Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20.553
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 181(2): 211, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32302562

RESUMO

Tazemetostat is the first epigenetic therapy to gain FDA approval in a solid tumor. This lysine methyltransferase inhibitor targets EZH2, the enzymatic subunit of the PRC2 transcriptional silencing complex. Tumors with mutations in subunits of the SWI/SNF chromatin remodeling complex, inclusive of most epithelioid sarcomas, are sensitive to EZH2 inhibition.


Assuntos
Benzamidas/uso terapêutico , Epigênese Genética/genética , Piridonas/uso terapêutico , Sarcoma/tratamento farmacológico , Compostos de Bifenilo , Linhagem Celular Tumoral , Montagem e Desmontagem da Cromatina , DNA Helicases/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/efeitos dos fármacos , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Inibidores Enzimáticos/farmacologia , Epigenômica , Terapia Genética/métodos , Humanos , Morfolinas , Proteínas Nucleares/metabolismo , Sarcoma/genética , Fatores de Transcrição/metabolismo
2.
Cell ; 164(5): 831, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26919418

RESUMO

The hedgehog (Hh) signaling pathway is aberrantly activated in a majority of basal cell carcinomas (BCC). Vismodegib and sonidegib are targeted inhibitors of Smoothened (SMO). Both drugs are approved for use in locally advanced BCC (laBCC), with vismodegib also approved for metastatic BCC (mBCC).


Assuntos
Anilidas/uso terapêutico , Antineoplásicos/uso terapêutico , Compostos de Bifenilo/uso terapêutico , Carcinoma Basocelular/tratamento farmacológico , Proteínas Hedgehog/metabolismo , Piridinas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Neoplasias Cutâneas/tratamento farmacológico , Humanos , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptor Smoothened , Pesquisa Translacional Biomédica
3.
Mol Cell ; 81(11): 2317-2331.e6, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-33909988

RESUMO

Aberrant energy status contributes to multiple metabolic diseases, including obesity, diabetes, and cancer, but the underlying mechanism remains elusive. Here, we report that ketogenic-diet-induced changes in energy status enhance the efficacy of anti-CTLA-4 immunotherapy by decreasing PD-L1 protein levels and increasing expression of type-I interferon (IFN) and antigen presentation genes. Mechanistically, energy deprivation activates AMP-activated protein kinase (AMPK), which in turn, phosphorylates PD-L1 on Ser283, thereby disrupting its interaction with CMTM4 and subsequently triggering PD-L1 degradation. In addition, AMPK phosphorylates EZH2, which disrupts PRC2 function, leading to enhanced IFNs and antigen presentation gene expression. Through these mechanisms, AMPK agonists or ketogenic diets enhance the efficacy of anti-CTLA-4 immunotherapy and improve the overall survival rate in syngeneic mouse tumor models. Our findings reveal a pivotal role for AMPK in regulating the immune response to immune-checkpoint blockade and advocate for combining ketogenic diets or AMPK agonists with anti-CTLA4 immunotherapy to combat cancer.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Antígeno B7-H1/genética , Neoplasias da Mama/genética , Antígeno CTLA-4/genética , Neoplasias Colorretais/genética , Inibidores de Checkpoint Imunológico , Proteínas Quinases Ativadas por AMP/imunologia , Aloenxertos , Animais , Anticorpos Neutralizantes/farmacologia , Antineoplásicos/farmacologia , Antígeno B7-H1/imunologia , Compostos de Bifenilo/farmacologia , Neoplasias da Mama/imunologia , Neoplasias da Mama/mortalidade , Neoplasias da Mama/terapia , Antígeno CTLA-4/antagonistas & inibidores , Antígeno CTLA-4/imunologia , Linhagem Celular Tumoral , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/terapia , Dieta Cetogênica/métodos , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/imunologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Imunoterapia/métodos , Proteínas com Domínio MARVEL/genética , Proteínas com Domínio MARVEL/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Pironas/farmacologia , Transdução de Sinais , Análise de Sobrevida , Tiofenos/farmacologia
4.
Genes Dev ; 34(7-8): 489-494, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32139422

RESUMO

Young mammals possess a limited regenerative capacity in some tissues, which is lost upon maturation. We investigated whether cellular senescence might play a role in such loss during liver regeneration. We found that following partial hepatectomy, the senescence-associated genes p21, p16Ink4a, and p19Arf become dynamically expressed in different cell types when regenerative capacity decreases, but without a full senescent response. However, we show that treatment with a senescence-inhibiting drug improves regeneration, by disrupting aberrantly prolonged p21 expression. This work suggests that senescence may initially develop from heterogeneous cellular responses, and that senotherapeutic drugs might be useful in promoting organ regeneration.


Assuntos
Compostos de Bifenilo/farmacologia , Inibidor de Quinase Dependente de Ciclina p21/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/fisiologia , Nitrofenóis/farmacologia , Regeneração/efeitos dos fármacos , Sulfonamidas/farmacologia , Animais , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Inibidor p16 de Quinase Dependente de Ciclina/genética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Piperazinas/farmacologia
5.
Nature ; 593(7860): 586-590, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33981038

RESUMO

Ferroptosis, a form of regulated cell death that is induced by excessive lipid peroxidation, is a key tumour suppression mechanism1-4. Glutathione peroxidase 4 (GPX4)5,6 and ferroptosis suppressor protein 1 (FSP1)7,8 constitute two major ferroptosis defence systems. Here we show that treatment of cancer cells with GPX4 inhibitors results in acute depletion of N-carbamoyl-L-aspartate, a pyrimidine biosynthesis intermediate, with concomitant accumulation of uridine. Supplementation with dihydroorotate or orotate-the substrate and product of dihydroorotate dehydrogenase (DHODH)-attenuates or potentiates ferroptosis induced by inhibition of GPX4, respectively, and these effects are particularly pronounced in cancer cells with low expression of GPX4 (GPX4low). Inactivation of DHODH induces extensive mitochondrial lipid peroxidation and ferroptosis in GPX4low cancer cells, and synergizes with ferroptosis inducers to induce these effects in GPX4high cancer cells. Mechanistically, DHODH operates in parallel to mitochondrial GPX4 (but independently of cytosolic GPX4 or FSP1) to inhibit ferroptosis in the mitochondrial inner membrane by reducing ubiquinone to ubiquinol (a radical-trapping antioxidant with anti-ferroptosis activity). The DHODH inhibitor brequinar selectively suppresses GPX4low tumour growth by inducing ferroptosis, whereas combined treatment with brequinar and sulfasalazine, an FDA-approved drug with ferroptosis-inducing activity, synergistically induces ferroptosis and suppresses GPX4high tumour growth. Our results identify a DHODH-mediated ferroptosis defence mechanism in mitochondria and suggest a therapeutic strategy of targeting ferroptosis in cancer treatment.


Assuntos
Di-Hidro-Orotato Desidrogenase/metabolismo , Ferroptose , Mitocôndrias/metabolismo , Neoplasias/enzimologia , Animais , Compostos de Bifenilo/farmacologia , Linhagem Celular Tumoral , Di-Hidro-Orotato Desidrogenase/genética , Feminino , Deleção de Genes , Humanos , Peroxidação de Lipídeos , Metabolômica , Camundongos Nus , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/antagonistas & inibidores , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Cell ; 145(7): 1075-87, 2011 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-21683433

RESUMO

In the ubiquitin-proteasome system (UPS), E2 enzymes mediate the conjugation of ubiquitin to substrates and thereby control protein stability and interactions. The E2 enzyme hCdc34 catalyzes the ubiquitination of hundreds of proteins in conjunction with the cullin-RING (CRL) superfamily of E3 enzymes. We identified a small molecule termed CC0651 that selectively inhibits hCdc34. Structure determination revealed that CC0651 inserts into a cryptic binding pocket on hCdc34 distant from the catalytic site, causing subtle but wholesale displacement of E2 secondary structural elements. CC0651 analogs inhibited proliferation of human cancer cell lines and caused accumulation of the SCF(Skp2) substrate p27(Kip1). CC0651 does not affect hCdc34 interactions with E1 or E3 enzymes or the formation of the ubiquitin thioester but instead interferes with the discharge of ubiquitin to acceptor lysine residues. E2 enzymes are thus susceptible to noncatalytic site inhibition and may represent a viable class of drug target in the UPS.


Assuntos
Aminoácidos/farmacologia , Compostos de Bifenilo/farmacologia , Complexos Ubiquitina-Proteína Ligase/antagonistas & inibidores , Sítio Alostérico , Sequência de Aminoácidos , Ciclossomo-Complexo Promotor de Anáfase , Análise Mutacional de DNA , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Alinhamento de Sequência , Enzimas de Conjugação de Ubiquitina , Complexos Ubiquitina-Proteína Ligase/química , Complexos Ubiquitina-Proteína Ligase/genética
7.
Circulation ; 150(4): 272-282, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38841854

RESUMO

BACKGROUND: A hypothetical concern has been raised that sacubitril/valsartan might cause cognitive impairment because neprilysin is one of several enzymes degrading amyloid-ß peptides in the brain, some of which are neurotoxic and linked to Alzheimer-type dementia. To address this, we examined the effect of sacubitril/valsartan compared with valsartan on cognitive function in patients with heart failure with preserved ejection fraction in a prespecified substudy of PARAGON-HF (Prospective Comparison of Angiotensin Receptor Neprilysin Inhibitor With Angiotensin Receptor Blocker Global Outcomes in Heart Failure With Preserved Ejection Fraction). METHODS: In PARAGON-HF, serial assessment of cognitive function was conducted in a subset of patients with the Mini-Mental State Examination (MMSE; score range, 0-30, with lower scores reflecting worse cognitive function). The prespecified primary analysis of this substudy was the change from baseline in MMSE score at 96 weeks. Other post hoc analyses included cognitive decline (fall in MMSE score of ≥3 points), cognitive impairment (MMSE score <24), or the occurrence of dementia-related adverse events. RESULTS: Among 2895 patients included in the MMSE substudy with baseline MMSE score measured, 1453 patients were assigned to sacubitril/valsartan and 1442 to valsartan. Their mean age was 73 years, and the median follow-up was 32 months. The mean±SD MMSE score at randomization was 27.4±3.0 in the sacubitril/valsartan group, with 10% having an MMSE score <24; the corresponding numbers were nearly identical in the valsartan group. The mean change from baseline to 96 weeks in the sacubitril/valsartan group was -0.05 (SE, 0.07); the corresponding change in the valsartan group was -0.04 (0.07). The mean between-treatment difference at week 96 was -0.01 (95% CI, -0.20 to 0.19; P=0.95). Analyses of a ≥3-point decline in MMSE, decrease to a score <24, dementia-related adverse events, and combinations of these showed no difference between sacubitril/valsartan and valsartan. No difference was found in the subgroup of patients tested for apolipoprotein E ε4 allele genotype. CONCLUSIONS: Patients with heart failure with preserved ejection fraction in PARAGON-HF had relatively low baseline MMSE scores. Cognitive change, measured by MMSE, did not differ between treatment with sacubitril/valsartan and treatment with valsartan in patients with heart failure with preserved ejection fraction. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT01920711.


Assuntos
Aminobutiratos , Antagonistas de Receptores de Angiotensina , Compostos de Bifenilo , Cognição , Combinação de Medicamentos , Insuficiência Cardíaca , Volume Sistólico , Tetrazóis , Valsartana , Humanos , Compostos de Bifenilo/uso terapêutico , Valsartana/uso terapêutico , Valsartana/efeitos adversos , Aminobutiratos/uso terapêutico , Aminobutiratos/efeitos adversos , Masculino , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/fisiopatologia , Feminino , Idoso , Cognição/efeitos dos fármacos , Volume Sistólico/efeitos dos fármacos , Antagonistas de Receptores de Angiotensina/uso terapêutico , Antagonistas de Receptores de Angiotensina/efeitos adversos , Pessoa de Meia-Idade , Tetrazóis/uso terapêutico , Tetrazóis/efeitos adversos , Estudos Prospectivos , Neprilisina/antagonistas & inibidores , Resultado do Tratamento , Disfunção Cognitiva/tratamento farmacológico , Idoso de 80 Anos ou mais
8.
FASEB J ; 38(6): e23537, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38498345

RESUMO

Candesartan is a common angiotensin-II receptor-1 blocker used for patients with cardiovascular and renal diseases. Angiotensin-converting enzyme 2 (ACE2) is a negative regulator of blood pressure (BP), and also a major receptor for coronaviruses. To determine whether and how candesartan upregulates ACE2, we examined BP and ACE2 in multi-organs from male and female C57BL/6J mice treated with candesartan (1 mg/kg, i.p.) for 7 days. Relative to the vehicle, candesartan lowered BP more in males than females; ACE2 protein abundances were increased in kidneys, not lungs, hearts, aorta, liver, spleen, brain, or serum, only from males. Ace2-mRNA was similar in kidneys. Candesartan also decreased BP in normal, hypertensive, and nephrotic male rats. The renal ACE2 was increased by the drug in normal and nephrotic male rats but not spontaneously hypertensive ones. In male mouse kidneys, ACE2 was distributed at sodium-hydrogen-exchanger-3 positive proximal-convoluted-tubules; ACE2-ubiquitination was decreased by candesartan, accompanied with increased ubiquitin-specific-protease-48 (USP48). In candesartan-treated mouse renal proximal-convoluted-tubule cells, ACE2 abundances and activities were increased while ACE2-ubiquitination and colocalization with lysosomal and proteosomal markers were decreased. The silence of USP48 by siRNA caused a reduction of ACE2 in the cells. Thus, the sex-differential ACE2 upregulation by candesartan in kidney from males may be due to the decreased ACE2-ubiquitination, associated with USP48, and consequent degradation in lysosomes and proteosomes. This is a novel mechanism and may shed light on candesartan-like-drug choice in men and women prone to coronavirus infections.


Assuntos
Enzima de Conversão de Angiotensina 2 , Benzimidazóis , Compostos de Bifenilo , Hipertensão , Humanos , Feminino , Masculino , Ratos , Camundongos , Animais , Enzima de Conversão de Angiotensina 2/metabolismo , Camundongos Endogâmicos C57BL , Rim/metabolismo , Hipertensão/metabolismo , Tetrazóis/farmacologia , Ubiquitinação
9.
Nature ; 574(7779): 581-585, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31645725

RESUMO

The tricarboxylic acid cycle intermediate succinate is involved in metabolic processes and plays a crucial role in the homeostasis of mitochondrial reactive oxygen species1. The receptor responsible for succinate signalling, SUCNR1 (also known as GPR91), is a member of the G-protein-coupled-receptor family2 and links succinate signalling to renin-induced hypertension, retinal angiogenesis and inflammation3-5. Because SUCNR1 senses succinate as an immunological danger signal6-which has relevance for diseases including ulcerative colitis, liver fibrosis7, diabetes and rheumatoid arthritis3,8-it is of interest as a therapeutic target. Here we report the high-resolution crystal structure of rat SUCNR1 in complex with an intracellular binding nanobody in the inactive conformation. Structure-based mutagenesis and radioligand-binding studies, in conjunction with molecular modelling, identified key residues for species-selective antagonist binding and enabled the determination of the high-resolution crystal structure of a humanized rat SUCNR1 in complex with a high-affinity, human-selective antagonist denoted NF-56-EJ40. We anticipate that these structural insights into the architecture of the succinate receptor and its antagonist selectivity will enable structure-based drug discovery and will further help to elucidate the function of SUCNR1 in vitro and in vivo.


Assuntos
Compostos de Bifenilo/química , Compostos de Bifenilo/farmacologia , Piperazinas/química , Piperazinas/farmacologia , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/química , Animais , Apoproteínas/antagonistas & inibidores , Apoproteínas/química , Apoproteínas/metabolismo , Cristalografia por Raios X , Humanos , Modelos Moleculares , Ratos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Purinérgicos P2Y1/química , Transdução de Sinais , Anticorpos de Domínio Único/química , Especificidade da Espécie , Ácido Succínico/metabolismo
10.
J Cell Mol Med ; 28(1): e18028, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37985436

RESUMO

Pathological cardiac hypertrophy is a key contributor to heart failure, and the molecular mechanisms underlying honokiol (HNK)-mediated cardioprotection against this condition remain worth further exploring. This study aims to investigate the effect of HNK on angiotensin II (Ang II)-induced myocardial hypertrophy and elucidate the underlying mechanisms. Sprague-Dawley rats were exposed to Ang II infusion, followed by HNK or vehicle treatment for 4 weeks. Our results showed that HNK treatment protected against Ang II-induced myocardial hypertrophy, fibrosis and dysfunction in vivo and inhibited Ang II-induced hypertrophy in neonatal rat ventricular myocytes in vitro. Mechanistically, HNK suppressed the Ang II-induced Nur77 expression at the transcriptional level and promoted ubiquitination-mediated degradation of Nur77, leading to dissociation of the Nur77-LKB1 complex. This facilitated the translocation of LKB1 into the cytoplasm and activated the LKB1-AMPK pathway. Our findings suggest that HNK attenuates pathological remodelling and cardiac dysfunction induced by Ang II by promoting dissociation of the Nur77-LKB1 complex and subsequent activation of AMPK signalling. This study uncovers a novel role of HNK on the LKB1-AMPK pathway to protect against cardiac hypertrophy.


Assuntos
Proteínas Quinases Ativadas por AMP , Compostos Alílicos , Angiotensina II , Compostos de Bifenilo , Fenóis , Ratos , Animais , Angiotensina II/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Ratos Sprague-Dawley , Cardiomegalia/metabolismo , Miócitos Cardíacos/metabolismo
11.
Cancer Sci ; 115(7): 2220-2234, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38623968

RESUMO

Enhancing sensitivity to sorafenib can significantly extend the duration of resistance to it, offering substantial benefits for treating patients with hepatocellular carcinoma (HCC). However, the role of ferroptosis in influencing sorafenib sensitivity within HCC remains pivotal. The enhancer of zeste homolog 2 (EZH2) plays a significant role in promoting malignant progression in HCC, yet the relationship between ferroptosis, sorafenib sensitivity, and EZH2 is not entirely clear. Bioinformatic analysis indicates elevated EZH2 expression in HCC, predicting an unfavorable prognosis. Overexpressing EZH2 can drive HCC cell proliferation while simultaneously reducing ferroptosis. Further analysis reveals that EZH2 amplifies the modification of H3K27 me3, thereby influencing TFR2 expression. This results in decreased RNA polymerase II binding within the TFR2 promoter region, leading to reduced TFR2 expression. Knocking down EZH2 amplifies sorafenib sensitivity in HCC cells. In sorafenib-resistant HepG2(HepG2-SR) cells, the expression of EZH2 is increased. Moreover, combining tazemetostat-an EZH2 inhibitor-with sorafenib demonstrates significant synergistic ferroptosis-promoting effects in HepG2-SR cells. In conclusion, our study illustrates how EZH2 epigenetically regulates TFR2 expression through H3K27 me3, thereby suppressing ferroptosis. The combination of the tazemetostat with sorafenib exhibits superior synergistic effects in anticancer therapy and sensitizes the HepG2-SR cells to sorafenib, shedding new light on delaying and ameliorating sorafenib resistance.


Assuntos
Carcinoma Hepatocelular , Resistencia a Medicamentos Antineoplásicos , Proteína Potenciadora do Homólogo 2 de Zeste , Epigênese Genética , Ferroptose , Neoplasias Hepáticas , Sorafenibe , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Ferroptose/efeitos dos fármacos , Ferroptose/genética , Resistencia a Medicamentos Antineoplásicos/genética , Células Hep G2 , Camundongos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Animais , Piridonas/farmacologia , Piridonas/uso terapêutico , Receptores da Transferrina/genética , Receptores da Transferrina/metabolismo , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Morfolinas/farmacologia , Benzamidas , Compostos de Bifenilo
12.
Eur J Neurosci ; 59(10): 2450-2464, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38480476

RESUMO

Amphetamine (AMPH) exposure induces behavioural and neurochemical sensitization observed in rodents as hyperlocomotion and increased dopamine release in response to a subsequent dose. Brain Angiotensin II modulates dopaminergic neurotransmission through its AT1 receptors (AT1-R), positively regulating striatal dopamine synthesis and release. This work aims to evaluate the AT1-R role in the development and maintenance of AMPH-induced sensitization. Also, the AT1-R involvement in striatal dopamine reuptake was analysed. The sensitization protocol consisted of daily AMPH administration for 5 days and tested 21 days after withdrawal. An AT1-R antagonist, candesartan, was administered before or after AMPH exposure to evaluate the participation of AT1-R in the development and maintenance of sensitization, respectively. Sensitization was evaluated by locomotor activity and c-Fos immunostaining. Changes in dopamine reuptake kinetics were evaluated 1 day after AT1-R blockade withdrawal treatment, with or without the addition of AMPH in vitro. The social interaction test was performed as another behavioural output. Repeated AMPH exposure induced behavioural and neurochemical sensitization, which was prevented and reversed by candesartan. The AT1-R blockade increased the dopamine reuptake kinetics. Neither the AMPH administration nor the AT1-R blockade altered the performance of social interaction. Our results highlight the AT1-R's crucial role in AMPH sensitization. The enhancement of dopamine reuptake kinetics induced by the AT1-R blockade might attenuate the neuroadaptive changes that lead to AMPH sensitization and its self-perpetuation. Therefore, AT1-R is a prominent candidate as a target for pharmacological treatment of pathologies related to dopamine imbalance, including drug addiction and schizophrenia.


Assuntos
Anfetamina , Bloqueadores do Receptor Tipo 1 de Angiotensina II , Angiotensina II , Benzimidazóis , Compostos de Bifenilo , Corpo Estriado , Dopamina , Animais , Anfetamina/farmacologia , Masculino , Dopamina/metabolismo , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Angiotensina II/farmacologia , Compostos de Bifenilo/farmacologia , Benzimidazóis/farmacologia , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Ratos Wistar , Ratos , Receptor Tipo 1 de Angiotensina/metabolismo , Tetrazóis/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Interação Social/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo
13.
N Engl J Med ; 385(20): 1845-1855, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34758252

RESUMO

BACKGROUND: In patients with symptomatic heart failure, sacubitril-valsartan has been found to reduce the risk of hospitalization and death from cardiovascular causes more effectively than an angiotensin-converting-enzyme inhibitor. Trials comparing the effects of these drugs in patients with acute myocardial infarction have been lacking. METHODS: We randomly assigned patients with myocardial infarction complicated by a reduced left ventricular ejection fraction, pulmonary congestion, or both to receive either sacubitril-valsartan (97 mg of sacubitril and 103 mg of valsartan twice daily) or ramipril (5 mg twice daily) in addition to recommended therapy. The primary outcome was death from cardiovascular causes or incident heart failure (outpatient symptomatic heart failure or heart failure leading to hospitalization), whichever occurred first. RESULTS: A total of 5661 patients underwent randomization; 2830 were assigned to receive sacubitril-valsartan and 2831 to receive ramipril. Over a median of 22 months, a primary-outcome event occurred in 338 patients (11.9%) in the sacubitril-valsartan group and in 373 patients (13.2%) in the ramipril group (hazard ratio, 0.90; 95% confidence interval [CI], 0.78 to 1.04; P = 0.17). Death from cardiovascular causes or hospitalization for heart failure occurred in 308 patients (10.9%) in the sacubitril-valsartan group and in 335 patients (11.8%) in the ramipril group (hazard ratio, 0.91; 95% CI, 0.78 to 1.07); death from cardiovascular causes in 168 (5.9%) and 191 (6.7%), respectively (hazard ratio, 0.87; 95% CI, 0.71 to 1.08); and death from any cause in 213 (7.5%) and 242 (8.5%), respectively (hazard ratio, 0.88; 95% CI, 0.73 to 1.05). Treatment was discontinued because of an adverse event in 357 patients (12.6%) in the sacubitril-valsartan group and 379 patients (13.4%) in the ramipril group. CONCLUSIONS: Sacubitril-valsartan was not associated with a significantly lower incidence of death from cardiovascular causes or incident heart failure than ramipril among patients with acute myocardial infarction. (Funded by Novartis; PARADISE-MI ClinicalTrials.gov number, NCT02924727.).


Assuntos
Aminobutiratos/uso terapêutico , Antagonistas de Receptores de Angiotensina/uso terapêutico , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Compostos de Bifenilo/uso terapêutico , Insuficiência Cardíaca/prevenção & controle , Infarto do Miocárdio/tratamento farmacológico , Ramipril/uso terapêutico , Valsartana/uso terapêutico , Idoso , Aminobutiratos/efeitos adversos , Antagonistas de Receptores de Angiotensina/efeitos adversos , Inibidores da Enzima Conversora de Angiotensina/efeitos adversos , Compostos de Bifenilo/efeitos adversos , Doenças Cardiovasculares/mortalidade , Método Duplo-Cego , Combinação de Medicamentos , Feminino , Hospitalização/estatística & dados numéricos , Humanos , Hipotensão/induzido quimicamente , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/complicações , Infarto do Miocárdio/mortalidade , Modelos de Riscos Proporcionais , Ramipril/efeitos adversos , Volume Sistólico , Valsartana/efeitos adversos , Disfunção Ventricular Esquerda/etiologia
14.
Anal Chem ; 96(32): 13166-13173, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39092810

RESUMO

For the approval of a drug, the stability data must be submitted to regulatory authorities. Such analyses are often time-consuming and cost-intensive. Forced degradation studies are mainly carried out under harsh conditions in the dissolved state, often leading to extraneous degradation profiles for a solid drug. Oxidative mechanochemical degradation offers the possibility of generating realistic degradation profiles. In this study, a sustainable mechanochemical procedure is presented for the degradation of five active pharmaceutical ingredients (APIs) from the sartan family: losartan potassium, irbesartan, valsartan, olmesartan medoxomil, and telmisartan. High-resolution mass spectrometry enabled the detection of impurities already present in untreated APIs and allowed the elucidation of degradation products. Significant degradation profiles could already be obtained after 15-60 min of ball milling time. Many of the identified degradation products are described in the literature and pharmacopoeias, emphasizing the significance of our results and the applicability of this approach to predict degradation profiles for drugs in the solid state.


Assuntos
Benzimidazóis , Compostos de Bifenilo , Losartan , Telmisartan , Tetrazóis , Valsartana , Benzimidazóis/química , Benzimidazóis/análise , Tetrazóis/química , Telmisartan/química , Valsartana/química , Losartan/química , Losartan/análise , Compostos de Bifenilo/química , Irbesartana/química , Irbesartana/análise , Imidazóis/química , Benzoatos/química , Valina/química , Valina/análise , Solventes/química , Estabilidade de Medicamentos
15.
Anal Chem ; 96(15): 5922-5930, 2024 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-38575388

RESUMO

Mitochondrial therapy is a promising new strategy that offers the potential to achieve precise disease diagnosis or maximum therapeutic response. However, versatile mitochondrial theranostic platforms that integrate biomarker detection and therapy have rarely been exploited. Here, we report a charge-reversal nanomedicine activated by an acidic microenvironment for mitochondrial microRNA (mitomiR) detection and ion-interference therapy. The transporter liposome (DD-DC) was constructed from a pH-responsive polymer and a positively charged phospholipid, encapsulating NaCl nanoparticles with coloading of the aggregation-induced emission (AIE) fluorogens AIEgen-DNA/G-quadruplexes precursor and brequinar (NAB@DD-DC). The negatively charged nanomedicine ensured good blood stability and high tumor accumulation, while the charge-reversal to positive in response to the acidic pH in the tumor microenvironment (TME) and lysosomes enhanced the uptake by tumor cells and lysosome escape, achieving accumulation in mitochondria. The subsequently released Na+ in mitochondria not only contributed to the formation of mitomiR-494 induced G-quadruplexes for AIE imaging diagnosis but also led to an osmolarity surge that was enhanced by brequinar to achieve effective ion-interference therapy.


Assuntos
Compostos de Bifenilo , Quadruplex G , MicroRNAs , Nanopartículas , Neoplasias , Quinaldinas , Humanos , Cloreto de Sódio , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Mitocôndrias , Concentração de Íons de Hidrogênio , Linhagem Celular Tumoral , Microambiente Tumoral
16.
Biochem Biophys Res Commun ; 710: 149872, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38593621

RESUMO

Protein modifications importantly contribute to memory formation. Protein acetylation is a post-translational modification of proteins that regulates memory formation. Acetylation level is determined by the relative activities of acetylases and deacetylases. Crebinostat is a histone deacetylase inhibitor. Here we show that in an object recognition task, crebinostat facilitates memory formation by a weak training. Further, this compound enhances acetylation of α-tubulin, and reduces the level of histone deacetylase 6, an α-tubulin deacetylase. The results suggest that enhanced acetylation of α-tubulin by crebinostat contributes to its facilitatory effect on memory formation.


Assuntos
Histona Desacetilases , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Histona Desacetilases/metabolismo , Desacetilase 6 de Histona/metabolismo , Compostos de Bifenilo , Hidrazinas , Inibidores de Histona Desacetilases/farmacologia , Acetilação
17.
J Transl Med ; 22(1): 682, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060930

RESUMO

BACKGROUND: Silicosis is an irreversible fibrotic disease of the lung caused by chronic exposure to silica dust, which manifests as infiltration of inflammatory cells, excessive secretion of pro-inflammatory cytokines, and pulmonary diffuse fibrosis. As the disease progresses, lung function further deteriorates, leading to poorer quality of life of patients. Currently, few effective drugs are available for the treatment of silicosis. Bicyclol (BIC) is a compound widely employed to treat chronic viral hepatitis and drug-induced liver injury. While recent studies have demonstrated anti-fibrosis effects of BIC on multiple organs, including liver, lung, and kidney, its therapeutic benefit against silicosis remains unclear. In this study, we established a rat model of silicosis, with the aim of evaluating the potential therapeutic effects of BIC. METHODS: We constructed a silicotic rat model and administered BIC after injury. The FlexiVent instrument with a forced oscillation system was used to detect the pulmonary function of rats. HE and Masson staining were used to assess the effect of BIC on silica-induced rats. Macrophages-inflammatory model of RAW264.7 cells, fibroblast-myofibroblast transition (FMT) model of NIH-3T3 cells, and epithelial-mesenchymal transition (EMT) model of TC-1 cells were established in vitro. And the levels of inflammatory mediators and fibrosis-related proteins were evaluated in vivo and in vitro after BIC treatment by Western Blot analysis, RT-PCR, ELISA, and flow cytometry experiments. RESULTS: BIC significantly improved static compliance of lung and expiratory and inspiratory capacity of silica-induced rats. Moreover, BIC reduced number of inflammatory cells and cytokines as well as collagen deposition in lungs, leading to delayed fibrosis progression in the silicosis rat model. Further exploration of the underlying molecular mechanisms revealed that BIC suppressed the activation, polarization, and apoptosis of RAW264.7 macrophages induced by SiO2. Additionally, BIC inhibited SiO2-mediated secretion of the inflammatory cytokines IL-1ß, IL-6, TNF-α, and TGF-ß1 in macrophages. BIC inhibited FMT of NIH-3T3 as well as EMT of TC-1 in the in vitro silicosis model, resulting in reduced proliferation and migration capability of NIH-3T3 cells. Further investigation of the cytokines secreted by macrophages revealed suppression of both FMT and EMT by BIC through targeting of TGF-ß1. Notably, BIC blocked the activation of JAK2/STAT3 in NIH-3T3 cells required for FMT while preventing both phosphorylation and nuclear translocation of SMAD2/3 in TC-1 cells necessary for the EMT process. CONCLUSION: The collective data suggest that BIC prevents both FMT and EMT processes, in turn, reducing aberrant collagen deposition. Our findings demonstrate for the first time that BIC ameliorates inflammatory cytokine secretion, in particular, TGF-ß1, and consequently inhibits FMT and EMT via TGF-ß1 canonical and non-canonical pathways, ultimately resulting in reduction of aberrant collagen deposition and slower progression of silicosis, supporting its potential as a novel therapeutic agent.


Assuntos
Fibrose Pulmonar , Transdução de Sinais , Silicose , Fator de Crescimento Transformador beta1 , Animais , Silicose/tratamento farmacológico , Silicose/patologia , Silicose/metabolismo , Silicose/complicações , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/patologia , Fibrose Pulmonar/complicações , Camundongos , Transdução de Sinais/efeitos dos fármacos , Células RAW 264.7 , Masculino , Fator de Crescimento Transformador beta1/metabolismo , Células NIH 3T3 , Ratos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Pulmão/patologia , Pulmão/efeitos dos fármacos , Citocinas/metabolismo , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Inflamação/patologia , Ratos Sprague-Dawley , Modelos Animais de Doenças , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Compostos de Bifenilo
18.
Cell Immunol ; 397-398: 104805, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38244265

RESUMO

PIM kinases are over-expressed by a number of solid malignancies including breast cancer, and are thought to regulate proliferation, survival, and resistance to treatment, making them attractive therapeutic targets. Because PIM kinases sit at the nexus of multiple oncodriver pathways, PIM antagonist drugs are being tested alone and in conjunction with other therapies to optimize outcomes. We therefore sought to test the combination of pharmacological PIM antagonism and Th1-associated immunotherapy. We show that the pan PIM antagonist, AZD1208, when combined in vitro with Th1 cytokines IFN-γ and TNF-α, potentiates metabolic suppression, overall cell death, and expression of apoptotic markers in human breast cancer cell lines of diverse phenotypes (HER-2pos/ERneg, HER-2pos/ERpos and triple-negative). Interestingly, AZD1208 was shown to moderately inhibit IFN-γ secretion by stimulated T lymphocytes of both human and murine origin, suggesting some inherent immunosuppressive activity of the drug. Nonetheless, when multiplexed therapies were tested in a murine model of HER-2pos breast cancer, combinations of HER-2 peptide-pulsed DCs and AZD1208, as well as recombinant IFN-γ plus AZD1208 significantly suppressed tumor outgrowth compared with single-treatment and control groups. These studies suggest that PIM antagonism may combine productively with certain immunotherapies to improve responsiveness.


Assuntos
Antineoplásicos , Compostos de Bifenilo , Neoplasias , Proteínas Proto-Oncogênicas c-pim-1 , Tiazolidinas , Humanos , Animais , Camundongos , Citocinas , Antineoplásicos/farmacologia , Imunoterapia , Proliferação de Células , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/farmacologia
19.
J Med Virol ; 96(1): e29372, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38235544

RESUMO

Influenza A virus (IAV) infection causes respiratory disease. Recently, infection of IAV H5N1 among mammals are reported in farmed mink. Therefore, to discover antivirals against IAV, we screened a compound library by using the RNA-dependent RNA polymerase (RdRp) assay system derived from H5N1 IAV including a drug-resistant PA mutant (I38T) and a viral polymerase activity enhancing PB2 mutant (T271A). Upon screening, we found vidofludimus can be served as a potential inhibitor for IAV. Vidofludimus an orally active inhibitor for dihydroorotate dehydrogenase (DHODH), a key enzyme for the cellular de novo pyrimidine biosynthesis pathway. We found that vidofludimus exerted antiviral activity against wild-type and drug-resistant mutant IAV, with effective concentrations (EC50 ) of 2.10 and 2.11 µM, respectively. The anti-IAV activity of vidofludimus was canceled by the treatment of uridine or cytidine through pyrimidine salvage synthesis pathway, or orotic acid through pyrimidine de novo synthesis pathway. This indicated that the main target of vidofludimus is DHODH in IAV RdRp expressing cells. We also produced recombinant seasonal IAV H1N1 virion and influenza B virus (IBV) RdRp assay system and confirmed vidofludimus also carried highly antiviral activity against seasonal IAV and IBV. Vidofludimus is a candidate drug for the future threat of IAV H5N1 infection among humans as well as seasonal influenza virus infection.


Assuntos
Compostos de Bifenilo , Ácidos Dicarboxílicos , Vírus da Influenza A Subtipo H1N1 , Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Humana , Humanos , Animais , Di-Hidro-Orotato Desidrogenase , Antivirais/farmacologia , Antivirais/metabolismo , Vírus da Influenza A/genética , Influenza Humana/tratamento farmacológico , Vírus da Influenza B , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Pirimidinas/farmacologia , Replicação Viral , Mamíferos/metabolismo
20.
J Card Fail ; 30(3): 425-435, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37678704

RESUMO

BACKGROUND: Treatment of patients with heart failure with reduced ejection fraction (HFrEF) and renal dysfunction (RD) is challenging owing to the risk of further deterioration in renal function, especially after acute decompensated HF (ADHF). METHODS AND RESULTS: We assessed the effect of RD (estimated glomerular filtration rate of ≥30 to <60 mL/min/1.73 m2) on initiation, up-titration, and tolerability of sacubitril/valsartan in hemodynamically stabilized patients with HFrEF admitted for ADHF (RD, n = 476; non-RD, n = 483). At week 10, the target dose of sacubitril/valsartan (97/103 mg twice daily) was achieved by 42% patients in RD subgroup vs 54% in non-RD patients (P < .001). Sacubitril/valsartan was associated with greater estimated glomerular filtration rate improvements in RD subgroup than non-RD (change from baseline least squares mean 4.1 mL/min/1.73 m2, 95% confidence interval 2.2-6.1, P < .001). Cardiac biomarkers improved significantly in both subgroups; however, compared with the RD subgroup, the improvement was greater in those without RD (N-terminal pro-brain natriuretic peptide, -28.6% vs -44.8%, high-sensitivity troponin T -20.3% vs -33.9%) (P < .001). Patients in the RD subgroup compared with those without RD experienced higher rates of hyperkalemia (16.3% vs 6.5%, P < .001), investigator-reported cardiac failure (9.7% vs 5.6%, P = .029), and renal impairment (6.4% vs 2.1%, P = .002). CONCLUSIONS: Most patients with HFrEF and concomitant RD hospitalized for ADHF tolerated early initiation of sacubitril/valsartan and showed significant improvements in estimated glomerular filtration rate and cardiac biomarkers. CLINICAL TRIAL REGISTRATION: NCT02661217.


Assuntos
Insuficiência Cardíaca , Nefropatias , Disfunção Ventricular Esquerda , Humanos , Aminobutiratos/efeitos adversos , Antagonistas de Receptores de Angiotensina , Biomarcadores , Compostos de Bifenilo , Combinação de Medicamentos , Volume Sistólico , Tetrazóis/efeitos adversos , Resultado do Tratamento , Valsartana , Disfunção Ventricular Esquerda/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA