RESUMO
Clathrin is considered the prototype vesicle coat protein whose self-assembly mediates sorting of membrane cargo and recruitment of lipid modifiers. Detailed knowledge of clathrin biochemistry, structure, and interacting proteins has accumulated since the first observation, almost 50 years ago, of its role in receptor-mediated endocytosis of yolk protein. This review summarizes that knowledge, and focuses on properties of the clathrin heavy and light chain subunits and interaction of the latter with Hip proteins, to address the diversity of clathrin function beyond conventional receptor-mediated endocytosis. The distinct functions of the two human clathrin isoforms (CHC17 and CHC22) are discussed, highlighting CHC22's specialized involvement in traffic of the GLUT4 glucose transporter and consequent role in human glucose metabolism. Analysis of clathrin light chain function and interaction with the actin-binding Hip proteins during bacterial infection defines a novel actin-organizing function for CHC17 clathrin. By considering these diverse clathrin functions, along with intracellular sorting roles and influences on mitosis, further relevance of clathrin function to human health and disease is established.
Assuntos
Clatrina/fisiologia , Animais , Transporte Biológico , Clatrina/química , Clatrina/genética , Vesículas Revestidas por Clatrina/metabolismo , Vesículas Revestidas por Clatrina/fisiologia , Citoesqueleto/metabolismo , Humanos , Modelos Moleculares , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiologia , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de ProteínaRESUMO
Class II phosphoinositide 3-kinases (PI3K-C2) are large multidomain enzymes that control cellular functions ranging from membrane dynamics to cell signaling via synthesis of 3'-phosphorylated phosphoinositides. Activity of the alpha isoform (PI3K-C2α) is associated with endocytosis, angiogenesis, and glucose metabolism. How PI3K-C2α activity is controlled at sites of endocytosis remains largely enigmatic. Here we show that the lipid-binding PX-C2 module unique to class II PI3Ks autoinhibits kinase activity in solution but is essential for full enzymatic activity at PtdIns(4,5)P2-rich membranes. Using HDX-MS, we show that the PX-C2 module folds back onto the kinase domain, inhibiting its basal activity. Destabilization of this intramolecular contact increases PI3K-C2α activity in vitro and in cells, leading to accumulation of its lipid product, increased recruitment of the endocytic effector SNX9, and facilitated endocytosis. Our studies uncover a regulatory mechanism in which coincident binding of phosphoinositide substrate and cofactor selectively activate PI3K-C2α at sites of endocytosis.
Assuntos
Classe II de Fosfatidilinositol 3-Quinases/metabolismo , Classe II de Fosfatidilinositol 3-Quinases/fisiologia , Fosfatidilinositol 3-Quinases/fisiologia , Animais , Domínios C2/fisiologia , Células COS , Chlorocebus aethiops , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Classe I de Fosfatidilinositol 3-Quinases/fisiologia , Clatrina/fisiologia , Endocitose/fisiologia , Células HEK293 , Homeostase , Humanos , Lipídeos/fisiologia , Espectrometria de Massas , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Ligação Proteica , Domínios Proteicos , Transdução de SinaisRESUMO
Membrane trafficking and mitosis are two essential processes in eukaryotic cells. Surprisingly, many proteins best known for their role in membrane trafficking have additional 'moonlighting' functions in mitosis. Despite having proteins in common, there is insufficient evidence for a specific connection between these two processes. Instead, these phenomena demonstrate the adaptability of the membrane trafficking machinery that allows its repurposing for different cellular functions.
Assuntos
Membrana Celular/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Membrana/fisiologia , Mitose/fisiologia , Animais , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiologia , Centrossomo/metabolismo , Clatrina/metabolismo , Clatrina/fisiologia , Endocitose/fisiologia , Humanos , Cinetocoros/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular/fisiologia , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/fisiologia , Microtúbulos/metabolismo , Modelos Biológicos , Ligação Proteica , Transporte Proteico/fisiologiaRESUMO
Clathrin-mediated endocytosis is the endocytic portal into cells through which cargo is packaged into vesicles with the aid of a clathrin coat. It is fundamental to neurotransmission, signal transduction and the regulation of many plasma membrane activities and is thus essential to higher eukaryotic life. Morphological stages of vesicle formation are mirrored by progression through various protein modules (complexes). The process involves the formation of a putative FCH domain only (FCHO) initiation complex, which matures through adaptor protein 2 (AP2)-dependent cargo selection, and subsequent coat building, dynamin-mediated scission and finally auxilin- and heat shock cognate 70 (HSC70)-dependent uncoating. Some modules can be used in other pathways, and additions or substitutions confer cell specificity and adaptability.
Assuntos
Clatrina/fisiologia , Endocitose/fisiologia , Actinas/fisiologia , Complexo 2 de Proteínas Adaptadoras/antagonistas & inibidores , Complexo 2 de Proteínas Adaptadoras/genética , Complexo 2 de Proteínas Adaptadoras/fisiologia , Proteínas Adaptadoras de Transporte Vesicular/fisiologia , Animais , Clatrina/antagonistas & inibidores , Clatrina/genética , Vesículas Revestidas por Clatrina/fisiologia , Dinaminas/fisiologia , Humanos , Modelos Biológicos , Mutação , Neoplasias/etiologia , Interferência de RNA , Transdução de Sinais , Vesículas Sinápticas/fisiologiaRESUMO
AXL, a TAM receptor tyrosine kinase (RTK), and its ligand growth arrest-specific 6 (GAS6) are implicated in cancer metastasis and drug resistance, and cellular entry of viruses. Given this, AXL is an attractive therapeutic target, and its inhibitors are being tested in cancer and COVID-19 clinical trials. Still, astonishingly little is known about intracellular mechanisms that control its function. Here, we characterized endocytosis of AXL, a process known to regulate intracellular functions of RTKs. Consistent with the notion that AXL is a primary receptor for GAS6, its depletion was sufficient to block GAS6 internalization. We discovered that upon receptor ligation, GAS6-AXL complexes were rapidly internalized via several endocytic pathways including both clathrin-mediated and clathrin-independent routes, among the latter the CLIC/GEEC pathway and macropinocytosis. The internalization of AXL was strictly dependent on its kinase activity. In comparison to other RTKs, AXL was endocytosed faster and the majority of the internalized receptor was not degraded but rather recycled via SNX1-positive endosomes. This trafficking pattern coincided with sustained AKT activation upon GAS6 stimulation. Specifically, reduced internalization of GAS6-AXL upon the CLIC/GEEC downregulation intensified, whereas impaired recycling due to depletion of SNX1 and SNX2 attenuated AKT signaling. Altogether, our data uncover the coupling between AXL endocytic trafficking and AKT signaling upon GAS6 stimulation. Moreover, our study provides a rationale for pharmacological inhibition of AXL in antiviral therapy as viruses utilize GAS6-AXL-triggered endocytosis to enter cells.
Assuntos
Endocitose , Peptídeos e Proteínas de Sinalização Intercelular , Proteínas Proto-Oncogênicas , Receptores Proteína Tirosina Quinases , Antivirais/farmacologia , Antivirais/uso terapêutico , COVID-19/metabolismo , COVID-19/terapia , Clatrina/metabolismo , Clatrina/fisiologia , Endocitose/efeitos dos fármacos , Endocitose/genética , Endocitose/fisiologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Neoplasias/metabolismo , Neoplasias/terapia , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/fisiologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/fisiologia , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/fisiologia , Receptor Tirosina Quinase AxlRESUMO
Endocytic recycling is coordinated with endocytic uptake to control the composition of the plasma membrane. Although much of our understanding of endocytic recycling has come from studies on the transferrin receptor, a protein internalized through clathrin-dependent endocytosis, increased interest in clathrin-independent endocytosis has led to the discovery of new endocytic recycling systems. Recent insights into the regulatory mechanisms that control endocytic recycling have focused on recycling through tubular carriers and the return to the cell surface of cargoes that enter cells through clathrin-independent mechanisms. Recent work emphasizes the importance of regulated recycling in processes as diverse as cytokinesis, cell adhesion, morphogenesis, cell fusion, learning and memory.
Assuntos
Clatrina/fisiologia , Endocitose/fisiologia , Receptores da Transferrina/metabolismo , Transdução de Sinais , Animais , HumanosRESUMO
The mechanosensory hair cells of the inner ear are required for hearing and balance and have a distinctive apical structure, the hair bundle, that converts mechanical stimuli into electrical signals. This structure comprises a single cilium, the kinocilium, lying adjacent to an ensemble of actin-based projections known as stereocilia. Hair bundle polarity depends on kinociliary protocadherin-15 (Pcdh15) localization. Protocadherin-15 is found only in hair-cell kinocilia, and is not localized to the primary cilia of adjacent supporting cells. Thus, Pcdh15 must be specifically targeted and trafficked into the hair-cell kinocilium. Here we show that kinocilial Pcdh15 trafficking relies on cell type-specific coupling to the generic intraflagellar transport (IFT) transport mechanism. We uncover a role for fibroblast growth factor receptor 1 (FGFR1) in loading Pcdh15 onto kinociliary transport particles in hair cells. We find that on activation, FGFR1 binds and phosphorylates Pcdh15. Moreover, we find a previously uncharacterized role for clathrin in coupling this kinocilia-specific cargo with the anterograde IFT-B complex through the adaptor, DAB2. Our results identify a modified ciliary transport pathway used for Pcdh15 transport into the cilium of the inner ear hair cell and coordinated by FGFR1 activity.
Assuntos
Caderinas/fisiologia , Flagelos/metabolismo , Células Ciliadas Auditivas Internas/metabolismo , Precursores de Proteínas/fisiologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Proteínas Adaptadoras de Transporte Vesicular/fisiologia , Animais , Proteínas Reguladoras de Apoptose , Proteínas Relacionadas a Caderinas , Embrião de Galinha , Clatrina/fisiologia , Camundongos , Fosforilação , Transporte Proteico , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/análiseRESUMO
Phosphatidylserine (PS), a negatively charged phospholipid present predominantly at the inner leaflet of the plasma membrane, has been widely implicated in many cellular processes including membrane trafficking. Along this line, PS has been demonstrated to be important for endocytosis, however, the involved mechanisms remain uncertain. By monitoring clathrin-mediated endocytosis (CME) of single vesicles in mouse chromaffin cells using cell-attached capacitance measurements that offer millisecond time resolution, we demonstrate in the present study that the fission-pore duration is reduced by PS addition, indicating a stimulatory role of PS in regulating the dynamics of vesicle fission during CME. Furthermore, our results show that the PS-mediated effect on the fission-pore duration is Ca2+ -dependent and abolished in the absence of synaptotagmin 1 (Syt1), implying that Syt1 is necessary for the stimulatory role of PS in vesicle fission during CME. Consistently, a Syt1 mutant with a defective PS-Syt1 interaction increases the fission-pore duration. Taken together, our study suggests that PS-Syt1 interaction may be critical in regulating fission dynamics during CME.
Assuntos
Células Cromafins/fisiologia , Vesículas Revestidas por Clatrina/fisiologia , Clatrina/fisiologia , Fosfatidilserinas/fisiologia , Animais , Células Cultivadas , Endocitose/fisiologia , Exocitose/fisiologia , Feminino , Técnicas de Inativação de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sinaptotagmina I/genética , Sinaptotagmina I/fisiologiaRESUMO
A critical step in cellular-trafficking pathways is the budding of membranes by protein coats, which recent experiments have demonstrated can be inhibited by elevated membrane tension. The robustness of processes like clathrin-mediated endocytosis (CME) across a diverse range of organisms and mechanical environments suggests that the protein machinery in this process has evolved to take advantage of some set of physical design principles to ensure robust vesiculation against opposing forces like membrane tension. Using a theoretical model for membrane mechanics and membrane protein interaction, we have systematically investigated the influence of membrane rigidity, curvature induced by the protein coat, area covered by the protein coat, membrane tension, and force from actin polymerization on bud formation. Under low tension, the membrane smoothly evolves from a flat to budded morphology as the coat area or spontaneous curvature increases, whereas the membrane remains essentially flat at high tensions. At intermediate, physiologically relevant, tensions, the membrane undergoes a "snap-through instability" in which small changes in the coat area, spontaneous curvature or membrane tension cause the membrane to "snap" from an open, U-shape to a closed bud. This instability can be smoothed out by increasing the bending rigidity of the coat, allowing for successful budding at higher membrane tensions. Additionally, applied force from actin polymerization can bypass the instability by inducing a smooth transition from an open to a closed bud. Finally, a combination of increased coat rigidity and force from actin polymerization enables robust vesiculation even at high membrane tensions.
Assuntos
Membrana Celular/química , Vesículas Revestidas por Clatrina/fisiologia , Clatrina/fisiologia , Simulação por Computador , Endocitose/fisiologia , Proteínas de Membrana/fisiologia , Modelos Químicos , Estresse Mecânico , Algoritmos , Fenômenos Biomecânicos , Membrana Celular/ultraestrutura , Fluidez de Membrana , Proteínas de Membrana/química , Propriedades de SuperfícieRESUMO
We first explore the features of GluK2 endocytosis during kainate excitotoxicity and then explore the role of Ca2+ in the regulation of GluK2 endocytosis. The roles of Ca2+ were examined by treating cells with Ca2+ inhibitors or chelators. Surface biotinylation was used to examine the surface localization of GluK2. Immunoprecipitation followed by immunoblotting was used to identify the interaction of GluK2 with the endocytosis regulator protein-interacting with C kinase 1 and dynamin. Dynamin phosphorylation was examined by immunoblotting with the corresponding antibodies. Our results show that GluK2 internalization is blocked by inhibitors of clathrin-independent endocytosis and relies on intracellular Ca2+/calcineurin signaling. Protein-interacting with C kinase 1-GluK2 interaction is regulated by Ca2+/calcineurin signaling. Dynamin participates in the regulation of GluK2 surface localization. Also, calcineurin activation is related to dynamin function during kainate excitotoxicity. In conclusion, GluK2 receptor endocytosis is probably a clathrin-independent and dynamin-dependent process regulated by the peak Ca2+ transient. This work indicates the roles of the Ca2+ network in the regulation of GluK2 endocytosis during kainate excitotoxicity.
Assuntos
Sinalização do Cálcio , Clatrina/fisiologia , Dinaminas/fisiologia , Endocitose , Neurônios/fisiologia , Receptores de Ácido Caínico/fisiologia , Animais , Córtex Cerebral/fisiologia , Células HEK293 , Humanos , Fosforilação , Ratos Sprague-Dawley , Receptor de GluK2 CainatoRESUMO
Clathrin-independent endocytosis (CIE) is a form of endocytosis that lacks a defined cytoplasmic machinery. Here, we asked whether glycan interactions, acting from the outside, could be a part of that endocytic machinery. We show that the perturbation of global cellular patterns of protein glycosylation by modulation of metabolic flux affects CIE. Interestingly, these changes in glycosylation had cargo-specific effects. For example, in HeLa cells, GlcNAc treatment, which increases glycan branching, increased major histocompatibility complex class I (MHCI) internalization but inhibited CIE of the glycoprotein CD59 molecule (CD59). The effects of knocking down the expression of galectin 3, a carbohydrate-binding protein and an important player in galectin-glycan interactions, were also cargo-specific and stimulated CD59 uptake. By contrast, inhibition of all galectin-glycan interactions by lactose inhibited CIE of both MHCI and CD59. None of these treatments affected clathrin-mediated endocytosis, implying that glycosylation changes specifically affect CIE. We also found that the galectin lattice tailors membrane fluidity and cell spreading. Furthermore, changes in membrane dynamics mediated by the galectin lattice affected macropinocytosis, an altered form of CIE, in HT1080 cells. Our results suggest that glycans play an important and nuanced role in CIE, with each cargo being affected uniquely by alterations in galectin and glycan profiles and their interactions. We conclude that galectin-driven effects exist on a continuum from stimulatory to inhibitory, with distinct CIE cargo proteins having unique response landscapes and with different cell types starting at different positions on these conceptual landscapes.
Assuntos
Endocitose/fisiologia , Galectina 3/metabolismo , Polissacarídeos/metabolismo , Acetilglucosamina/farmacologia , Antígenos CD59/metabolismo , Membrana Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Clatrina/fisiologia , Meios de Cultura , Galectina 3/genética , Galectina 3/farmacologia , Técnicas de Silenciamento de Genes , Glicosilação , Células HeLa , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Lactose/farmacologia , Fluidez de Membrana/fisiologia , Pinocitose/fisiologia , Transporte Proteico/fisiologiaRESUMO
Spiroplasma eriocheiris causes great economic losses in the crustacean aquaculture industry. However, the mechanism of S. eriocheiris infecting host cells has been poorly studied. We established a Spiroplasma-infected Drosophila Schneider 2 (S2) cell model and investigated its pathogenic mechanism. First, S. eriocheiris induced S2 cell apoptosis and necrosis, seriously decreased cell viability, and increased the production of intracellular reactive oxygen species. Further research showed that S. eriocheiris can invade S2 cells, and the number of copies of intracellular spiroplasmas is sharply increased by 12 h postinfection. In addition, S. eriocheiris can cause S2 cells to form typical inclusion bodies and exhibit large vacuoles. Second, S. eriocheiris is internalized into S2 cells and strongly inhibited through blocking clathrin-mediated endocytosis using chlorpromazine and dynasore. Inhibitors of macropinocytosis, protein kinase C and myosin II, cause a significant reduction in S. eriocheiris in S2 cells. In contrast, disruption of cellular cholesterol by methyl-ß-cyclodextrin and nystatin has no effect on S. eriocheiris infection. These results suggest that the entry of S. eriocheiris into S2 cells relies on clathrin-dependent endocytosis and macropinocytosis, but not via the caveola-mediated endocytic pathway. In addition, the intracellular numbers of S. eriocheiris are dramatically reduced after S2 cells are treated with cytoskeleton-depolymerizing agents, including nocodazole and cytochalasin B. Thus, cellular infection by S. eriocheiris is related to microtubules and actin filaments. This research successfully shows for the first time that S. eriocheiris can invade Drosophila S2 cells and provides a process for S. eriocheiris infection.
Assuntos
Clatrina/fisiologia , Endocitose/fisiologia , Spiroplasma/fisiologia , Animais , Linhagem Celular , Drosophila , Espécies Reativas de OxigênioRESUMO
Polarized cell growth in plants is maintained under the strict control and exquisitely choreographed balance of exocytic and endocytic membrane trafficking. The pollen tube has become a model system for rapid polar growth in which delivery of cell wall material and membrane recycling are controlled by membrane trafficking. Endocytosis plays an important role that is poorly understood. The plant AP180 N-Terminal Homolog (ANTH) proteins are putative homologs of Epsin 1 that recruits clathrin to phosphatidylinositol 4, 5-bisphosphate (PIP2) containing membranes to facilitate vesicle budding during endocytosis. Two Arabidopsis ANTH encoded by the genes AtAP180 and AtECA2 are highly expressed in pollen tubes. Pollen tubes from T-DNA inserted knockout mutant lines display significant morphological defects and unique pectin deposition. Fluorescent tagging reveals organization into dynamic foci located at the lateral flanks of the pollen tube. This precisely defined subapical domain coincides which clathrin-mediated endocytosis (CME) and PIP2 localization. Using a liposome-protein binding test, we showed that AtECA2 protein and ANTH domain recombinant proteins have strong affinity to PIP2 and phosphatidic acid containing liposomes in vitro. Taken together these data suggest that Arabidopsis ANTH proteins may play an important role in CME, proper cell wall assembly and morphogenesis.
Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/crescimento & desenvolvimento , Clatrina/fisiologia , Endocitose , Proteínas Monoméricas de Montagem de Clatrina/fisiologia , Tubo Polínico/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Monoméricas de Montagem de Clatrina/genética , Filogenia , Tubo Polínico/metabolismoRESUMO
Serum amyloid A1 (SAA1) is an apolipoprotein that binds to the high-density lipoprotein (HDL) fraction of the serum and constitutes the fibril precursor protein in systemic AA amyloidosis. We here show that HDL binding blocks fibril formation from soluble SAA1 protein, whereas internalization into mononuclear phagocytes leads to the formation of amyloid. SAA1 aggregation in the cell model disturbs the integrity of vesicular membranes and leads to lysosomal leakage and apoptotic death. The formed amyloid becomes deposited outside the cell where it can seed the fibrillation of extracellular SAA1. Our data imply that cells are transiently required in the amyloidogenic cascade and promote the initial nucleation of the deposits. This mechanism reconciles previous evidence for the extracellular location of deposits and amyloid precursor protein with observations the cells are crucial for the formation of amyloid.
Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Amiloide/metabolismo , Proteína Amiloide A Sérica/metabolismo , Amiloidose , Animais , Linhagem Celular , Clatrina/fisiologia , Endocitose , Humanos , Macrófagos/metabolismo , Camundongos , Modelos Biológicos , Agregados ProteicosRESUMO
The primary cilium is a plasma membrane-protruding sensory organelle that undergoes regulated assembly and resorption. While the assembly process has been studied extensively, the cellular machinery that governs ciliary resorption is less well understood. Previous studies showed that the ciliary pocket membrane is an actin-rich, endocytosis-active periciliary subdomain. Furthermore, Tctex-1, originally identified as a cytoplasmic dynein light chain, has a dynein-independent role in ciliary resorption upon phosphorylation at Thr94. Here, we show that the remodeling and endocytosis of the ciliary pocket membrane are accelerated during ciliary resorption. This process depends on phospho(T94)Tctex-1, actin, and dynamin. Mechanistically, Tctex-1 physically and functionally interacts with the actin dynamics regulators annexin A2, Arp2/3 complex, and Cdc42. Phospho(T94)Tctex-1 is required for Cdc42 activation before the onset of ciliary resorption. Moreover, inhibiting clathrin-dependent endocytosis or suppressing Rab5GTPase on early endosomes effectively abrogates ciliary resorption. Taken together with the epistasis functional assays, our results support a model in which phospho(T94)Tctex-1-regulated actin polymerization and periciliary endocytosis play an active role in orchestrating the initial phase of ciliary resorption.
Assuntos
Actinas/fisiologia , Cílios/fisiologia , Dineínas/metabolismo , Linhagem Celular , Clatrina/fisiologia , Dinaminas , Dineínas/genética , Endocitose , Células Epiteliais , Humanos , Fosforilação , Multimerização Proteica , Retina/citologiaRESUMO
Caliciviruses in the genus Sapovirus are a significant cause of viral gastroenteritis in humans and animals. However, the mechanism of their entry into cells is not well characterized. Here, we determined the entry mechanism of porcine sapovirus (PSaV) strain Cowden into permissive LLC-PK cells. The inhibition of clathrin-mediated endocytosis using chlorpromazine, siRNAs, and a dominant negative (DN) mutant blocked entry and infection of PSaV Cowden strain, confirming a role for clathrin-mediated internalization. Entry and infection were also inhibited by the cholesterol-sequestering drug methyl-ß-cyclodextrin and was restored by the addition of soluble cholesterol, indicating that cholesterol also contributes to entry and infection of this strain. Furthermore, the inhibition of dynamin GTPase activity by dynasore, siRNA depletion of dynamin II, or overexpression of a DN mutant of dynamin II reduced the entry and infection, suggesting that dynamin mediates the fission and detachment of clathrin- and cholesterol-pits for entry of this strain. In contrast, the inhibition of caveolae-mediated endocytosis using nystatin, siRNAs, or a DN mutant had no inhibitory effect on entry and infection of this strain. It was further determined that cell entry of PSaV Cowden strain required actin rearrangements for vesicle internalization, endosomal trafficking from early to late endosomes through microtubules, and late endosomal acidification for uncoating. We conclude that PSaV strain Cowden is internalized into LLC-PK cells by clathrin- and cholesterol-mediated endocytosis that requires dynamin II and actin rearrangement, and that the uncoating occurs in the acidified late endosomes after trafficking from the early endosomes through microtubules.
Assuntos
Infecções por Caliciviridae/veterinária , Colesterol/fisiologia , Clatrina/fisiologia , Dinamina II/fisiologia , Endocitose , Sapovirus/fisiologia , Doenças dos Suínos/virologia , Animais , Infecções por Caliciviridae/virologia , Gastroenterite/veterinária , Gastroenterite/virologia , Células HeLa , Humanos , Células LLC-PK1 , SuínosRESUMO
BACKGROUND: Fruiting body lectins have been proposed to act as effector proteins in the defense of fungi against parasites and predators. The Marasmius oreades agglutinin (MOA) is a lectin from the fairy ring mushroom with specificity for Galα1-3Gal containing carbohydrates. This lectin is composed of an N-terminal carbohydrate-binding domain and a C-terminal dimerization domain. The dimerization domain of MOA shows in addition calcium-dependent cysteine protease activity, similar to the calpain family. METHODS: Cell detachment assay, cell viability assay, immunofluorescence, live cell imaging and Western blot using MDCKII cell line. RESULTS: In this study, we demonstrate in MDCKII cells that after internalization, MOA protease activity induces profound physiological cellular responses, like cytoskeleton rearrangement, cell detachment and cell death. These changes are preceded by a decrease in FAK phosphorylation and an internalization and degradation of ß1-integrin, consistent with a disruption of integrin-dependent cell adhesion signaling. Once internalized, MOA accumulates in late endosomal compartments. CONCLUSION: Our results suggest a possible toxic mechanism of MOA, which consists of disturbing the cell adhesion and the cell viability. GENERAL SIGNIFICANCE: After being ingested by a predator, MOA might exert a protective role by diminishing host cell integrity.
Assuntos
Aglutininas/fisiologia , Integrina beta1/fisiologia , Marasmius/química , Animais , Adesão Celular , Células Cultivadas , Clatrina/fisiologia , Cães , Dinaminas/fisiologia , Endocitose , Endossomos/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/fisiologiaRESUMO
Recently we identified multiple suramin-sensitivity genes with a genome wide screen in Trypanosoma brucei that includes the invariant surface glycoprotein ISG75, the adaptin-1 (AP-1) complex and two deubiquitylating enzymes (DUBs) orthologous to ScUbp15/HsHAUSP1 and pVHL-interacting DUB1 (type I), designated TbUsp7 and TbVdu1, respectively. Here we have examined the roles of these genes in trafficking of ISG75, which appears key to suramin uptake. We found that, while AP-1 does not influence ISG75 abundance, knockdown of TbUsp7 or TbVdu1 leads to reduced ISG75 abundance. Silencing TbVdu1 also reduced ISG65 abundance. TbVdu1 is a component of an evolutionarily conserved ubiquitylation switch and responsible for rapid receptor modulation, suggesting similar regulation of ISGs in T. brucei. Unexpectedly, TbUsp7 knockdown also blocked endocytosis. To integrate these observations we analysed the impact of TbUsp7 and TbVdu1 knockdown on the global proteome using SILAC. For TbVdu1, ISG65 and ISG75 are the only significantly modulated proteins, but for TbUsp7 a cohort of integral membrane proteins, including the acid phosphatase MBAP1, that is required for endocytosis, and additional ISG-related proteins are down-regulated. Furthermore, we find increased expression of the ESAG6/7 transferrin receptor and ESAG5, likely resulting from decreased endocytic activity. Therefore, multiple ubiquitylation pathways, with a complex interplay with trafficking pathways, control surface proteome expression in trypanosomes.
Assuntos
Proteoma/metabolismo , Trypanosoma brucei brucei/metabolismo , Ubiquitinação , Clatrina/fisiologia , Endocitose , Glicoproteínas de Membrana/metabolismo , Proteínas de Protozoários/metabolismo , Suramina/farmacologia , Fator de Transcrição AP-1/fisiologiaRESUMO
Betanodavirus, also referred to nervous necrosis virus (NNV), is the causative agent of the fatal disease, viral nervous necrosis and has brought significant economic losses in marine and freshwater cultured fish, especially larvae and juveniles. Here, we used an established invasion model with virus-like particle (VLP)-cells, mimicking orange-spotted grouper nervous necrosis virus (OGNNV), to investigate the crucial events of virus entry. VLP were observed in the perinuclear regions of Asian sea bass (SB) cells within 1.5 h after attachment. VLP uptake was strongly inhibited when cells were pretreated with biochemical inhibitors (chlorpromazine and dynasore) blocking clathrin-mediated endocytosis (CME) or transfected with siRNA against clathrin heavy and light chains. Inhibitors against key regulators of caveolae/raft-dependent endocytosis and macropinocytosis had no effect on VLP uptake. In contrast, disruption of cellular cholesterol by methyl-ß-cyclodextrin or reduction of cholesterol fluidity by Cholera toxin B subunit significantly decreased VLP entry. Furthermore, VLP entry is dependent on low pH and cytoskeleton, demonstrated by inhibitor (chloroquine, ammonia chloride, cytochalasin D, wiskostatin, and nocodazole) perturbation. Therefore, OGNNV VLP enter SB cells via CME depending on dynamin-2, cholesterol and its fluidity, low pH, and cytoskeleton. In addition, ten more cell lines were screened for VLP entry and VLP can only enter NNV-sensitive cells, GB and SSN-1, via CME, indicating that CME is the common endocytosis pathway for VLP. These results may provide the data for NNV entry without the influence of the viral genome, an ideal model for exploring the behaviour of betanodavirus in cells, and valuable references to vaccine development.
Assuntos
Clatrina/fisiologia , Endocitose/fisiologia , Doenças dos Peixes/virologia , Nodaviridae/fisiologia , Infecções por Vírus de RNA/veterinária , Animais , Bass/virologia , Colesterol/metabolismo , Citoesqueleto/metabolismo , Concentração de Íons de Hidrogênio , Infecções por Vírus de RNA/virologiaRESUMO
The actin cytoskeleton is a crucial part of the eukaryotic cell. Viruses depend on host cells for their replication, and, as a result, many have developed ways of manipulating the actin network to promote their spread. This chapter reviews the various ways in which viruses utilize the actin cytoskeleton at discrete steps in their life cycle, from entry into the host cell, replication, and assembly of new progeny to virus release. Various actin inhibitors that function in different ways to affect proper actin dynamics can be used to parse the role of actin at these steps.