Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.629
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
PLoS Genet ; 20(6): e1011310, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38857303

RESUMO

Growth deficiency is a characteristic feature of both Kabuki syndrome 1 (KS1) and Kabuki syndrome 2 (KS2), Mendelian disorders of the epigenetic machinery with similar phenotypes but distinct genetic etiologies. We previously described skeletal growth deficiency in a mouse model of KS1 and further established that a Kmt2d-/- chondrocyte model of KS1 exhibits precocious differentiation. Here we characterized growth deficiency in a mouse model of KS2, Kdm6atm1d/+. We show that Kdm6atm1d/+ mice have decreased femur and tibia length compared to controls and exhibit abnormalities in cortical and trabecular bone structure. Kdm6atm1d/+ growth plates are also shorter, due to decreases in hypertrophic chondrocyte size and hypertrophic zone height. Given these disturbances in the growth plate, we generated Kdm6a-/- chondrogenic cell lines. Similar to our prior in vitro model of KS1, we found that Kdm6a-/- cells undergo premature, enhanced differentiation towards chondrocytes compared to Kdm6a+/+ controls. RNA-seq showed that Kdm6a-/- cells have a distinct transcriptomic profile that indicates dysregulation of cartilage development. Finally, we performed RNA-seq simultaneously on Kmt2d-/-, Kdm6a-/-, and control lines at Days 7 and 14 of differentiation. This revealed surprising resemblance in gene expression between Kmt2d-/- and Kdm6a-/- at both time points and indicates that the similarity in phenotype between KS1 and KS2 also exists at the transcriptional level.


Assuntos
Anormalidades Múltiplas , Condrócitos , Modelos Animais de Doenças , Face , Doenças Hematológicas , Histona Desmetilases , Doenças Vestibulares , Animais , Doenças Vestibulares/genética , Doenças Vestibulares/patologia , Camundongos , Face/anormalidades , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Doenças Hematológicas/genética , Doenças Hematológicas/patologia , Condrócitos/metabolismo , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Diferenciação Celular/genética , Condrogênese/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/deficiência , Humanos , Camundongos Knockout , Fenótipo , Histona-Lisina N-Metiltransferase , Proteína de Leucina Linfoide-Mieloide
2.
Development ; 150(21)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37882667

RESUMO

A mouse organoid culture model was developed to regenerate articular cartilage by sequential treatment with BMP2 and BMP9 (or GDF2) that parallels induced joint regeneration at digit amputation wounds in vivo. BMP9-induced chondrogenesis was used to identify clonal cell lines for articular chondrocyte and hypertrophic chondrocyte progenitor cells from digit fibroblasts. A protocol that includes cell aggregation enhanced by BMP2 followed by BMP9-induced chondrogenesis resulted in the differentiation of organized layers of articular chondrocytes, similar to the organization of middle and deep zones of articular cartilage in situ, and retained a differentiated phenotype following transplantation. In addition, the differentiation of a non-chondrogenic connective tissue layer containing articular chondrocyte progenitor cells demonstrated that progenitor cell sequestration is coupled with articular cartilage differentiation at a clonal level. The studies identify a dormant endogenous regenerative program for a non-regenerative tissue in which fibroblast-derived progenitor cells can be induced to initiate morphogenetic and differentiative programs that include progenitor cell sequestration. The identification of dormant regenerative programs in non-regenerative tissues such as articular cartilage represents a novel strategy that integrates regeneration biology with regenerative medicine.


Assuntos
Cartilagem Articular , Animais , Camundongos , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Células-Tronco , Diferenciação Celular/genética , Linhagem Celular , Modelos Animais de Doenças , Condrogênese/genética
3.
EMBO Rep ; 25(4): 1773-1791, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38409269

RESUMO

Skeletal growth promoted by endochondral ossification is tightly coordinated by self-renewal and differentiation of chondrogenic progenitors. Emerging evidence has shown that multiple skeletal stem cells (SSCs) participate in cartilage formation. However, as yet, no study has reported the existence of common long-lasting chondrogenic progenitors in various types of cartilage. Here, we identify Gli1+ chondrogenic progenitors (Gli1+ CPs), which are distinct from PTHrP+ or FoxA2+ SSCs, are responsible for the lifelong generation of chondrocytes in the growth plate, vertebrae, ribs, and other cartilage. The absence of Gli1+ CPs leads to cartilage defects and dwarfishness phenotype in mice. Furthermore, we show that the BMP signal plays an important role in self-renewal and maintenance of Gli1+ CPs. Deletion of Bmpr1α triggers Gli1+ CPs quiescence exit and causes the exhaustion of Gli1+ CPs, consequently disrupting columnar cartilage. Collectively, our data demonstrate that Gli1+ CPs are common long-term chondrogenic progenitors in multiple types of cartilage and are essential to maintain cartilage homeostasis.


Assuntos
Cartilagem , Condrogênese , Animais , Camundongos , Proteína GLI1 em Dedos de Zinco/genética , Condrogênese/genética , Condrócitos , Osteogênese , Diferenciação Celular
4.
Nature ; 579(7797): 111-117, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32103177

RESUMO

The avascular nature of cartilage makes it a unique tissue1-4, but whether and how the absence of nutrient supply regulates chondrogenesis remain unknown. Here we show that obstruction of vascular invasion during bone healing favours chondrogenic over osteogenic differentiation of skeletal progenitor cells. Unexpectedly, this process is driven by a decreased availability of extracellular lipids. When lipids are scarce, skeletal progenitors activate forkhead box O (FOXO) transcription factors, which bind to the Sox9 promoter and increase its expression. Besides initiating chondrogenesis, SOX9 acts as a regulator of cellular metabolism by suppressing oxidation of fatty acids, and thus adapts the cells to an avascular life. Our results define lipid scarcity as an important determinant of chondrogenic commitment, reveal a role for FOXO transcription factors during lipid starvation, and identify SOX9 as a critical metabolic mediator. These data highlight the importance of the nutritional microenvironment in the specification of skeletal cell fate.


Assuntos
Osso e Ossos/citologia , Microambiente Celular , Condrogênese , Metabolismo dos Lipídeos , Fatores de Transcrição SOX9/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Osso e Ossos/irrigação sanguínea , Condrócitos/citologia , Condrócitos/metabolismo , Ácidos Graxos/metabolismo , Feminino , Privação de Alimentos , Fatores de Transcrição Forkhead/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteogênese , Oxirredução , Fatores de Transcrição SOX9/genética , Transdução de Sinais , Cicatrização
5.
Dev Biol ; 512: 1-10, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38657748

RESUMO

Precise regulation of gene expression is of utmost importance during cell fate specification. DNA methylation is a key epigenetic mechanism that plays a significant role in the regulation of cell fate by recruiting repression proteins or inhibiting the binding of transcription factors to DNA to regulate gene expression. Limb development is a well-established model for understanding cell fate decisions, and the formation of skeletal elements is coordinated through a sequence of events that control chondrogenesis spatiotemporally. It has been established that epigenetic control participates in cartilage maturation. However, further investigation is required to determine its role in the earliest stages of chondrocyte differentiation. This study investigates how the DNA methylation environment affects cell fate divergence during the early chondrogenic events. Our research has shown for the first time that inhibiting DNA methylation in interdigital tissue with 5-azacytidine results in the formation of an ectopic digit. This discovery suggested that DNA methylation dynamics could regulate the fate of cells between chondrogenesis and cell death during autopod development. Our in vitro findings indicate that DNA methylation at the early stages of chondrogenesis is integral in regulating condensation by controlling cell adhesion and proapoptotic genes. As a result, the dynamics of methylation and demethylation are crucial in governing chondrogenesis and cell death during different stages of limb chondrogenesis.


Assuntos
Diferenciação Celular , Condrócitos , Condrogênese , Metilação de DNA , Extremidades , Metilação de DNA/genética , Condrogênese/genética , Animais , Extremidades/embriologia , Diferenciação Celular/genética , Condrócitos/metabolismo , Condrócitos/citologia , Azacitidina/farmacologia , Regulação da Expressão Gênica no Desenvolvimento , Embrião de Galinha , Epigênese Genética , Apoptose/genética
6.
Development ; 149(11)2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35451016

RESUMO

It has been established in the mouse model that during embryogenesis joint cartilage is generated from a specialized progenitor cell type, distinct from that responsible for the formation of growth plate cartilage. We recently found that mesodermal progeny of human pluripotent stem cells gave rise to two types of chondrogenic mesenchymal cells in culture: SOX9+ and GDF5+ cells. The fast-growing SOX9+ cells formed in vitro cartilage that expressed chondrocyte hypertrophy markers and readily underwent mineralization after ectopic transplantation. In contrast, the slowly growing GDF5+ cells derived from SOX9+ cells formed cartilage that tended to express low to undetectable levels of chondrocyte hypertrophy markers, but expressed PRG4, a marker of embryonic articular chondrocytes. The GDF5+-derived cartilage remained largely unmineralized in vivo. Interestingly, chondrocytes derived from the GDF5+ cells seemed to elicit these activities via non-cell-autonomous mechanisms. Genome-wide transcriptomic analyses suggested that GDF5+ cells might contain a teno/ligamento-genic potential, whereas SOX9+ cells resembled neural crest-like progeny-derived chondroprogenitors. Thus, human pluripotent stem cell-derived GDF5+ cells specified to generate permanent-like cartilage seem to emerge coincidentally with the commitment of the SOX9+ progeny to the tendon/ligament lineage.


Assuntos
Cartilagem Articular , Condrócitos , Células-Tronco Pluripotentes , Animais , Cartilagem Articular/citologia , Cartilagem Articular/metabolismo , Diferenciação Celular , Condrócitos/citologia , Condrócitos/metabolismo , Condrócitos/patologia , Condrogênese , Fator 5 de Diferenciação de Crescimento/metabolismo , Humanos , Hipertrofia , Camundongos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo
7.
Development ; 149(2)2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-35005773

RESUMO

Amputation injuries in mammals are typically non-regenerative; however, joint regeneration is stimulated by BMP9 treatment, indicating the presence of latent articular chondrocyte progenitor cells. BMP9 induces a battery of chondrogenic genes in vivo, and a similar response is observed in cultures of amputation wound cells. Extended cultures of BMP9-treated cells results in differentiation of hyaline cartilage, and single cell RNAseq analysis identified wound fibroblasts as BMP9 responsive. This culture model was used to identify a BMP9-responsive adult fibroblast cell line and a culture strategy was developed to engineer hyaline cartilage for engraftment into an acutely damaged joint. Transplanted hyaline cartilage survived engraftment and maintained a hyaline cartilage phenotype, but did not form mature articular cartilage. In addition, individual hypertrophic chondrocytes were identified in some samples, indicating that the acute joint injury site can promote osteogenic progression of engrafted hyaline cartilage. The findings identify fibroblasts as a cell source for engineering articular cartilage and establish a novel experimental strategy that bridges the gap between regeneration biology and regenerative medicine.


Assuntos
Diferenciação Celular , Fibroblastos/citologia , Cartilagem Hialina/citologia , Regeneração , Engenharia Tecidual/métodos , Animais , Células Cultivadas , Condrócitos/citologia , Condrócitos/efeitos dos fármacos , Condrogênese , Fibroblastos/efeitos dos fármacos , Fator 2 de Diferenciação de Crescimento/farmacologia , Cartilagem Hialina/metabolismo , Cartilagem Hialina/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID
8.
Development ; 149(4)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35132438

RESUMO

Cranial neural crest cell (NCC)-derived chondrocyte precursors undergo a dynamic differentiation and maturation process to establish a scaffold for subsequent bone formation, alterations in which contribute to congenital birth defects. Here, we demonstrate that transcription factor and histone methyltransferase proteins Prdm3 and Prdm16 control the differentiation switch of cranial NCCs to craniofacial cartilage. Loss of either paralog results in hypoplastic and disorganized chondrocytes due to impaired cellular orientation and polarity. We show that these proteins regulate cartilage differentiation by controlling the timing of Wnt/ß-catenin activity in strikingly different ways: Prdm3 represses whereas Prdm16 activates global gene expression, although both act by regulating Wnt enhanceosome activity and chromatin accessibility. Finally, we show that manipulating Wnt/ß-catenin signaling pharmacologically or generating prdm3-/-;prdm16-/- double mutants rescues craniofacial cartilage defects. Our findings reveal upstream regulatory roles for Prdm3 and Prdm16 in cranial NCCs to control Wnt/ß-catenin transcriptional activity during chondrocyte differentiation to ensure proper development of the craniofacial skeleton.


Assuntos
Diferenciação Celular , Proteína do Locus do Complexo MDS1 e EVI1/metabolismo , Via de Sinalização Wnt/genética , Proteínas de Peixe-Zebra/metabolismo , Animais , Cartilagem/citologia , Cartilagem/metabolismo , Condrócitos/citologia , Condrócitos/metabolismo , Condrogênese , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteína do Locus do Complexo MDS1 e EVI1/deficiência , Proteína do Locus do Complexo MDS1 e EVI1/genética , Camundongos , Camundongos Knockout , Crista Neural/citologia , Crista Neural/metabolismo , Sequências Reguladoras de Ácido Nucleico , Crânio/citologia , Crânio/metabolismo , Proteínas Wnt/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética , beta Catenina/metabolismo
9.
Stem Cells ; 42(6): 554-566, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38613477

RESUMO

Microtia is a congenital auricle dysplasia with a high incidence and tissue engineering technology provides a promising strategy to reconstruct auricles. We previously described that the engineered cartilage constructed from microtia chondrocytes exhibited inferior levels of biochemical and biomechanical properties, which was proposed to be resulted of the decreased migration ability of microtia chondrocytes. In the current study, we found that Rho GTPase members were deficient in microtia chondrocytes. By overexpressing RhoA, Rac1, and CDC42, respectively, we further demonstrated that RhoA took great responsibility for the decreased migration ability of microtia chondrocytes. Moreover, we constructed PGA/PLA scaffold-based cartilages to verify the chondrogenic ability of RhoA overexpressed microtia chondrocytes, and the results showed that overexpressing RhoA was of limited help in improving the quality of microtia chondrocyte engineered cartilage. However, coculture of adipose-derived stem cells (ADSCs) significantly improved the biochemical and biomechanical properties of engineered cartilage. Especially, coculture of RhoA overexpressed microtia chondrocytes and ADSCs produced an excellent effect on the wet weight, cartilage-specific extracellular matrix, and biomechanical property of engineered cartilage. Furthermore, we presented that coculture of RhoA overexpressed microtia chondrocytes and ADSCs combined with human ear-shaped PGA/PLA scaffold and titanium alloy stent fabricated by CAD/CAM and 3D printing technology effectively constructed and maintained auricle structure in vivo. Collectively, our results provide evidence for the essential role of RhoA in microtia chondrocytes and a developed strategy for the construction of patient-specific tissue-engineered auricular cartilage.


Assuntos
Condrócitos , Técnicas de Cocultura , Microtia Congênita , Engenharia Tecidual , Proteína rhoA de Ligação ao GTP , Condrócitos/metabolismo , Condrócitos/citologia , Humanos , Engenharia Tecidual/métodos , Proteína rhoA de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/genética , Microtia Congênita/metabolismo , Microtia Congênita/genética , Cartilagem da Orelha/citologia , Cartilagem da Orelha/metabolismo , Células-Tronco/metabolismo , Células-Tronco/citologia , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Condrogênese/genética , Masculino , Alicerces Teciduais/química , Feminino
10.
FASEB J ; 38(4): e23484, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38407380

RESUMO

The transcription factor RUNX2 is a key regulator of chondrocyte phenotype during development, making it an ideal target for prevention of undesirable chondrocyte maturation in cartilage tissue-engineering strategies. Here, we engineered an autoregulatory gene circuit (cisCXp-shRunx2) that negatively controls RUNX2 activity in chondrogenic cells via RNA interference initiated by a tunable synthetic Col10a1-like promoter (cisCXp). The cisCXp-shRunx2 gene circuit is designed based on the observation that induced RUNX2 silencing after early chondrogenesis enhances the accumulation of cartilaginous matrix in ATDC5 cells. We show that the cisCXp-shRunx2 initiates RNAi of RUNX2 in maturing chondrocytes in response to the increasing intracellular RUNX2 activity without interfering with early chondrogenesis. The induced loss of RUNX2 activity in turn negatively regulates the gene circuit itself. Moreover, the efficacy of RUNX2 suppression from cisCXp-shRunx2 can be controlled by modifying the sensitivity of cisCXp promoter. Finally, we show the efficacy of inhibiting RUNX2 in preventing matrix loss in human mesenchymal stem cell-derived (hMSC-derived) cartilage under conditions that induce chondrocyte hypertrophic differentiation, including inflammation. Overall, our results demonstrated that the negative modulation of RUNX2 activity with our autoregulatory gene circuit enhanced matrix synthesis and resisted ECM degradation by reprogrammed MSC-derived chondrocytes in response to the microenvironment of the degenerative joint.


Assuntos
Condrogênese , Redes Reguladoras de Genes , Humanos , Condrogênese/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Condrócitos , Diferenciação Celular/genética
11.
Nucleic Acids Res ; 51(8): 3590-3617, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36987858

RESUMO

Chondrogenesis is a multistep process, in which cartilage progenitor cells generate a tissue with distinct structural and functional properties. Although several approaches to cartilage regeneration rely on the differentiation of implanted progenitor cells, the temporal transcriptomic landscape of in vitro chondrogenesis in different models has not been reported. Using RNA sequencing, we examined differences in gene expression patterns during cartilage formation in micromass cultures of embryonic limb bud-derived progenitors. Principal component and trajectory analyses revealed a progressively different and distinct transcriptome during chondrogenesis. Differentially expressed genes (DEGs), based on pairwise comparisons of samples from consecutive days were classified into clusters and analysed. We confirmed the involvement of the top DEGs in chondrogenic differentiation using pathway analysis and identified several chondrogenesis-associated transcription factors and collagen subtypes that were not previously linked to cartilage formation. Transient gene silencing of ATOH8 or EBF1 on day 0 attenuated chondrogenesis by deregulating the expression of key osteochondrogenic marker genes in micromass cultures. These results provide detailed insight into the molecular mechanism of chondrogenesis in primary micromass cultures and present a comprehensive dataset of the temporal transcriptomic landscape of chondrogenesis, which may serve as a platform for new molecular approaches in cartilage tissue engineering.


Assuntos
Condrogênese , Transcriptoma , Condrogênese/genética , Cartilagem/metabolismo , Diferenciação Celular/genética , Células-Tronco/metabolismo , Células Cultivadas , Condrócitos/metabolismo
12.
Proc Natl Acad Sci U S A ; 119(2)2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34987101

RESUMO

Stem cells are of great interest in tissue regeneration due to their ability to modulate the local microenvironment by secreting bioactive factors (collectively, secretome). However, secretome delivery through conditioned media still requires time-consuming cell isolation and maintenance and also may contain factors antagonistic to targeted tissue regeneration. We have therefore engineered a synthetic artificial stem cell (SASC) system which mimics the paracrine effect of the stem cell secretome and provides tailorability of the composition for targeted tissue regeneration. We report the first of many applications of the SASC system we have formulated to treat osteoarthritis (OA). Choosing growth factors important to chondrogenesis and encapsulating respective recombinant proteins in poly (lactic-coglycolic acid) 85:15 (PLGA) we fabricated the SASC system. We compared the antiinflammatory and chondroprotective effects of SASC to that of adipose-derived stem cells (ADSCs) using in vitro interleukin 1B-induced and in vivo collagenase-induced osteoarthritis rodent models. We have designed SASC as an injectable therapy with controlled release of the formulated secretome. In vitro, SASC showed significant antiinflammatory and chondroprotective effects as seen by the up-regulation of SOX9 and reduction of nitric oxide, ADAMTS5, and PRG4 genes compared to ADSCs. In vivo, treatment with SASC and ADSCs significantly attenuated cartilage degeneration and improved the biomechanical properties of the articular cartilage in comparison to OA control. This SASC system demonstrates the feasibility of developing a completely synthetic, tailorable stem cell secretome which reinforces the possibility of developing a new therapeutic strategy that provides better control over targeted tissue engineering applications.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Células-Tronco , Engenharia Tecidual , Adipócitos/metabolismo , Tecido Adiposo , Animais , Cartilagem Articular , Separação Celular , Condrogênese , Humanos , Osteoartrite/metabolismo , Polímeros , Secretoma , Células-Tronco/metabolismo
13.
J Cell Mol Med ; 28(7): e18242, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38509736

RESUMO

Articular cartilage defect is challenged by insufficient regenerative ability of cartilage. Catalpol (CA), the primary active component of Rehmanniae Radix, could exert protective effects against various diseases. However, the impact of CA on the treatment of articular cartilage injuries is still unclear. In this study, full-thickness articular cartilage defect was induced in a mouse model via surgery. The animals were intraperitoneally injected with CA for 4 or 8 weeks. According to the results of macroscopic observation, micro-computed tomography CT (µCT), histological and immunohistochemistry staining, CA treatment could promote mouse cartilage repair, resulting in cartilage regeneration, bone structure improvement and matrix anabolism. Specifically, an increase in the expression of CD90, the marker of mesenchymal stem cells (MSCs), in the cartilage was observed. In addition, we evaluated the migratory and chondrogenic effects of CA on MSCs. Different concentration of CA was added to C3H10 T1/2 cells. The results showed that CA enhanced cell migration and chondrogenesis without affecting proliferation. Collectively, our findings indicate that CA may be effective for the treatment of cartilage defects via stimulation of endogenous MSCs.


Assuntos
Doenças das Cartilagens , Cartilagem Articular , Glucosídeos Iridoides , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Camundongos , Cartilagem Articular/patologia , Microtomografia por Raio-X , Diferenciação Celular , Doenças das Cartilagens/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Condrogênese
14.
J Biol Chem ; 299(2): 102892, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36642181

RESUMO

Bone morphogenetic proteins (BMPs) are secreted cytokines belonging to the transforming growth factor-ß superfamily. New therapeutic approaches based on BMP activity, particularly for cartilage and bone repair, have sparked considerable interest; however, a lack of understanding of their interaction pathways and the side effects associated with their use as biopharmaceuticals have dampened initial enthusiasm. Here, we used BMP-2 as a model system to gain further insight into both the relationship between structure and function in BMPs and the principles that govern affinity for their cognate antagonist Noggin. We produced BMP-2 and Noggin as inclusion bodies in Escherichia coli and developed simple and efficient protocols for preparing pure and homogeneous (in terms of size distribution) solutions of the native dimeric forms of the two proteins. The identity and integrity of the proteins were confirmed using mass spectrometry. Additionally, several in vitro cell-based assays, including enzymatic measurements, RT-qPCR, and matrix staining, demonstrated their biological activity during cell chondrogenic and hypertrophic differentiation. Furthermore, we characterized the simple 1:1 noncovalent interaction between the two ligands (KDca. 0.4 nM) using bio-layer interferometry and solved the crystal structure of the complex using X-ray diffraction methods. We identified the residues and binding forces involved in the interaction between the two proteins. Finally, results obtained with the BMP-2 N102D mutant suggest that Noggin is remarkably flexible and able to accommodate major structural changes at the BMP-2 level. Altogether, our findings provide insights into BMP-2 activity and reveal the molecular details of its interaction with Noggin.


Assuntos
Proteína Morfogenética Óssea 2 , Proteínas de Transporte , Condrogênese , Citocinas , Humanos , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/farmacologia , Cartilagem/metabolismo , Diferenciação Celular , Citocinas/farmacologia , Fator de Crescimento Transformador beta/farmacologia , Proteínas de Transporte/metabolismo
15.
J Biol Chem ; 299(12): 105372, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37865314

RESUMO

Notch regulates the immune and inflammatory response and has been associated with the pathogenesis of osteoarthritis in humans and preclinical models of the disease. Notch2tm1.1Ecan mice harbor a NOTCH2 gain-of-function and are sensitized to osteoarthritis, but the mechanisms have not been explored. We examined the effects of tumor necrosis factor α (TNFα) in chondrocytes from Notch2tm1.1Ecan mice and found that NOTCH2 enhanced the effect of TNFα on Il6 and Il1b expression. Similar results were obtained in cells from a conditional model of NOTCH2 gain-of-function, Notch22.1Ecan mice, and following the expression of the NOTCH2 intracellular domain in vitro. Recombination signal-binding protein for immunoglobulin Kappa J region partners with the NOTCH2 intracellular domain to activate transcription; in the absence of Notch signaling it inhibits transcription, and Rbpj inactivation in chondrocytes resulted in Il6 induction. Although TNFα induced IL6 to a greater extent in the context of NOTCH2 activation, there was a concomitant inhibition of Notch target genes Hes1, Hey1, Hey2, and Heyl. Electrophoretic mobility shift assay demonstrated displacement of recombination signal-binding protein for immunoglobulin Kappa J region from DNA binding sites by TNFα explaining the increased Il6 expression and the concomitant decrease in Notch target genes. NOTCH2 enhanced the effect of TNFα on NF-κB signaling, and RNA-Seq revealed increased expression of pathways associated with inflammation and the phagosome in NOTCH2 overexpressing cells in the absence and presence of TNFα. Collectively, NOTCH2 has important interactions with TNFα resulting in the enhanced expression of Il6 and inflammatory pathways in chondrocytes.


Assuntos
Condrócitos , Osteoartrite , Receptor Notch2 , Fator de Necrose Tumoral alfa , Animais , Humanos , Camundongos , Condrócitos/citologia , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Imunoglobulinas , Interleucina-6/genética , Interleucina-6/metabolismo , Osteoartrite/genética , Osteoartrite/metabolismo , Receptor Notch2/genética , Receptor Notch2/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Inflamação , Modelos Animais de Doenças , Condrogênese , Transdução de Sinais/efeitos dos fármacos , Domínios Proteicos/imunologia , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Deleção de Genes , Regulação da Expressão Gênica/efeitos dos fármacos
16.
Hum Mol Genet ; 31(16): 2820-2830, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35377455

RESUMO

Loss-of-function mutations in DDRGK1 have been shown to cause Shohat type spondyloepimetaphyseal dysplasia (SEMD). In zebrafish, loss of function of ddrgk1 leads to defects in early cartilage development. Ddrgk1-/- mice show delayed mesenchymal condensation in the limb buds and early embryonic lethality. Mechanistically, Ddrgk1 interacts with Sox9 and reduces ubiquitin-mediated proteasomal degradation of Sox9 protein. To investigate the cartilage-specific role of DDRGK1, conditional knockout mice were generated by intercrossing Prx1-Cre transgenic mice with Ddrgkfl/fl mice to delete its expression in limb mesenchymal cells. Mutant mice showed progressive severe shortening of the limbs and joint abnormalities. The growth plate showed disorganization with shortened proliferative zone and enlarged hypertrophic zone. In correlation with these findings, Sox9 and Col2a1 protein levels were decreased, while Col10a1 expression was expanded. These data demonstrate the importance of Ddrgk1 during growth plate development. In contrast, deletion of Ddrgk1 with the osteoblast-specific Osteocalcin-Cre and Leptin receptor-Cre lines did not show bone phenotypes, suggesting that the effect on limb development is cartilage-specific. To evaluate the role of DDRGK1 in cartilage postnatal homeostasis, inducible Agc1-CreERT2; Ddrgklfl/fl mice were generated. Mice in which Ddrgk1 was deleted at 3 months of age showed disorganized growth plate, with significant reduction in proteoglycan deposition. These data demonstrate a postnatal requirement for Ddrgk1 in maintaining normal growth plate morphology. Together, these findings highlight the physiological role of Ddrgk1 in the development and maintenance of the growth plate cartilage. Furthermore, these genetic mouse models recapitulate the clinical phenotype of short stature and joint abnormalities observed in patients with Shohat type SEMD.


Assuntos
Lâmina de Crescimento , Peixe-Zebra , Animais , Cartilagem , Diferenciação Celular , Condrócitos/metabolismo , Condrogênese , Lâmina de Crescimento/metabolismo , Camundongos , Camundongos Transgênicos , Osteocondrodisplasias
17.
J Cell Sci ; 135(22)2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36274586

RESUMO

Mesenchymal condensation is a prevalent morphogenetic transition that is essential in chondrogenesis. However, the current understanding of condensation mechanisms is limited. In vivo, progenitor cells directionally migrate from the surrounding loose mesenchyme towards regions of increasing matrix adherence (the condensation centers), which is accompanied by the upregulation of fibronectin. Here, we focused on the mechanisms of cell migration during mesenchymal cell condensation and the effects of matrix adherence. Dendrimer-based nanopatterns of the cell-adhesive peptide arginine-glycine-aspartic acid (RGD), which is present in fibronectin, were used to regulate substrate adhesion. We recorded collective and single-cell migration of mesenchymal stem cells, under chondrogenic induction, using live-cell imaging. Our results show that the cell migration mode of single cells depends on substrate adhesiveness, and that cell directionality controls cell condensation and the fusion of condensates. Inhibition experiments revealed that cell-cell interactions mediated by N-cadherin (also known as CDH2) are also pivotal for directional migration of cell condensates by maintaining cell-cell cohesion, thus suggesting a fine interplay between cell-matrix and cell-cell adhesions. Our results shed light on the role of cell interactions with a fibronectin-depositing matrix during chondrogenesis in vitro, with possible applications in regenerative medicine. This article has an associated First Person interview with the first author of the paper.


Assuntos
Condrogênese , Células-Tronco Mesenquimais , Humanos , Fibronectinas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Mesoderma , Caderinas/metabolismo , Adesão Celular , Diferenciação Celular
18.
Biochem Biophys Res Commun ; 702: 149635, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38335702

RESUMO

Dietary vitamin K1 (phylloquinone: PK) and menaquinone (MK-n) are converted to menadione (MD) in the small intestine and then translocated to various tissues where they are converted to vitamin K2 (menaquinone-4: MK-4) by UbiA prenyltransferase domain containing protein 1 (UBIAD1). MK-4 is effective in bone formation and is used to treat osteoporosis in Japan. UBIAD1 is expressed in bone and osteoblasts and shows conversion to MK-4, but the role of UBIAD1 in osteogenesis is unknown. In this study, we investigated the function of UBIAD1 in osteogenesis using a tamoxifen-dependent UBIAD1-deficient mouse model. When UBIAD1 deficiency was induced from the first week of life, the femur was significantly shortened, and bone mineral density (BMD) was reduced. In addition, the expression of bone and chondrocyte matrix proteins and chondrocyte differentiation factors was significantly decreased. In primary cultured chondrocytes, chondrocyte differentiation was significantly reduced by UBIAD1 deficiency. These results suggest that UBIAD1 is an important factor for the regulation of chondrocyte proliferation and differentiation during osteogenesis.


Assuntos
Dimetilaliltranstransferase , Vitamina K , Animais , Camundongos , Vitamina K/metabolismo , Osteogênese , Condrogênese , Dimetilaliltranstransferase/genética , Dimetilaliltranstransferase/metabolismo , Vitamina K 1/farmacologia
19.
Biochem Biophys Res Commun ; 701: 149583, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38330731

RESUMO

Endochondral ossification is a developmental process in the skeletal system and bone marrow of vertebrates. During endochondral ossification, primitive cartilaginous anlages derived from mesenchymal stem cells (MSCs) undergo vascular invasion and ossification. In vitro regeneration of endochondral ossification is beneficial for research on the skeletal system and bone marrow development as well as their clinical aspects. However, to achieve the regeneration of endochondral ossification, a stem cell-based artificial cartilage (cartilage organoid, Cart-Org) that possesses an endochondral ossification phenotype is required. Here, we modified a conventional 3D culture method to create stem cell-based Cart-Org by mixing it with a basement membrane extract (BME) and further characterized its chondrogenic and ossification properties. BME enlarged and matured the bone marrow MSC-based Cart-Orgs without any shape abnormalities. Histological analysis using Alcian blue staining showed that the production of cartilaginous extracellular matrices was enhanced in Cart-Org treated with BME. Transcriptome analysis using RNA sequencing revealed that BME altered the gene expression pattern of Cart-Org to a dominant chondrogenic state. BME triggered the activation of the SMAD pathway and inhibition of the NK-κB pathway, which resulted in the upregulation of SOX9, COL2A1, and ACAN in Cart-Org. BME also facilitated the upregulation of genes associated with hypertrophic chondrocytes (IHH, PTH1R, and COL10A1) and ossification (SP7, ALPL, and MMP13). Our findings indicate that BME promotes cartilaginous maturation and further ossification of bone marrow MSC-based Cart-Org, suggesting that Cart-Org treated with BME possesses the phenotype of endochondral ossification.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Animais , Osteogênese/genética , Medula Óssea , Membrana Basal , Cartilagem/metabolismo , Condrócitos/metabolismo , Fenótipo , Condrogênese/genética , Organoides , Diferenciação Celular
20.
Development ; 148(23)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34738614

RESUMO

Autosomal dominant PDGFRß gain-of-function mutations in mice and humans cause a spectrum of wasting and overgrowth disorders afflicting the skeleton and other connective tissues, but the cellular origin of these disorders remains unknown. We demonstrate that skeletal stem cells (SSCs) isolated from mice with a gain-of-function D849V point mutation in PDGFRß exhibit colony formation defects that parallel the wasting or overgrowth phenotypes of the mice. Single-cell RNA transcriptomics with SSC-derived polyclonal colonies demonstrates alterations in osteogenic and chondrogenic precursors caused by PDGFRßD849V. Mutant cells undergo poor osteogenesis in vitro with increased expression of Sox9 and other chondrogenic markers. Mice with PDGFRßD849V exhibit osteopenia. Increased STAT5 phosphorylation and overexpression of Igf1 and Socs2 in PDGFRßD849V cells suggests that overgrowth in mice involves PDGFRßD849V activating the STAT5-IGF1 axis locally in the skeleton. Our study establishes that PDGFRßD849V causes osteopenic skeletal phenotypes that are associated with intrinsic changes in SSCs, promoting chondrogenesis over osteogenesis.


Assuntos
Mutação com Ganho de Função , Mioblastos Esqueléticos/metabolismo , Mutação Puntual , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Substituição de Aminoácidos , Animais , Condrogênese/genética , Regulação da Expressão Gênica , Camundongos , Camundongos Transgênicos , Mioblastos Esqueléticos/patologia , Osteogênese/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA