnE1 largely prevented development of liver cancer in mice in two established HCC models, while ablation of CcnE2 had no effect on hepatocarcinogenesis. Importantly, CcnE1-driven HCC initiation was dependent on Cdk2. However, isolated primary hepatoma cells typically acquired independence on CcnE1 and Cdk2 with increasing progression in vitro, which was associated with a gene signature involving secondary induction of CcnE2 and up-regulation of cell cycle and DNA repair pathways. Importantly, a similar expression profile was also found in HCC patients with elevated CcnE2 expression and poor survival. In general, overall survival in HCC patients was synergistically affected by expression of CcnE1 and CcnE2, but not through Cdk2. Our study suggests that HCC initiation specifically depends on CcnE1 and Cdk2, while HCC progression requires expression of any E-cyclin, but no Cdk2.
Assuntos
Carcinoma Hepatocelular/metabolismo , Transformação Celular Neoplásica/metabolismo , Ciclina E/biossíntese , Quinase 2 Dependente de Ciclina/biossíntese , Reparo do DNA , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/metabolismo , Proteínas Oncogênicas/biossíntese , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Ciclina E/genética , Quinase 2 Dependente de Ciclina/genética , Ciclinas/biossíntese , Ciclinas/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Knockout , Proteínas Oncogênicas/genéticaRESUMO
Circular RNA (circRNA) is a subclass of noncoding RNA (ncRNA) detected within mammalian tissues and cells. However, its regulatory role during the proliferation phase of rat liver regeneration (LR) remains unreported. This study was designed to explore their regulatory mechanisms in cell proliferation of LR. The circRNA expression profile was detected by high-throughput sequencing. It was indicated that 260 circRNAs were differentially expressed during the proliferation phase of rat LR. Among them, circ-14723 displayed a significantly differential expression. We further explored its regulatory mechanism in rat hepatocytes (BRL-3A cells). First, EdU, flow cytometry and western blot (WB) indicated that knocking down circ-14723 inhibited BRL-3A cells proliferation. Second, RNA-Pulldown and dual-luciferase report assay showed that circ-14723 could sponge rno-miR-16-5p. At last, WB showed that the reported target genes of rno-miR-16-5p, CCND1, and CCNE1 were downregulated after knocking down circ-14723. In conclusion, we found that circ-14723 exerted a critical role in G1/S arrest to promote cell proliferation via rno-miR-16-5p/CCND1 and CCNE1 axis in rat LR. This finding further revealed the regulatory mechanisms of circRNA on cell proliferation of LR, and might provide a potential target for clinical problems.
Assuntos
Proliferação de Células/genética , Regulação da Expressão Gênica/genética , Hepatócitos/metabolismo , Regeneração Hepática/genética , MicroRNAs/genética , RNA Circular/genética , Animais , Ciclina D1/biossíntese , Ciclina D1/genética , Ciclina E/biossíntese , Ciclina E/genética , Masculino , Ratos , Ratos Sprague-DawleyRESUMO
PURPOSE: To investigate the overexpression of genes in sebaceous gland carcinoma (SGC) of the eyelid compared to sebaceous adenoma of the eyelid in order to elucidate the molecular mechanism underlying pathogenesis. METHODS: We performed histopathological examination of eyelid tissues surgically removed from four patients diagnosed with SGC (cases 1-3) and sebaceous adenoma (case 4) of the eyelid. Next, we performed global gene expression analysis of surgical tissue samples using a GeneChip® system and the Ingenuity Pathways Knowledge Base. The results of the GeneChip® analysis were explored with quantitative real-time polymerase chain reaction (qRT-PCR) analysis. RESULTS: In the SGC samples, we found that 211, 199, and 199 genes, respectively, showed ≥ 2.0-fold higher expression than those in the sebaceous adenoma sample (case 4); 194 genes were common to all three SGC samples. For the 194 genes with upregulated expression, functional category analysis showed that SGC of the eyelid employed a unique gene network, including cyclin-dependent kinase inhibitor 2A (CDKN2A), cyclin-dependent kinase 1 (CDK1), and cyclin E1 (CCNE1), which are related to cell cycle progression, incidence of tumor, and cell viability. Furthermore, qRT-PCR analysis showed that the expression levels of CDKN2A, CDK1, and CCNE1 were significantly upregulated in all SGC cases compared to those in the sebaceous adenoma case. These data were similar to the results of microarray analysis. CONCLUSION: Overexpression of cell cycle-related genes CDKN2A, CDK1, CCNE1, and their gene network may help elucidate the pathogenic pathway of SGC of the eyelid at the molecular level.
Assuntos
Adenocarcinoma Sebáceo/genética , Proteína Quinase CDC2/genética , Ciclina E/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Neoplasias Palpebrais/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Oncogênicas/genética , Neoplasias das Glândulas Sebáceas/genética , Adenocarcinoma Sebáceo/metabolismo , Adenocarcinoma Sebáceo/patologia , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/biossíntese , Biomarcadores Tumorais/genética , Proteína Quinase CDC2/biossíntese , Ciclina E/biossíntese , Inibidor p16 de Quinase Dependente de Ciclina/biossíntese , Neoplasias Palpebrais/metabolismo , Neoplasias Palpebrais/patologia , Feminino , Humanos , Imuno-Histoquímica , Masculino , Proteínas Oncogênicas/biossíntese , RNA Neoplásico/genética , Neoplasias das Glândulas Sebáceas/metabolismo , Neoplasias das Glândulas Sebáceas/patologia , Glândulas Sebáceas/metabolismo , Glândulas Sebáceas/patologiaRESUMO
Molecular subtypes of breast cancer are defined on the basis of gene expression and genomic/epigenetic pattern differences. Different subtypes are thought to originate from distinct cell lineages, but the early activation of an oncogene could also play a role. It is difficult to discriminate the respective inputs of oncogene activation or cell type of origin. In this work, we wished to determine whether activation of distinct oncogenic pathways in human mammary epithelial cells (HMEC) could lead to different patterns of genetic and epigenetic changes. To this aim, we transduced shp53 immortalized HMECs in parallel with the CCNE1, WNT1 and RASv12 oncogenes which activate distinct oncogenic pathways and characterized them at sequential stages of transformation for changes in their genetic and epigenetic profiles. We show that initial activation of CCNE1, WNT1 and RASv12, in shp53 HMECs results in different and reproducible changes in mRNA and micro-RNA expression, copy number alterations (CNA) and DNA methylation profiles. Noticeably, HMECs transformed by RAS bore very specific profiles of CNAs and DNA methylation, clearly distinct from those shown by CCNE1 and WNT1 transformed HMECs. Genes impacted by CNAs and CpG methylation in the RAS and the CCNE1/WNT1 clusters showed clear differences, illustrating the activation of distinct pathways. Our data show that early activation of distinct oncogenic pathways leads to active adaptive events resulting in specific sets of CNAs and DNA methylation changes. We, thus, propose that activation of different oncogenes could have a role in reshaping the genetic landscape of breast cancer subtypes.
Assuntos
Neoplasias da Mama/genética , Glândulas Mamárias Humanas/fisiologia , Oncogenes , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Ciclina E/biossíntese , Ciclina E/genética , Metilação de DNA , Epigênese Genética , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Células Epiteliais/fisiologia , Feminino , Dosagem de Genes , Regulação Neoplásica da Expressão Gênica , Genoma Humano , Xenoenxertos , Humanos , Glândulas Mamárias Humanas/metabolismo , Glândulas Mamárias Humanas/patologia , Camundongos , Camundongos Nus , Camundongos SCID , Proteínas Oncogênicas/biossíntese , Proteínas Oncogênicas/genética , Proteínas Proto-Oncogênicas p21(ras)/biossíntese , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteína Wnt1/biossíntese , Proteína Wnt1/genéticaRESUMO
Cyclin E and hepatocyte growth factor (HGF) have been observed as a multifaceted factor in many cancers, and the assessment of microvascular density (MVD) and micro-lymphatic vessel density (MLVD) has been used to quantify tumor angiogenesis and lymphangiogenesis. The aim of this study was to explore the association between expression of cyclin E, HGF, MVD, and MLVD, and clinicopathologic parameters in esophageal squamous cell carcinoma (ESCC). The expression of cyclin E, HGF, MVD, and MLVD were detected using immunohistochemically anticyclin E, HGF, CD34, and lymphatic vessel endothelial hyaluronan receptor 1 in 168 surgically resected ESCC cases and 30 normal esophageal mucosal samples. The expression levels of cyclin E, HGF, MVD, and MLVD were higher compared to controls. High cyclin E and HGF expression was found more frequently in the tumors larger than 5 cm (P < .001), with poorer differentiation (P = .034) and higher tumor node metastasis (TNM) staging (P = .009) compared to their counterparts. Both MVD and MLVD values were found to be higher in the tumors larger than 5 cm (P < .001), with poorer differentiation (P < .001) and higher TNM staging (P < .001) compared to their counterparts. Furthermore, the expression of MVD and MLVD in both the high cyclin E and high HGF expression groups was significantly higher compared to the low cyclin E and HGF expression groups (P < .001). This study demonstrated that high cyclin E and HGF expression is closely correlated with tumor size, tumor differentiation degree, and TNM stage in patients with ESCC. These findings proposed that cyclin E and HGF could serve as novel molecular markers for preoperational evaluation of ESCC.
Assuntos
Biomarcadores Tumorais/biossíntese , Carcinoma de Células Escamosas/metabolismo , Ciclina E/biossíntese , Neoplasias Esofágicas/metabolismo , Fator de Crescimento de Hepatócito/biossíntese , Vasos Linfáticos/metabolismo , Neovascularização Patológica/metabolismo , Idoso , Carcinoma de Células Escamosas/irrigação sanguínea , Carcinoma de Células Escamosas/patologia , Neoplasias Esofágicas/irrigação sanguínea , Neoplasias Esofágicas/patologia , Feminino , Humanos , Imuno-Histoquímica , Vasos Linfáticos/patologia , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Neovascularização Patológica/patologia , PrognósticoRESUMO
Ureaplasma spp. are known to be associated with human genitourinary tract diseases and perinatal diseases and Ureaplasma spp. Lipid-associated membrane proteins (LAMPs) play important roles in their related diseases. However, the exact mechanism underlying pathogenesis of Ureaplasma spp. LAMPs is largely unknown. In this study, we explored the pathogenic mechanisms of Ureaplasma spp. LAMPs by elucidating their role in modulating the cell cycle and related signaling pathways in human monocytic cell U937, which is highly related to the inflammatory and protective effect in infectious diseases. We utilized the two ATCC reference strains (Ureaplasma parvum serovar 3 str. ATCC 27,815 (UPA3) and Ureaplasma urealyticum serovar 8 str. ATCC 27,618 (UUR8)) and nine clinical isolates which including both UPA and UUR to study the effects of Ureaplasma spp. LAMPs on U937 in vitro. We found that LAMPs derived from UUR8 and both UPA and UUR of clinical strains markedly inhibited the cell proliferation, while UPA3 LAMPs suppressed slightly. Besides, the result of flow cytometry analysis indicated all the Ureaplasma spp. LAMPs could arrest U937 cells in G1 phase. Next, we found that the cell cycle arrest was associated with increased levels of p53 and p21, and a concomitant decrease in the levels of CDK2, CDK4, CDK6 and cyclin E1 at both transcriptional and translational levels after treatment with LAMPs derived from UUR8 or clinical strains, while only cyclin E1 was down-regulated after treatment with UPA3 LAMPs. Further study showed that p53 down-regulation had almost no effect on the distribution of cell cycle and the expression of p21. In conclusion, this study demonstrated that LAMPs derived from UUR8 and clinical strains could inhibit the proliferation of U937 cells by inducing G1 cell cycle arrest through increasing the p21 expression in a p53-independent manner, while UPA3 LAMPs could induce the cell cycle arrest slightly. Our study could contribute to the understanding of Ureaplasma spp. pathogenesis, which has potential value for the treatment of Ureaplasma spp. infections.
Assuntos
Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular/fisiologia , Lipoproteínas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Infecções por Ureaplasma/patologia , Ureaplasma/patogenicidade , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Ciclina E/biossíntese , Quinase 2 Dependente de Ciclina/biossíntese , Quinase 4 Dependente de Ciclina/biossíntese , Quinase 6 Dependente de Ciclina/biossíntese , Humanos , Proteínas Oncogênicas/biossíntese , Células U937 , Ureaplasma/isolamento & purificação , Doenças Urológicas/microbiologiaRESUMO
OBJECTIVES: Readily apparent cyclin E1 expression occurs in 50% of HGSOC, but only half are linked to 19q12 locus amplification. The amplified/cyclin E1hi subset has intact BRCA1/2, unfavorable outcome, and is potentially therapeutically targetable. We studied whether non-amplified/cyclin E1hi HGSOC has similar characteristics. We also assessed the expression of cyclin E1 degradation-associated proteins, FBXW7 and USP28, as potential drivers of high cyclin E1 expression in both subsets. METHODS: 262 HGSOC cases were analyzed by in situ hybridization for 19q12 locus amplification and immunohistochemistry for cyclin E1, URI1 (another protein encoded by the 19q12 locus), FBXW7 and USP28 expression. Tumors were classified by 19q12 amplification status and correlated to cyclin E1 and URI1 expression, BRCA1/2 germline mutation, FBXW7 and USP28 expression, and clinical outcomes. Additionally, we assessed the relative genomic instability of amplified/cyclin E1hi and non-amplified/cyclin E1hi groups of HGSOC datasets from The Cancer Genome Atlas. RESULTS: Of the 82 cyclin E1hi cases, 43 (52%) were amplified and 39 (48%) were non-amplified. Unlike amplified tumors, non-amplified/cyclin E1hi tumor status was not mutually exclusive with gBRCA1/2 mutation. The non-amplified/cyclin E1hi group had significantly increased USP28, while the amplified/cyclin E1hi cancers had significantly lower FBXW7 expression consistent with a role for both in stabilizing cyclin E1. Notably, only the amplified/cyclin E1hi subset was associated with genomic instability and had a worse outcome than non-amplified/cyclin E1hi group. CONCLUSIONS: Amplified/cyclin E1hi and non-amplified/cyclin E1hi tumors have different pathological and biological characteristics and clinical outcomes indicating that they are separate subsets of cyclin E1hi HGSOC.
Assuntos
Cromossomos Humanos Par 19 , Ciclina E/genética , Cistadenocarcinoma Seroso/genética , Proteínas Oncogênicas/genética , Neoplasias Ovarianas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Proteína BRCA1/biossíntese , Proteína BRCA1/genética , Proteína BRCA2/biossíntese , Proteína BRCA2/genética , Ciclina E/biossíntese , Cistadenocarcinoma Seroso/metabolismo , Proteína 7 com Repetições F-Box-WD/biossíntese , Proteína 7 com Repetições F-Box-WD/genética , Feminino , Amplificação de Genes , Instabilidade Genômica , Humanos , Pessoa de Meia-Idade , Proteínas Oncogênicas/biossíntese , Neoplasias Ovarianas/metabolismo , Ubiquitina Tiolesterase/biossíntese , Ubiquitina Tiolesterase/genéticaRESUMO
MTA3 overexpression has been implicated in carcinogenesis. The aim of the present study was to explore the clinical significance and biological roles of MTA3 in human colorectal cancer and colorectal cancer cells. A total of 80 cases of colorectal cancer tissues were examined by immunohistochemistry for MTA3 protein expression. We analyzed the relationship between MTA3 and clinical factors and the results showed that MTA3 was overexpressed in 51.25% (41/80) cancer cases. There was significant associations between MTA3 overexpression and advanced TNM stage (p = 0.0086) and Ki67 index (p = 0.001). We overexpressed MTA3 in LoVo cells and depleted its expression in HCT15 cells. The results showed that MTA3 promoted cancer cell proliferation, invasion, migration, and cell cycle progression, and inhibited 5-fluorouracil-induced apoptosis in LoVo cell line. MTA3 depletion in HCT15 cell line showed the opposite effects. In addition, we found that MTA3 positively regulated cell cycle proteins including cyclin D1 and cyclin E. It also upregulated Bcl2 and downregulated Bax expression. Furthermore, we found that MTA3 could activate Wnt signaling pathway by upregulating Wnt target proteins. Our results demonstrated that MTA3 overexpression contributes to colorectal cancer carcinogenesis, progression, and chemoresistance. MTA3 could serve as a potential therapeutic target in colorectal cancer.
Assuntos
Carcinogênese/genética , Proliferação de Células/genética , Neoplasias Colorretais/genética , Proteínas de Neoplasias/genética , Adulto , Idoso , Apoptose/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Ciclina D1/biossíntese , Ciclina E/biossíntese , Progressão da Doença , Feminino , Fluoruracila/administração & dosagem , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/biossíntese , Estadiamento de Neoplasias , Proteínas Oncogênicas/biossíntese , Via de Sinalização Wnt/efeitos dos fármacosRESUMO
Noxin (also called chromosome 11 open reading frame 82 or DNA damage-induced apoptosis suppressor) is associated with anti-apoptosis and cell proliferation in response to stress signals. However, to our knowledge, the role of Noxin in regulating cell proliferation is still controversial and there are no reports of the function and clinicopathological association in breast cancer. In this study, immunohistochemistry results showed that Noxin expression was significantly correlated with advanced tumor-node-metastasis stage ( p = 0.027), positive regional lymph node metastasis ( p = 0.002), and poor overall survival ( p = 0.002). Proliferation assay results showed that Noxin obviously promoted the ability of proliferation of normal breast cells. Subsequent western blot results revealed that Cyclin D1 and Cyclin E1 were upregulated by overexpressing Noxin, whereas Cyclin D1 and Cyclin E1 were downregulated after depleting Noxin. The levels of phosphorylated P38 and activating transcription factor 2 were obviously increased after overexpressing Noxin, and their expression was downregulated accordingly by transfecting Noxin-small interfering RNA. Moreover, P38 inhibitor counteracted the elevating expression of phosphorylated activating transcription factor 2, Cyclin D1, and Cyclin E1 induced by Noxin overexpression and thereby reversed the effect of Noxin overexpression on facilitating cell growth. Taken together, our studies indicated that Noxin was overexpressed in breast cancer and its positive expression was significantly correlated with advance tumor-node-metastasis stage, positive lymph node metastasis, and poor prognosis. Noxin facilitated the expression of Cyclin D1 and Cyclin E1 through activating P38-activating transcription factor 2 signaling pathway, thus enhanced cell growth of breast cancer.
Assuntos
Fator 2 Ativador da Transcrição/genética , Proteínas Reguladoras de Apoptose/genética , Neoplasias da Mama/genética , Ciclina D1/biossíntese , Ciclina E/biossíntese , Proteínas Oncogênicas/biossíntese , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Fator 2 Ativador da Transcrição/biossíntese , Adulto , Apoptose/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Ciclo Celular/genética , Proteínas de Ciclo Celular , Proliferação de Células/genética , Ciclina D1/genética , Ciclina E/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Metástase Linfática , Células MCF-7 , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Proteínas Oncogênicas/genética , RNA Interferente Pequeno/genética , Transdução de Sinais/genética , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidoresRESUMO
Loss of function of cyclin E1 or E2, important regulators of the mitotic cell cycle, yields viable mice, but E2-deficient males display reduced fertility. To elucidate the role of E-type cyclins during spermatogenesis, we characterized their expression patterns and produced additional deletions of Ccne1 and Ccne2 alleles in the germline, revealing unexpected meiotic functions. While Ccne2 mRNA and protein are abundantly expressed in spermatocytes, Ccne1 mRNA is present but its protein is detected only at low levels. However, abundant levels of cyclin E1 protein are detected in spermatocytes deficient in cyclin E2 protein. Additional depletion of E-type cyclins in the germline resulted in increasingly enhanced spermatogenic abnormalities and corresponding decreased fertility and loss of germ cells by apoptosis. Profound meiotic defects were observed in spermatocytes, including abnormal pairing and synapsis of homologous chromosomes, heterologous chromosome associations, unrepaired double-strand DNA breaks, disruptions in telomeric structure and defects in cyclin-dependent-kinase 2 localization. These results highlight a new role for E-type cyclins as important regulators of male meiosis.
Assuntos
Ciclina E/genética , Quinase 2 Dependente de Ciclina/genética , Ciclinas/biossíntese , Proteínas Oncogênicas/genética , Animais , Pareamento Cromossômico/genética , Ciclina E/biossíntese , Quinase 2 Dependente de Ciclina/metabolismo , Ciclinas/genética , Quebras de DNA de Cadeia Dupla , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Masculino , Meiose , Camundongos , Proteínas Oncogênicas/biossíntese , Espermatócitos/metabolismo , Espermatogênese/genética , Telômero/genética , Testículo/metabolismoRESUMO
Stem cells generate progeny that undergo terminal differentiation. The initiation and maintenance of the differentiated status is crucial for tissue development, function and homeostasis. Drosophila neural stem cells (neuroblasts) are a model for stem cell self-renewal and differentiation; they divide asymmetrically to self-renew and generate the neurons and glia of the CNS. Here we report the identification of midlife crisis (mdlc; CG4973) as a gene required for the maintenance of neuronal differentiation and for neuroblast proliferation in Drosophila. mdlc encodes a ubiquitously expressed zinc-finger-containing protein with conserved orthologs from yeast to humans that are reported to have a role in RNA splicing. Using clonal analysis, we demonstrate that mdlc mutant neurons initiate but fail to complete differentiation, as judged by the loss of the pro-differentiation transcription factor Prospero, followed by derepression of the neuroblast factors Deadpan, Asense and Cyclin E. RNA-seq shows that loss of Mdlc decreases pros transcript levels and results in aberrant pros splicing. Importantly, misexpression of the full-length human ortholog, RNF113A, completely rescues all CNS defects in mdlc mutants. We conclude that Mdlc plays an essential role in maintaining neuronal differentiation, raising the possibility that RNF113A regulates neuronal differentiation in the human CNS.
Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Sistema Nervoso/metabolismo , Células-Tronco Neurais/metabolismo , Neurônios/citologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Diferenciação Celular , Proliferação de Células , Ciclina E/biossíntese , Proteínas de Ligação a DNA , Proteínas de Drosophila/biossíntese , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Sistema Nervoso/embriologia , Neurônios/metabolismo , Proteínas Nucleares/biossíntese , Proteínas Nucleares/genética , Interferência de RNA , Splicing de RNA , RNA Interferente Pequeno , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Dedos de ZincoRESUMO
Increasing evidences have shown that B-cell translocation gene 3 (BTG3) inhibits metastasis of multiple cancer cells. However, the role of BTG3 in colorectal cancer (CRC) and its possible mechanism have not yet been reported. In our study, we evaluated BTG3 expression in several CRC cell lines. Then, pcDNA3.1-BTG3 was transfected into SW480 cells. We found that BTG3 was upregulated in SW480 cells after overexpression plasmid transfection. BTG3 overexpression significantly inhibited cell growth and decreased PCNA (proliferating cell nuclear antigen) and Ki67 levels. BTG3 overexpression markedly downregulated Cyclin D1 and Cyclin E1 levels, whereas elevated p27. Overexpression of BTG3 arrested the cell cycle at G1 phase, which was abrogated by p27 silencing. Furthermore, migration, invasion and EMT of SW480 cells were significantly suppressed by BTG3 overexpression. Further investigations showed the inhibition of Wnt/ß-catenin signaling pathway. We then used GSK3ß specific inhibitor SB-216763 to activate the Wnt/ß-catenin signaling pathway. We found that Wnt/ß-catenin signaling pathway activation reversed the effect of BTG3 overexpression on cell proliferation, cell cycle progression, invasion and EMT. In conclusion, BTG3 overexpression inhibited cell growth, induced cell cycle arrest and suppressed the metastasis of SW480 cells via the Wnt/ß-catenin signaling pathway. BTG3 may be considered as a therapeutic target in CRC treatment.
Assuntos
Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Colorretais/patologia , Proteínas/metabolismo , Via de Sinalização Wnt/genética , Células CACO-2 , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Ciclina D1/biossíntese , Ciclina E/biossíntese , Transição Epitelial-Mesenquimal/genética , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Humanos , Indóis/farmacologia , Antígeno Ki-67/metabolismo , Maleimidas/farmacologia , Invasividade Neoplásica/patologia , Proteínas Oncogênicas/biossíntese , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genéticaRESUMO
The objective of the study was to investigate the impact of BTG2 on growth, migration and invasion of human clear cell renal cell carcinoma (ccRCC) cells. Endogenous expression of BTG2 was evaluated in the ccRCC cell lines (Caki-1, 786-O and Caki-2) and noncancerous human renal proximal tubular cell lines (HKC, HK-2 and RPTEC). BTG2 expression was decreased in the ccRCC cells compared with the noncancerous cells (P < 0.01). Then Caki-1 and 786-O cells described as suitable transfection hosts were used in transfection to carry out biological function studies. The three experimental groups were as follows: BTG2-ORF (transfected with BTG2-ORF plasmid), blank-Vector (transfected with pCMV6-Entry), and Cell-alone group (no DNA transfected in). BTG2 expression in the BTG2-ORF groups was significantly higher than that in the controls (P < 0.01). Cell growth was remarkably reduced and the number of migrating or invading cells was reduced in the BTG2-ORF groups compared with the controls (P < 0.01). Furthermore, Matrix Metalloproteinase-9 (MMP-9), Cyclin D1 and Cyclin E expression were reduced in the BTG2-ORF groups compared with the controls. Here, we have provided data for attenuated BTG2 expression in the ccRCC cells. Overexpressed BTG2 could inhibit cell proliferation, migration and invasion of human ccRCC, and the suppressive effects might be due to down-regulation of MMP-9, Cyclin D1 and Cyclin E expression.
Assuntos
Carcinoma de Células Renais/metabolismo , Proteínas Imediatamente Precoces/biossíntese , Neoplasias Renais/metabolismo , Proteínas Supressoras de Tumor/biossíntese , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Ciclina D1/biossíntese , Ciclina E/biossíntese , Pontos de Checagem da Fase G1 do Ciclo Celular , Humanos , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Neoplasias Renais/genética , Neoplasias Renais/patologia , Metaloproteinase 9 da Matriz/biossíntese , Invasividade Neoplásica , Fase de Repouso do Ciclo Celular , Transfecção , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismoRESUMO
We have reported that in vivo administration of the hybrid cytokine rIL-7/HGFß or rIL-7/HGFα, which contains interleukin-7 (IL-7) and the ß- or α-chain of hepatocyte growth factor (HGF), significantly enhances thymopoiesis in mice after bone marrow transplantation. We have shown that the HGF receptor, c-Met, is involved in the effect of the hybrid cytokines. To address the role of c-Met signalling in thymocyte development and recovery, we generated conditional knockout (cKO) mice in which c-Met was specifically deleted in T cells by crossing c-Met(ft/ft) mice with CD4-Cre transgenic mice. We show here that although the number of total thymocytes and thymocyte subsets in young c-Met cKO mice is comparable to age-matched control (Ctrl) mice, the cKO mice were more susceptible to sub-lethal irradiation and dexamethasone treatment. This was demonstrated by low recovery in thymic cellularity in c-Met cKO mice after insult. Furthermore, the number of total thymocytes and thymocyte subsets was markedly reduced in 6- to 12-month-old cKO mice compared with age-matched Ctrl mice, and the thymic architecture of 12-month-old cKO mice was similar to that of 20-month-old wild-type mice. In addition, c-Met deficiency reduced cell survival and the expression of Bcl-xL in double-positive thymocytes, and decreased cell proliferation and the expression of cyclin E and cyclin-dependent kinase 5 in single-positive thymocytes. Our data indicate that c-Met signalling plays an important role in thymic regeneration after thymic insult. In addition, T-cell-specific inactivation of c-Met accelerates age-related thymic involution.
Assuntos
Diferenciação Celular/imunologia , Proteínas Proto-Oncogênicas c-met/imunologia , Transdução de Sinais/imunologia , Subpopulações de Linfócitos T/citologia , Timo/imunologia , Animais , Anti-Inflamatórios/farmacologia , Contagem de Linfócito CD4 , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Proliferação de Células , Sobrevivência Celular , Ciclina E/biossíntese , Quinase 5 Dependente de Ciclina/biossíntese , Dexametasona/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas c-met/genética , Regeneração/imunologia , Subpopulações de Linfócitos T/imunologia , Timócitos/efeitos dos fármacos , Timócitos/imunologia , Timócitos/efeitos da radiação , Timo/efeitos dos fármacos , Timo/efeitos da radiação , Proteína bcl-X/biossínteseRESUMO
Uncontrolled cell proliferation is the hallmark of cancer, and cancer cells have typically acquired damage to genes that directly regulate their cell cycles. The synthesis of DNA onto the end of chromosome during the replicative phase of cell cycle by telomerase may be necessary for unlimited proliferation of cells. Telomerase, a ribonucleoprotein enzyme is considered as a universal therapeutic target of cancer because of its preferential expression in cancer cells and its presence in 90 % of tumors. We studied the regulation of telomerase and telomerase reverse transcriptase catalytic subunit (TERT) by diclofenac and curcumin, alone and also in combination, in 1, 2-dimethylhydrazine dihydrochloride-induced colorectal cancer in rats. The relationship of telomerase activity with tumors suppressor proteins (p51, Rb, p21), cell cycle machinery, and apoptosis was also studied. Telomerase is highly expressed in DMH group and its high activity is associated with increased TERT expression. However, telomerase is absent or is present at lower levels in normal tissue. CDK4, CDK2, cyclin D1, and cyclin E are highly expressed in DMH as assessed by RT-PCR, qRT-PCR, Western blot, and immunofluorescence analysis. Diclofenac and curcumin overcome these carcinogenic effects by downregulating telomerase activity, diminishing the expression of TERT, CDK4, CDK2, cyclin D1, and cyclin E. The anticarcinogenic effects shown after the inhibition of telomerase activity by diclofenac and curcumin may be associated with upregulation of tumor suppressor proteins p51, Rb, and p21, whose activation induces the cells cycle arrest and apoptosis.
Assuntos
Neoplasias do Colo/tratamento farmacológico , Ciclina D1/biossíntese , Ciclina E/biossíntese , Quinase 2 Dependente de Ciclina/biossíntese , Quinase 4 Dependente de Ciclina/biossíntese , Proteínas Oncogênicas/biossíntese , Telomerase/biossíntese , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Curcumina/administração & dosagem , Diclofenaco/administração & dosagem , Humanos , Telomerase/antagonistas & inibidoresRESUMO
BACKGROUND: Clinical trials have indicated that preclinical results obtained with human tumor xenografts in mouse models may overstate the potential of adenovirus (Ad)-mediated oncolytic therapies. We have previously demonstrated that the replication of human Ads depends on cyclin E dysregulation or overexpression in cancer cells. ED-1 cell derived from mouse lung adenocarcinomas triggered by transgenic overexpression of human cyclin E may be applied to investigate the antitumor efficacy of oncolytic Ads. METHODS: Ad-cycE was used to target cyclin E overexpression in ED-1 cells and repress tumor growth in a syngeneic mouse model for investigation of oncolytic virotherapies. RESULTS: Murine ED-1 cells were permissive for human Ad replication and Ad-cycE repressed ED-1 tumor growth in immunocompetent FVB mice. ED-1 cells destroyed by oncolytic Ads in tumors were encircled in capsule-like structures, while cells outside the capsules were not infected and survived the treatment. CONCLUSION: Ad-cycE can target cyclin E overexpression in cancer cells and repress tumor growth in syngeneic mouse models. The capsule structures formed after Ad intratumoral injection may prevent viral particles from spreading to the entire tumor.
Assuntos
Adenocarcinoma/terapia , Ciclina E/biossíntese , Neoplasias Pulmonares/terapia , Terapia Viral Oncolítica , Adenocarcinoma/genética , Adenoviridae/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Ciclina E/genética , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Humanos , Isoenxertos , Neoplasias Pulmonares/genética , Camundongos , Vírus Oncolíticos , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Heat shock transcription factor 1 (HSF1) is a major transcriptional regulator of the heat shock response in eukaryotic cells. HSF1 is evoked in response to a variety of cellular stressors, including elevated temperatures, oxidative stress, and other proteotoxic stressors. Previously, we demonstrated that HSF1 is activated in naive T cells at fever range temperatures (39.5°C) and is critical for in vitro T cell proliferation at fever temperatures. In this study, we demonstrated that murine HSF1 became activated to the DNA-binding form and transactivated a large number of genes in lymphoid cells strictly as a consequence of receptor activation in the absence of apparent cellular stress. Microarray analysis comparing HSF1(+/+) and HSF1(-/-) gene expression in T cells activated at 37°C revealed a diverse set of 323 genes significantly regulated by HSF1 in nonstressed T cells. In vivo proliferation studies revealed a significant impairment of HSF1(-/-) T cell expansion under conditions mimicking a robust immune response (staphylococcal enterotoxin B-induced T cell activation). This proliferation defect due to loss of HSF1 is observed even under nonfebrile temperatures. HSF1(-/-) T cells activated at fever temperatures show a dramatic reduction in cyclin E and cyclin A proteins during the cell cycle, although the transcription of these genes was modestly affected. Finally, B cell and hematopoietic stem cell proliferation from HSF1(-/-) mice, but not HSF1(+/+) mice, were also attenuated under stressful conditions, indicating that HSF1 is critical for the cell cycle progression of lymphoid cells activated under stressful conditions.
Assuntos
Proteínas de Ligação a DNA/metabolismo , Ativação Linfocitária , Estresse Fisiológico , Linfócitos T/imunologia , Fatores de Transcrição/metabolismo , Animais , Ciclo Celular , Divisão Celular , Proliferação de Células , Células Cultivadas , Ciclina A/biossíntese , Ciclina E/biossíntese , Proteínas de Ligação a DNA/genética , Enterotoxinas/imunologia , Febre/imunologia , Regulação da Expressão Gênica , Fatores de Transcrição de Choque Térmico , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/genéticaRESUMO
The hippocampus is a brain area characterized by its high plasticity, observed at all levels of organization: molecular, synaptic, and cellular, the latter referring to the capacity of neural precursors within the hippocampus to give rise to new neurons throughout life. Recent findings suggest that promoter methylation is a plastic process subjected to regulation, and this plasticity seems to be particularly important for hippocampal neurogenesis. We have detected the enzyme GNMT (a liver metabolic enzyme) in the hippocampus. GNMT regulates intracellular levels of SAMe, which is a universal methyl donor implied in almost all methylation reactions and, thus, of prime importance for DNA methylation. In addition, we show that deficiency of this enzyme in mice (Gnmt-/-) results in high SAMe levels within the hippocampus, reduced neurogenic capacity, and spatial learning and memory impairment. In vitro, SAMe inhibited neural precursor cell division in a concentration-dependent manner, but only when proliferation signals were triggered by bFGF. Indeed, SAMe inhibited the bFGF-stimulated MAP kinase signaling cascade, resulting in decreased cyclin E expression. These results suggest that alterations in the concentration of SAMe impair neurogenesis and contribute to cognitive decline.