Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.913
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 185(3): 547-562.e22, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35051369

RESUMO

Hundreds of microbiota genes are associated with host biology/disease. Unraveling the causal contribution of a microbiota gene to host biology remains difficult because many are encoded by nonmodel gut commensals and not genetically targetable. A general approach to identify their gene transfer methodology and build their gene manipulation tools would enable mechanistic dissections of their impact on host physiology. We developed a pipeline that identifies the gene transfer methods for multiple nonmodel microbes spanning five phyla, and we demonstrated the utility of their genetic tools by modulating microbiome-derived short-chain fatty acids and bile acids in vitro and in the host. In a proof-of-principle study, by deleting a commensal gene for bile acid synthesis in a complex microbiome, we discovered an intriguing role of this gene in regulating colon inflammation. This technology will enable genetically engineering the nonmodel gut microbiome and facilitate mechanistic dissection of microbiota-host interactions.


Assuntos
Microbioma Gastrointestinal/genética , Genes Bacterianos , Animais , Ácidos e Sais Biliares/metabolismo , Sistemas CRISPR-Cas/genética , Clostridium/genética , Colite/induzido quimicamente , Colite/microbiologia , Colite/patologia , Sulfato de Dextrana , Resistência Microbiana a Medicamentos/genética , Feminino , Regulação Bacteriana da Expressão Gênica , Técnicas de Transferência de Genes , Vida Livre de Germes , Inflamação/patologia , Intestinos/patologia , Masculino , Metaboloma/genética , Metagenômica , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutagênese Insercional/genética , Mutação/genética , RNA Ribossômico 16S/genética , Transcrição Gênica
2.
Cell ; 184(24): 5902-5915.e17, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34752731

RESUMO

Increasing evidence indicates that the brain regulates peripheral immunity, yet whether and how the brain represents the state of the immune system remains unclear. Here, we show that the brain's insular cortex (InsCtx) stores immune-related information. Using activity-dependent cell labeling in mice (FosTRAP), we captured neuronal ensembles in the InsCtx that were active under two different inflammatory conditions (dextran sulfate sodium [DSS]-induced colitis and zymosan-induced peritonitis). Chemogenetic reactivation of these neuronal ensembles was sufficient to broadly retrieve the inflammatory state under which these neurons were captured. Thus, we show that the brain can store and retrieve specific immune responses, extending the classical concept of immunological memory to neuronal representations of inflammatory information.


Assuntos
Imunidade , Córtex Insular/fisiologia , Neurônios/fisiologia , Animais , Colite/induzido quimicamente , Colite/complicações , Colite/imunologia , Colo/patologia , Sulfato de Dextrana , Feminino , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peritônio/patologia , Peritonite/complicações , Peritonite/imunologia , Peritonite/patologia , Sinapses/metabolismo , Zimosan
3.
Cell ; 173(5): 1123-1134.e11, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29775592

RESUMO

Genome-wide association studies have identified risk loci associated with the development of inflammatory bowel disease, while epidemiological studies have emphasized that pathogenesis likely involves host interactions with environmental elements whose source and structure need to be defined. Here, we identify a class of compounds derived from dietary, microbial, and industrial sources that are characterized by the presence of a five-membered oxazole ring and induce CD1d-dependent intestinal inflammation. We observe that minimal oxazole structures modulate natural killer T cell-dependent inflammation by regulating lipid antigen presentation by CD1d on intestinal epithelial cells (IECs). CD1d-restricted production of interleukin 10 by IECs is limited through activity of the aryl hydrocarbon receptor (AhR) pathway in response to oxazole induction of tryptophan metabolites. As such, the depletion of the AhR in the intestinal epithelium abrogates oxazole-induced inflammation. In summary, we identify environmentally derived oxazoles as triggers of CD1d-dependent intestinal inflammatory responses that occur via activation of the AhR in the intestinal epithelium.


Assuntos
Colite/patologia , Dieta , Intestinos/patologia , Oxazóis/farmacologia , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Antígenos CD1d/genética , Antígenos CD1d/metabolismo , Colite/induzido quimicamente , Colite/metabolismo , Modelos Animais de Doenças , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Interleucina-10/metabolismo , Intestinos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células T Matadoras Naturais/imunologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores de Hidrocarboneto Arílico/antagonistas & inibidores , Receptores de Hidrocarboneto Arílico/genética , Triptofano/metabolismo
4.
Nat Immunol ; 20(12): 1681-1691, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31636462

RESUMO

Much attention has focused on commensal bacteria in health and disease, but the role of commensal viruses is understudied. Although metagenomic analysis shows that the intestine of healthy humans and animals harbors various commensal viruses and the dysbiosis of these viruses can be associated with inflammatory diseases, there is still a lack of causal data and underlying mechanisms to understand the physiological role of commensal viruses in intestinal homeostasis. In the present study, we show that commensal viruses are essential for the homeostasis of intestinal intraepithelial lymphocytes (IELs). Mechanistically, the cytosolic viral RNA-sensing receptor RIG-I in antigen-presenting cells can recognize commensal viruses and maintain IELs via a type I interferon-independent, but MAVS-IRF1-IL-15 axis-dependent, manner. The recovery of IELs by interleukin-15 administration reverses the susceptibility of commensal virus-depleted mice to dextran sulfate sodium-induced colitis. Collectively, our results indicate that commensal viruses maintain the IELs and consequently sustain intestinal homeostasis via noncanonical RIG-I signaling.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Infecções por Caliciviridae/imunologia , Colite/imunologia , Proteína DEAD-box 58/metabolismo , Intestinos/imunologia , Linfócitos Intraepiteliais/imunologia , Norovirus/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Infecções por Caliciviridae/virologia , Células Cultivadas , Colite/induzido quimicamente , Colite/virologia , Proteína DEAD-box 58/genética , Sulfato de Dextrana , Suscetibilidade a Doenças , Homeostase , Fator Regulador 1 de Interferon/genética , Fator Regulador 1 de Interferon/metabolismo , Interleucina-15/metabolismo , Intestinos/virologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Simbiose/imunologia
5.
Immunity ; 55(2): 237-253.e8, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35081371

RESUMO

The Th17 cell-lineage-defining cytokine IL-17A contributes to host defense and inflammatory disease by coordinating multicellular immune responses. The IL-17 receptor (IL-17RA) is expressed by diverse intestinal cell types, and therapies targeting IL-17A induce adverse intestinal events, suggesting additional tissue-specific functions. Here, we used multiple conditional deletion models to identify a role for IL-17A in secretory epithelial cell differentiation in the gut. Paneth, tuft, goblet, and enteroendocrine cell numbers were dependent on IL-17A-mediated induction of the transcription factor ATOH1 in Lgr5+ intestinal epithelial stem cells. Although dispensable at steady state, IL-17RA signaling in ATOH1+ cells was required to regenerate secretory cells following injury. Finally, IL-17A stimulation of human-derived intestinal organoids that were locked into a cystic immature state induced ATOH1 expression and rescued secretory cell differentiation. Our data suggest that the cross talk between immune cells and stem cells regulates secretory cell lineage commitment and the integrity of the mucosa.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Mucosa Intestinal/citologia , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Interleucina-17/metabolismo , Células-Tronco/metabolismo , Animais , Comunicação Celular , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Colite/induzido quimicamente , Colite/metabolismo , Colite/patologia , Sulfato de Dextrana/efeitos adversos , Humanos , Interleucina-17/metabolismo , Interleucina-17/farmacologia , Mucosa Intestinal/metabolismo , Intestinos/efeitos dos fármacos , Intestinos/metabolismo , Intestinos/patologia , Camundongos , Camundongos Knockout , NF-kappa B/metabolismo , Receptores de Interleucina-17/deficiência , Fatores de Transcrição SOX9/metabolismo , Transdução de Sinais , Células-Tronco/citologia
6.
Mol Cell ; 83(17): 3171-3187.e7, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37597514

RESUMO

Hydroxycarboxylic acid receptor 2 (HCAR2), modulated by endogenous ketone body ß-hydroxybutyrate and exogenous niacin, is a promising therapeutic target for inflammation-related diseases. HCAR2 mediates distinct pathophysiological events by activating Gi/o protein or ß-arrestin effectors. Here, we characterize compound 9n as a Gi-biased allosteric modulator (BAM) of HCAR2 and exhibit anti-inflammatory efficacy in RAW264.7 macrophages via a specific HCAR2-Gi pathway. Furthermore, four structures of HCAR2-Gi complex bound to orthosteric agonists (niacin or monomethyl fumarate), compound 9n, and niacin together with compound 9n simultaneously reveal a common orthosteric site and a unique allosteric site. Combined with functional studies, we decipher the action framework of biased allosteric modulation of compound 9n on the orthosteric site. Moreover, co-administration of compound 9n with orthosteric agonists could enhance anti-inflammatory effects in the mouse model of colitis. Together, our study provides insight to understand the molecular pharmacology of the BAM and facilitates exploring the therapeutic potential of the BAM with orthosteric drugs.


Assuntos
Colite , Receptores Acoplados a Proteínas G , Animais , Camundongos , Regulação Alostérica , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP , Inflamação/tratamento farmacológico , Corpos Cetônicos , Niacina/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo
7.
Cell ; 163(6): 1428-43, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26638072

RESUMO

Host-microbiome co-evolution drives homeostasis and disease susceptibility, yet regulatory principles governing the integrated intestinal host-commensal microenvironment remain obscure. While inflammasome signaling participates in these interactions, its activators and microbiome-modulating mechanisms are unknown. Here, we demonstrate that the microbiota-associated metabolites taurine, histamine, and spermine shape the host-microbiome interface by co-modulating NLRP6 inflammasome signaling, epithelial IL-18 secretion, and downstream anti-microbial peptide (AMP) profiles. Distortion of this balanced AMP landscape by inflammasome deficiency drives dysbiosis development. Upon fecal transfer, colitis-inducing microbiota hijacks this microenvironment-orchestrating machinery through metabolite-mediated inflammasome suppression, leading to distorted AMP balance favoring its preferential colonization. Restoration of the metabolite-inflammasome-AMP axis reinstates a normal microbiota and ameliorates colitis. Together, we identify microbial modulators of the NLRP6 inflammasome and highlight mechanisms by which microbiome-host interactions cooperatively drive microbial community stability through metabolite-mediated innate immune modulation. Therefore, targeted "postbiotic" metabolomic intervention may restore a normal microenvironment as treatment or prevention of dysbiosis-driven diseases.


Assuntos
Colo/imunologia , Colo/microbiologia , Inflamassomos/imunologia , Microbiota , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Animais , Peptídeos Catiônicos Antimicrobianos , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colo/metabolismo , Disbiose/metabolismo , Vida Livre de Germes , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/tratamento farmacológico , Interleucina-18/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Superfície Celular/genética , Taurina/administração & dosagem
8.
Cell ; 162(1): 45-58, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-26095253

RESUMO

Colorectal cancer is a leading cause of cancer-related deaths. Mutations in the innate immune sensor AIM2 are frequently identified in patients with colorectal cancer, but how AIM2 modulates colonic tumorigenesis is unknown. Here, we found that Aim2-deficient mice were hypersusceptible to colonic tumor development. Production of inflammasome-associated cytokines and other inflammatory mediators was largely intact in Aim2-deficient mice; however, intestinal stem cells were prone to uncontrolled proliferation. Aberrant Wnt signaling expanded a population of tumor-initiating stem cells in the absence of AIM2. Susceptibility of Aim2-deficient mice to colorectal tumorigenesis was enhanced by a dysbiotic gut microbiota, which was reduced by reciprocal exchange of gut microbiota with healthy wild-type mice. These findings uncover a synergy between a specific host genetic factor and gut microbiota in determining the susceptibility to colorectal cancer. Therapeutic modulation of AIM2 expression and microbiota has the potential to prevent colorectal cancer.


Assuntos
Proliferação de Células , Neoplasias Colorretais/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células-Tronco/patologia , Animais , Azoximetano , Colite/induzido quimicamente , Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Sulfato de Dextrana , Enterócitos/patologia , Trato Gastrointestinal/microbiologia , Inflamassomos/metabolismo , Camundongos , Mutação , Células-Tronco/metabolismo
9.
Cell ; 156(1-2): 123-33, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24439373

RESUMO

Coevolution of beneficial microorganisms with the mammalian intestine fundamentally shapes mammalian physiology. Here, we report that the intestinal microbe Bacteroides fragilis modifies the homeostasis of host invariant natural killer T (iNKT) cells by supplementing the host's endogenous lipid antigen milieu with unique inhibitory sphingolipids. The process occurs early in life and effectively impedes iNKT cell proliferation during neonatal development. Consequently, total colonic iNKT cell numbers are restricted into adulthood, and hosts are protected against experimental iNKT cell-mediated, oxazolone-induced colitis. In studies with neonatal mice lacking access to bacterial sphingolipids, we found that treatment with B. fragilis glycosphingolipids-exemplified by an isolated peak (MW = 717.6) called GSL-Bf717-reduces colonic iNKT cell numbers and confers protection against oxazolone-induced colitis in adulthood. Our results suggest that the distinctive inhibitory capacity of GSL-Bf717 and similar molecules may prove useful in the treatment of autoimmune and allergic disorders in which iNKT cell activation is destructive.


Assuntos
Bacteroides fragilis/metabolismo , Colite/imunologia , Glicoesfingolipídeos/metabolismo , Células T Matadoras Naturais/imunologia , Animais , Animais Recém-Nascidos , Proliferação de Células , Colite/induzido quimicamente , Colite/prevenção & controle , Colo/crescimento & desenvolvimento , Colo/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Células T Matadoras Naturais/citologia , Oxazolona
10.
Nat Immunol ; 17(4): 441-50, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26855029

RESUMO

Epithelial tissues continually undergo apoptosis. Commensal organisms that inhabit the epithelium influence tissue homeostasis, in which regulatory T cells (Treg cells) have a central role. However, the physiological importance of epithelial cell apoptosis and how the number of Treg cells is regulated are both incompletely understood. Here we found that apoptotic epithelial cells negatively regulated the commensal-stimulated proliferation of Treg cells. Gut commensals stimulated CX3CR1(+)CD103(-)CD11b(+) dendritic cells (DCs) to produce interferon-ß (IFN-ß), which augmented the proliferation of Treg cells in the intestine. Conversely, phosphatidylserine exposed on apoptotic epithelial cells suppressed IFN-ß production by the DCs via inhibitory signaling mediated by the cell-surface glycoprotein CD300a and thus suppressed Treg cell proliferation. Our findings reveal a regulatory role for apoptotic epithelial cells in maintaining the number of Treg cell and tissue homeostasis.


Assuntos
Apoptose/imunologia , Epiderme/imunologia , Células Epiteliais/imunologia , Microbioma Gastrointestinal/imunologia , Interferon beta/imunologia , Mucosa Intestinal/imunologia , Mucosa Respiratória/imunologia , Linfócitos T Reguladores/imunologia , Alérgenos/toxicidade , Animais , Colite/induzido quimicamente , Colite/imunologia , Colite/patologia , Colo/citologia , Colo/imunologia , Células Dendríticas/imunologia , Dermatite Alérgica de Contato/etiologia , Dermatite Alérgica de Contato/imunologia , Dermatite Alérgica de Contato/patologia , Sulfato de Dextrana/toxicidade , Células Epidérmicas , Citometria de Fluxo , Imuno-Histoquímica , Mucosa Intestinal/citologia , Células de Langerhans/imunologia , Pulmão/citologia , Pulmão/imunologia , Camundongos , Camundongos Knockout , Ovalbumina/toxicidade , Reação em Cadeia da Polimerase em Tempo Real , Receptores Imunológicos/genética , Mucosa Respiratória/citologia , Infecções por Salmonella/imunologia , Salmonella typhimurium
11.
Immunity ; 50(1): 212-224.e4, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30650377

RESUMO

Microbiota are thought to influence the development and progression of inflammatory bowel disease (IBD), but determining generalizable effects of microbiota on IBD etiology requires larger-scale functional analyses. We colonized germ-free mice with intestinal microbiotas from 30 healthy and IBD donors and determined the homeostatic intestinal T cell response to each microbiota. Compared to microbiotas from healthy donors, transfer of IBD microbiotas into germ-free mice increased numbers of intestinal Th17 cells and Th2 cells and decreased numbers of RORγt+ Treg cells. Colonization with IBD microbiotas exacerbated disease in a model where colitis is induced upon transfer of naive T cells into Rag1-/- mice. The proportions of Th17 and RORγt+ Treg cells induced by each microbiota were predictive of human disease status and accounted for disease severity in the Rag1-/- colitis model. Thus, an impact on intestinal Th17 and RORγt+ Treg cell compartments emerges as a unifying feature of IBD microbiotas, suggesting a general mechanism for microbial contribution to IBD pathogenesis.


Assuntos
Colite/microbiologia , Microbioma Gastrointestinal/genética , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/microbiologia , RNA Ribossômico 16S/genética , Linfócitos T Reguladores/imunologia , Células Th17/metabolismo , Animais , Diferenciação Celular , Colite/induzido quimicamente , Colite/imunologia , Modelos Animais de Doenças , Progressão da Doença , Homeostase , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo
12.
Immunity ; 50(4): 1099-1114.e10, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30876876

RESUMO

Inflammatory bowel disease is a chronic, relapsing condition with two subtypes, Crohn's disease (CD) and ulcerative colitis (UC). Genome-wide association studies (GWASs) in UC implicate a FCGR2A variant that alters the binding affinity of the antibody receptor it encodes, FcγRIIA, for immunoglobulin G (IgG). Here, we aimed to understand the mechanisms whereby changes in FcγRIIA affinity would affect inflammation in an IgA-dominated organ. We found a profound induction of anti-commensal IgG and a concomitant increase in activating FcγR signaling in the colonic mucosa of UC patients. Commensal-IgG immune complexes engaged gut-resident FcγR-expressing macrophages, inducing NLRP3- and reactive-oxygen-species-dependent production of interleukin-1ß (IL-1ß) and neutrophil-recruiting chemokines. These responses were modulated by the FCGR2A genotype. In vivo manipulation of macrophage FcγR signal strength in a mouse model of UC determined the magnitude of intestinal inflammation and IL-1ß-dependent type 17 immunity. The identification of an important contribution of IgG-FcγR-dependent inflammation to UC has therapeutic implications.


Assuntos
Anticorpos Antibacterianos/imunologia , Colite Ulcerativa/imunologia , Microbioma Gastrointestinal/imunologia , Imunoglobulina G/imunologia , Interleucina-1beta/imunologia , Células Th17/imunologia , Animais , Colite/induzido quimicamente , Colite/imunologia , Colite/microbiologia , Colite/patologia , Colite Ulcerativa/microbiologia , Colite Ulcerativa/patologia , Sulfato de Dextrana/toxicidade , Regulação da Expressão Gênica , Genótipo , Humanos , Inflamação , Interleucina-8/biossíntese , Interleucina-8/genética , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Macrófagos/imunologia , Camundongos , Fagócitos/imunologia , RNA Mensageiro/biossíntese , Espécies Reativas de Oxigênio , Receptores de IgG/biossíntese , Receptores de IgG/genética , Receptores de IgG/imunologia
13.
Nat Immunol ; 16(12): 1263-73, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26479789

RESUMO

Deregulation of the TH17 subset of helper T cells is closely linked with immunological disorders and inflammatory diseases. However, the mechanism by which TH17 cells are regulated remains elusive. Here we found that the phosphatase DUSP2 (PAC1) negatively regulated the development of TH17 cells. DUSP2 was directly associated with the signal transducer and transcription activator STAT3 and attenuated its activity through dephosphorylation of STAT3 at Tyr705 and Ser727. DUSP2-deficient mice exhibited severe susceptibility to experimental colitis, with enhanced differentiation of TH17 cells and secretion of proinflammatory cytokines. In clinical patients with ulcerative colitis, DUSP2 was downregulated by DNA methylation and was not induced during T cell activation. Our data demonstrate that DUSP2 is a true STAT3 phosphatase that modulates the development of TH17 cells in the autoimmune response and inflammation.


Assuntos
Diferenciação Celular/imunologia , Fosfatase 2 de Especificidade Dupla/imunologia , Fator de Transcrição STAT3/imunologia , Células Th17/imunologia , Animais , Células Cultivadas , Colite/induzido quimicamente , Colite/genética , Colite/imunologia , Colite Ulcerativa/genética , Colite Ulcerativa/imunologia , Colite Ulcerativa/metabolismo , Citocinas/imunologia , Citocinas/metabolismo , Metilação de DNA/imunologia , Sulfato de Dextrana , Fosfatase 2 de Especificidade Dupla/deficiência , Fosfatase 2 de Especificidade Dupla/genética , Regulação da Expressão Gênica/imunologia , Células HEK293 , Humanos , Immunoblotting , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação/imunologia , Ligação Proteica/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT3/metabolismo , Células Th17/metabolismo , Tirosina/imunologia , Tirosina/metabolismo
14.
Immunity ; 49(3): 504-514.e4, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30231984

RESUMO

The adaptor protein CARD9 links detection of fungi by surface receptors to the activation of the NF-κB pathway. Mice deficient in CARD9 exhibit dysbiosis and are more susceptible to colitis. Here we examined the impact of Card9 deficiency in the development of colitis-associated colon cancer (CAC). Treatment of Card9-/- mice with AOM-DSS resulted in increased tumor loads as compared to WT mice and in the accumulation of myeloid-derived suppressor cells (MDSCs) in tumor tissue. The impaired fungicidal functions of Card9-/- macrophages led to increased fungal loads and variation in the overall composition of the intestinal mycobiota, with a notable increase in C. tropicalis. Bone marrow cells incubated with C. tropicalis exhibited MDSC features and suppressive functions. Fluconazole treatment suppressed CAC in Card9-/- mice and was associated with decreased MDSC accumulation. The frequency of MDSCs in tumor tissues of colon cancer patients correlated positively with fungal burden, pointing to the relevance of this regulatory axis in human disease.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/metabolismo , Colite/imunologia , Neoplasias do Colo/imunologia , Disbiose/imunologia , Microbioma Gastrointestinal/imunologia , Células Supressoras Mieloides/fisiologia , Animais , Proteínas Adaptadoras de Sinalização CARD/genética , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura , Colite/induzido quimicamente , Colite/genética , Neoplasias do Colo/genética , Disbiose/genética , Humanos , Interferon gama/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Supressoras Mieloides/microbiologia , Regiões Promotoras Genéticas/genética
15.
Immunity ; 49(3): 560-575.e6, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30170812

RESUMO

Signaling by Toll-like receptors (TLRs) on intestinal epithelial cells (IECs) is critical for intestinal homeostasis. To visualize epithelial expression of individual TLRs in vivo, we generated five strains of reporter mice. These mice revealed that TLR expression varied dramatically along the length of the intestine. Indeed, small intestine (SI) IECs expressed low levels of multiple TLRs that were highly expressed by colonic IECs. TLR5 expression was restricted to Paneth cells in the SI epithelium. Intestinal organoid experiments revealed that TLR signaling in Paneth cells or colonic IECs induced a core set of host defense genes, but this set did not include antimicrobial peptides, which instead were induced indirectly by inflammatory cytokines. This comprehensive blueprint of TLR expression and function in IECs reveals unexpected diversity in the responsiveness of IECs to microbial stimuli, and together with the associated reporter strains, provides a resource for further study of innate immunity.


Assuntos
Colite/imunologia , Colo/patologia , Mucosa Intestinal/fisiologia , Intestino Delgado/patologia , Celulas de Paneth/fisiologia , Animais , Peptídeos Catiônicos Antimicrobianos/metabolismo , Células Cultivadas , Colite/induzido quimicamente , Citocinas/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Homeostase , Humanos , Imunidade Inata , Mediadores da Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Especificidade de Órgãos , Receptor Cross-Talk , Transdução de Sinais , Receptor 5 Toll-Like/metabolismo
16.
Immunity ; 49(3): 515-530.e5, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30231985

RESUMO

Fungi represent a significant proportion of the gut microbiota. Aberrant immune responses to fungi are frequently observed in inflammatory bowel diseases (IBD) and colorectal cancer (CRC), and mutations in the fungal-sensing pathways are associated with the pathogenesis of IBD. Fungal recognition receptors trigger downstream signaling via the common adaptor protein CARD9 and the kinase SYK. Here we found that commensal gut fungi promoted inflammasome activation during AOM-DSS-induced colitis. Myeloid cell-specific deletion of Card9 or Syk reduced inflammasome activation and interleukin (IL)-18 maturation and increased susceptibility to colitis and CRC. IL-18 promoted epithelial barrier restitution and interferon-γ production by intestinal CD8+ T cells. Supplementation of IL-18 or transfer of wild-type myeloid cells reduced tumor burden in AOM-DSS-treated Card9-/- and Sykfl/flLysMCre/+ mice, whereas treatment with anti-fungal agents exacerbated colitis and CRC. CARD9 deletion changes the gut microbial landscape, suggesting that SYK-CARD9 signaling maintains a microbial ecology that promotes inflammasome activation and thereby restrains colitis and colon tumorigenesis.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/metabolismo , Colite/imunologia , Neoplasias do Colo/imunologia , Fungos/imunologia , Microbioma Gastrointestinal/imunologia , Inflamassomos/metabolismo , Doenças Inflamatórias Intestinais/imunologia , Mucosa Intestinal/fisiologia , Células Mieloides/fisiologia , Quinase Syk/metabolismo , Animais , Proteínas Adaptadoras de Sinalização CARD/genética , Células Cultivadas , Colite/induzido quimicamente , Modelos Animais de Doenças , Humanos , Interleucina-18/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Dodecilsulfato de Sódio , Quinase Syk/genética
17.
Proc Natl Acad Sci U S A ; 121(27): e2315944121, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38917002

RESUMO

Chronic inflammation is epidemiologically linked to the pathogenesis of gastrointestinal diseases, including inflammatory bowel disease (IBD) and colorectal cancer (CRC). However, our understanding of the molecular mechanisms controlling gut inflammation remains insufficient, hindering the development of targeted therapies for IBD and CRC. In this study, we uncovered C15ORF48/miR-147 as a negative regulator of gut inflammation, operating through the modulation of epithelial cell metabolism. C15ORF48/miR-147 encodes two molecular products, C15ORF48 protein and miR-147-3p microRNA, which are predominantly expressed in the intestinal epithelium. C15ORF48/miR-147 ablation leads to gut dysbiosis and exacerbates chemically induced colitis in mice. C15ORF48 and miR-147-3p work together to suppress colonocyte metabolism and inflammation by silencing NDUFA4, a subunit of mitochondrial complex IV (CIV). Interestingly, the C15ORF48 protein, a structural paralog of NDUFA4, contains a unique C-terminal α-helical domain crucial for displacing NDUFA4 from CIV and its subsequent degradation. NDUFA4 silencing hinders NF-κB signaling activation and consequently attenuates inflammatory responses. Collectively, our findings have established the C15ORF48/miR-147-NDUFA4 molecular axis as an indispensable regulator of gut homeostasis, bridging mitochondrial metabolism and inflammation.


Assuntos
Metabolismo Energético , Microbioma Gastrointestinal , Inflamação , MicroRNAs , Animais , Humanos , Camundongos , Colite/metabolismo , Colite/microbiologia , Colite/genética , Colite/induzido quimicamente , Disbiose/metabolismo , Disbiose/microbiologia , Metabolismo Energético/genética , Inflamação/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/genética , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais
18.
Proc Natl Acad Sci U S A ; 121(18): e2319833121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38648480

RESUMO

Sirt2 is a nicotinamide adenine dinucleotide (NAD+)-dependent protein lysine deacylase that can remove both acetyl group and long-chain fatty acyl groups from lysine residues of many proteins. It was reported to affect inflammatory bowel disease (IBD) symptoms in a mouse model. However, conflicting roles were reported, with genetic knockout aggravating while pharmacological inhibition alleviating IBD symptoms. These seemingly conflicting reports cause confusion and deter further efforts in developing Sirt2 inhibitors as a potential treatment strategy for IBD. We investigated these conflicting reports and elucidated the role of Sirt2 in the mouse model of IBD. We essentially replicated these conflicting results and confirmed that Sirt2 inhibitors' protective effect is not through off-targets as two very different Sirt2 inhibitors (TM and AGK2) showed similar protection in the IBD mouse model. We believe that the differential effects of inhibitors and knockout are due to the fact that the Sirt2 inhibitors only inhibit some but not all the activities of Sirt2. This hypothesis is confirmed by the observation that a PROTAC degrader of Sirt2 did not protect mice in the IBD model, similar to Sirt2 knockout. Our study provides an interesting example where genetic knockout and pharmacological inhibition do not align and emphasizes the importance of developing substrate-dependent inhibitors. Importantly, we showed that the effect of Sirt2 inhibition in IBD is through regulating the gut epithelium barrier by inhibiting Arf6-mediated endocytosis of E-cadherin, a protein important for the intestinal epithelial integrity. This mechanistic understanding further supports Sirt2 as a promising therapeutic target for treating IBD.


Assuntos
Colite , Mucosa Intestinal , Sirtuína 2 , Animais , Humanos , Camundongos , Caderinas/metabolismo , Caderinas/genética , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/prevenção & controle , Modelos Animais de Doenças , Furanos , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Quinolinas , Sirtuína 2/metabolismo , Sirtuína 2/antagonistas & inibidores , Sirtuína 2/genética
19.
Immunol Rev ; 318(1): 11-21, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37455375

RESUMO

Immune checkpoint inhibitor (ICI) therapy has revolutionized the field of oncology over the past decade, leading to durable remissions in some patients but also producing a wide spectrum of treatment-limiting inflammatory toxicities that are referred to as immune-related adverse events (irAEs). Although irAEs can involve any organ system in the body, they most commonly affect the barrier tissues, including the gastrointestinal tract with colitis and enterocolitis affecting a significant fraction of patients on ICIs. We are beginning to understand the mechanisms that drive ICI colitis, with early experiments indicating a role for CD8+ resident memory T cells (TRMs) in the gut, which become activated and differentiate into cytotoxic cells in response to ICI therapy. The risk factors that define who will develop ICI colitis are not understood and substantial efforts are underway to identify potential biomarkers for risk of this and other toxicities. Optimal management of ICI colitis is also an area of active investigation. Current standard treatments are based largely on small, retrospective analyses, and while drugs like systemic glucocorticoids or the TNFα inhibitor infliximab do appear to be highly active in ICI colitis, the impact of these therapies on antitumor responses is poorly understood. As discussed in this review, future work will have to define the immune mechanisms driving ICI colitis in more detail and in comparison to antitumor responses in order to identify candidate pathways that can be targeted to improve ICI colitis without interfering in antitumor immunity. Studying these interventions will require randomized, controlled trials with both tumor and colitis endpoints, a goal that will necessitate collaboration across institutions and funding agencies. We are at a point where such collaborative trials are feasible, and have the potential to greatly improve the care of patients with ICI colitis as well as other irAEs.


Assuntos
Colite , Neoplasias , Humanos , Inibidores de Checkpoint Imunológico/efeitos adversos , Estudos Retrospectivos , Colite/induzido quimicamente , Colite/tratamento farmacológico
20.
J Cell Sci ; 137(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38904097

RESUMO

PTPRK is a receptor tyrosine phosphatase that is linked to the regulation of growth factor signalling and tumour suppression. It is stabilized at the plasma membrane by trans homophilic interactions upon cell-cell contact. PTPRK regulates cell-cell adhesion but is also reported to regulate numerous cancer-associated signalling pathways. However, the signalling mechanism of PTPRK remains to be determined. Here, we find that PTPRK regulates cell adhesion signalling, suppresses invasion and promotes collective, directed migration in colorectal cancer cells. In vivo, PTPRK supports recovery from inflammation-induced colitis. In addition, we confirm that PTPRK functions as a tumour suppressor in the mouse colon and in colorectal cancer xenografts. PTPRK regulates growth factor and adhesion signalling, and suppresses epithelial to mesenchymal transition (EMT). Contrary to the prevailing notion that PTPRK directly dephosphorylates EGFR, we find that PTPRK regulation of both EGFR and EMT is independent of its catalytic function. This suggests that additional adaptor and scaffold functions are important features of PTPRK signalling.


Assuntos
Transição Epitelial-Mesenquimal , Humanos , Animais , Camundongos , Receptores ErbB/metabolismo , Receptores ErbB/genética , Transdução de Sinais , Adesão Celular/genética , Movimento Celular , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Colite/patologia , Colite/metabolismo , Colite/genética , Colite/induzido quimicamente , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética , Intestinos/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA