RESUMO
Globally, forest soils are considered as important sources and sinks of greenhouse gases (GHGs). However, most studies on forest soil GHG fluxes are confined to the topsoils (above 20 cm soil depths), with only very limited information being available regarding these fluxes in the subsoils (below 20 cm soil depths), especially in managed forests. This limits deeper understanding of the relative contributions of different soil depths to GHG fluxes and global warming potential (GWP). Here, we used a concentration gradient-based method to comprehensively investigate the effects of thinning intensity (15% vs. 35%) and nutrient addition (no fertilizer vs. NPK fertilizers) on soil GHG fluxes from the 0-40 cm soil layers at 10 cm depth intervals in a Chinese fir (Cunninghamia lanceolata) plantation. Results showed that forest soils were the sources of CO2 and N2O, but the sinks of CH4. Soil GHG fluxes decreased with increasing soil depth, with the 0-20 cm soil layers identified as the dominant producers of CO2 and N2O and consumers of CH4. Thinning intensity did not significantly affect soil GHG fluxes. However, fertilization significantly increased CO2 and N2O emissions and CH4 uptake at 0-20 cm soil layers, but decreased them at 20-40 cm soil layers. This is because fertilization alleviated microbial N limitation and decreased water filled pore space (WFPS) in topsoils, while it increased WFPS in subsoils, ultimately suggesting that soil WFPS and N availability (especially NH4+-N) were the predominant regulators of GHG fluxes along soil profiles. Generally, there were positive interactive effects of thinning and fertilization on soil GHG fluxes. Moreover, the 35% thinning intensity without fertilization had the lowest GWP among all treatments. Overall, our results suggest that fertilization may not only cause depth-dependent effects on GHG fluxes within soil profiles, but also impede efforts to mitigate climate change by promoting GHG emissions in managed forest plantations.
Assuntos
Fertilizantes , Gases de Efeito Estufa , Solo , Gases de Efeito Estufa/análise , Solo/química , Florestas , Metano/análise , Dióxido de Carbono/análise , Cunninghamia/crescimento & desenvolvimento , Aquecimento Global , Óxido Nitroso/análise , ChinaRESUMO
Bamboos are fast-growing, aggressively-spreading, and invasive woody clonal species that often encroach upon adjacent tree plantations, forming bamboo-tree mixed plantations. However, the effects of bamboo invasion on leaf carbon (C) assimilation, and nitrogen (N) and phosphorus (P) utilization characteristics remains unclear. We selected four different stands of Pleioblastus amarus invading Chinese fir (Cunninghamia lanceolata) plantations to investigate the concentrations, stoichiometry, and allometric growth relationships of mature and withered leaves of young and old bamboos, analyzing N and P utilization and resorption patterns. The stand type, bamboo age, and their interaction affected the concentrations, stoichiometry and allometric growth patterns of leaf C, N, and P in both old and young bamboos, as well as the N and P resorption efficiency. Bamboo invasion into Chinese fir plantations decreased leaf C, N, and P concentrations, C:N and C:P ratios, N and P resorption efficiency, and allometric growth exponents among leaf C, N, and P, while it only slightly altered N:P ratios. PLS-PM analysis revealed that bamboo invasion negatively impacted leaf C, N, and P concentrations, as well as N and P utilization and resorption. The results indicate that high N and P utilization and resorption efficiency, along with the mutual sharing of C, N, and P among bamboos in interface zones, promote continuous bamboo expansion and invasion. Collectively, these findings highlight the significance of N and P utilization and resorption in bamboo expansion and invasion and provide valuable guidance for the establishment of mixed stands and the ecological management of bamboo forests.
Assuntos
Nitrogênio , Nitrogênio/metabolismo , Espécies Introduzidas , Fósforo/análise , Folhas de Planta/metabolismo , Carbono , Poaceae/crescimento & desenvolvimento , Nutrientes/metabolismo , Árvores , Cunninghamia/crescimento & desenvolvimento , Cunninghamia/metabolismo , Sasa/metabolismoRESUMO
BACKGROUND: Leaf length and width could be a functioning relationship naturally as plant designs. Single-vein leaves have the simplest symmetrical distribution and structural design, which means that fast-growing single-vein species could interpret the scheme more efficiently. The distribution of leaf length and width can be modulated for better adaptation, providing an informative perspective on the various operational strategies in an emergency, while this mechanism is less clear. Here we selected six age groups of Cunninghamia lanceolata pure forests, including saplings, juveniles, mature, and old-growth trees. We pioneered a tapering model to describe half-leaf symmetric distribution with mathematical approximation based on every measured leaf along developmental sequence, and evaluated the ratio of leaf basal part length to total length (called tipping leaf length ratio). RESULTS: The tipping leaf length ratio varied among different tree ages. That means the changes of tipping leaf length ratio and leaf shape are a significant but less-noticed reflection of trees tradeoff strategies at different growth stages. For instance, there exhibited relatively low ratio during sapling and juvenile, then increased with increasing age, showing the highest value in their maturity, and finally decreased on mature to old-growth transition. The tipping leaf length ratio serves as a cost-benefit ratio, thus the subtle changes in the leaf symmetrical distribution within individuals reveal buffering strategy, indicating the selection for efficient design of growth and hydraulic in their developmental sequences. CONCLUSIONS: Our model provides a physical explanation of varied signatures for tree operations in hydraulic buffering through growth stages, and the buffering strategy revealed from leaf distribution morphologically provides evidence on the regulation mechanism of leaf biomechanics, hydraulics and physiologies. Our insight contributes greatly to plant trait modeling, policy and management, and will be of interest to some scientists and policy makers who are involved in climate change, ecology and environment protection, as well as forest ecology and management.
Assuntos
Cunninghamia/crescimento & desenvolvimento , Cunninghamia/genética , Folhas de Planta/anatomia & histologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/genética , Árvores/crescimento & desenvolvimento , Árvores/genética , Fatores Etários , Florestas , Modelos TeóricosRESUMO
BACKGROUND: The decrease in Cunninghamia lanceolata (Lamb.) production on continuously planted soil is an essential problem. In this study, two-year-old seedlings of two cultivars (a normal cultivar, NC, and a super cultivar, SC) were grown in two types of soil (not planted (NP) soil; continuously planted (CP) soil) with three watering regimes, and the interactive effects on plant growth and physiological traits were investigated in a greenhouse experiment. The water contents of the soil in the control (CK) (normal water content), medium water content (MWC) and low water content (LWC) treatments reached 75-80 %, 45-50 % and 20-25 % of the field water capacity, respectively. RESULTS: The results indicated that the CP soil had a negative effect on growth and physiological traits and that the LWC treatment caused even more severe and comprehensive negative effects. In both cultivars, the CP soil significantly decreased the height increment (HI), basal diameter increment (DI), dry matter accumulation (DMA), net photosynthetic rate (Pn), total chlorophyll content (TChl), carotenoid content (Caro) and photosynthetic nitrogen use efficiency (PNUE). Compared to the NP soil, the CP soil also decreased the proline and soluble protein contents, nitrogen use efficiency (NUE) and phosphorus use efficiency (PUE) and increased the nitrogen:phosphorus ratio in roots, stems and leaves. The LWC treatment decreased growth and photosynthesis, changed ecological stoichiometry, induced oxidative stress, promoted water use efficiency and damaged chloroplast ultrastructure. Significant increases in ascorbate peroxidase (APX), peroxidase (POD), soluble protein and proline contents were found in the LWC treatment. Compared with the NC, the SC was more tolerant to the CP soil and water stress, as indicated by the higher levels of DMA, Pn, and WUE. After exposure to the CP soil and watering regimes, the decreases in biomass accumulation and gas exchange were more pronounced. CONCLUSIONS: The combination of drought and CP soil may have detrimental effects on C. lanceolata growth, and low water content enhances the impacts of CP soil stress on C. lanceolata seedlings. The superiority of the SC over the NC is significant in Chinese fir plantation soil. Therefore, continuously planted soil can be utilized to cultivate improved varieties of C. lanceolata and maintain water capacity. This can improve their growth and physiological performance to a certain extent.
Assuntos
Adaptação Fisiológica , Cunninghamia/anatomia & histologia , Cunninghamia/crescimento & desenvolvimento , Cunninghamia/genética , Cunninghamia/metabolismo , Secas , Solo/química , Água/metabolismo , China , Variação Genética , GenótipoRESUMO
BACKGROUND: R2R3-MYB is a class of transcription factor crucial in regulating secondary cell wall development during wood formation. The regulation of wood formation in gymnosperm has been understudied due to its large genome size. Using Single-Molecule Real-Time sequencing, we obtained full-length transcriptomic libraries from the developmental stem of Cunninghamia lanceolata, a perennial conifer known as Chinese fir. The R2R3-MYB of C. lanceolata (hereafter named as ClMYB) associated with secondary wall development were identified based on phylogenetic analysis, expression studies and functional study on transgenic line. RESULTS: The evolutionary relationship of 52 ClMYBs with those from Arabidopsis thaliana, Eucalyptus grandis, Populus trichocarpa, Oryza sativa, two gymnosperm species, Pinus taeda, and Picea glauca were established by neighbour-joining phylogenetic analysis. A large number of ClMYBs resided in the woody-expanded subgroups that predominated with the members from woody dicots. In contrast, the woody-preferential subgroup strictly carrying the members of woody dicots contained only one candidate. The results suggest that the woody-expanded subgroup emerges before the gymnosperm/angiosperm split, while most of the woody-preferential subgroups are likely lineage-specific to woody dicots. Nine candidates shared the same subgroups with the A. thaliana orthologs, with known function in regulating secondary wall development. Gene expression analysis inferred that ClMYB1/2/3/4/5/26/27/49/51 might participate in secondary wall development, among which ClMYB1/2/5/26/27/49 were significantly upregulated in the highly lignified compression wood region, reinforcing their regulatory role associated with secondary wall development. ClMYB1 was experimentally proven a transcriptional activator that localised in the nucleus. The overexpression of ClMYB1 in Nicotiana benthamiana resulted in an increased lignin deposition in the stems. The members of subgroup S4, ClMYB3/4/5 shared the ERF-associated amphiphilic repression motif with AtMYB4, which is known to repress the metabolism of phenylpropanoid derived compounds. They also carried a core motif specific to gymnosperm lineage, suggesting divergence of the regulatory process compared to the angiosperms. CONCLUSIONS: This work will enrich the collection of full-length gymnosperm-specific R2R3-MYBs related to stem development and contribute to understanding their evolutionary relationship with angiosperm species.
Assuntos
Parede Celular/fisiologia , Cunninghamia/crescimento & desenvolvimento , Genes myb , Proteínas de Plantas/genética , Fatores de Transcrição/genética , China , Cunninghamia/genética , Genes de Plantas , Família Multigênica , Fases de Leitura Aberta , Proteínas de Plantas/fisiologia , Domínios Proteicos , RNA-Seq , Fatores de Transcrição/fisiologia , Transcrição Gênica , Transcriptoma , MadeiraRESUMO
The chemical composition in the precipitation is constantly changing, thus acid rain type is gradually changing from sulfuric type to mixed type and then nitric type. The influence of the changing acid rain type on the rhizosphere soil of tree species remains unclear. A pot experiment was performed with two-year-old Pinus massoniana, Cunninghamia lanceolate, Cyclobalanpsis glauca and Phyllostachys edulis seedlings with similar growth condition. Simulated acid rain consists of sulfuric(S/N = 5), mixed(S/N = 1) and nitric(S/N = 0.2) acid rain, and each type acid rain diluted to three acid rain intensity: pH = 2.5, 3.5, 4.5. Soil pH, soil organic matter, cation exchange capacity, the exchangeable Na+, K+, Ca2+, Mg2+ and enzyme activity were inhibited by acid rain intensity, while exchangeable Al3+ and H+ were promoted. Mg2+ was most relevant index to the tolerance to acid rain and the correlation degree of soil chemical index was higher than that of enzyme activity. Response of soil chemical properties differed in tree species under different acid rain types. Soil enzyme activity of Pinus massoniana, Cunninghamia lanceolate, and Phyllostachys edulis reached lowest under nitric acid rain, and that of Cyclobalanpsis glauca reached highest. Rhizosphere soil of Cunninghamia lanceolate is tolerant to sulfuric and nitric acid rain, and that of Cyclobalanpsis glauca is tolerant to mixed acid rain.
Assuntos
Monitoramento Ambiental , Microbiologia do Solo , Chuva Ácida , China , Cunninghamia/crescimento & desenvolvimento , Ácido Nítrico , Pinus , Poaceae , Rizosfera , Plântula/crescimento & desenvolvimento , Solo/química , ÁrvoresRESUMO
BACKGROUND: Cunninghamia lanceolata (C. lanceolata) is the main fast-growing timber species in southern China. As an alternative to conventional lighting systems, LED has been demonstrated to be an artificial flexible lighting source for commercial micropropagation. The application of LED can provide rapid propagation of C. lanceolata in vitro culture. RESULTS: We applied two-factor randomized block design to study the effects of LED photoperiods and light qualities on the growth and chlorophyll fluorescence of C. lanceolata in vitro culture plantlets. In this study, plantlets were exposed to 20 µmol·m- 2·s- 1 irradiance for three photoperiods, 8, 16, and 24 h under the three composite lights, 88.9% red+ 11.1% blue (R/B), 80.0% red+ 10.0% blue+ 10.0% purple (R/B/P), 72.7% red+ 9.1% blue+ 9.1% purple+ 9.1% green (R/B/P/G), as well as white light (12.7% red+ 3.9% blue+ 83.4% green, W) as control. The results showed that: (1) Plant height, dry weight, rooting rate, average root number, length, surface area and volume, chlorophyll, and chlorophyll fluorescence parameters were significantly affected by photoperiods, light qualities and their interactions. (2) Plantlets subjected to photoperiod 16 h had longer root, higher height, rooting rate, root number, and the higher levels of chlorophyll, chlorophyll a/b, Y (II), qP, NPQ/4 and ETRII compared to photoperiods 8 h and 24 h, while Fv/Fm during photoperiod 16 h was lower than 8 h and 24 h. Plantlets exposed to R/B/P/G generated more root and presented higher chlorophyll, Fv/Fo, Y (II), qP, and ETRII than W during photoperiods 8 and 16 h. (3) Total chlorophyll content and ETRII were significant correlated with rooting rate, root length and root volume, while Fv/Fm and ETRII were significant correlated with plant height, average root number and root surface area. (4) 16-R/B/P/G is best for growing C. lanceolata plantlets in vitro. CONCLUSIONS: This study demonstrated the effectiveness of photoperiods and light qualities using LEDs for micropropagation of C. lanceolata. The best plantlets were harvested under 16-R/B/P/G treatment. And there was a correlation between the growth and the chlorophyll and chlorophyll fluorescence of their leaves under different photoperiod and light quality. These results can contribute to improve the micropropagation process of this species.
Assuntos
Clorofila/metabolismo , Cunninghamia/efeitos da radiação , Fotoperíodo , Clorofila/efeitos da radiação , Cunninghamia/crescimento & desenvolvimento , Cunninghamia/metabolismo , Fluorescência , Técnicas In Vitro , Luz , Raízes de Plantas/crescimento & desenvolvimentoRESUMO
BACKGROUND: Cunninghamia lanceolata (Chinese fir), a member of the conifer family Cupressaceae, is one of the most popular cultivated trees for wood production in China. Continuous research is being performed to improve C. lanceolata breeding values. Given the high rate of seed abortion (one of the reasons being the failure of ovule and pollen development) in C. lanceolata, the proper formation of female/male cones could theoretically increase the number of offspring in future generations. MIKC MADS-box genes are well-known for their roles in the flower/cone development and comprise the typical/atypical floral development model for both angiosperms and gymnosperms. RESULTS: We performed a transcriptomic analysis to find genes differentially expressed between female and male cones at a single, carefully determined developmental stage, focusing on the MIKC MADS-box genes. We finally obtained 47 unique MIKC MADS-box genes from C. lanceolata and divided these genes into separate branches. 27 out of the 47 MIKC MADS-box genes showed differential expression between female and male cones, and most of them were not expressed in leaves. Out of these 27 genes, most B-class genes (AP3/PI) were up-regulated in the male cone, while TM8 genes were up-regulated in the female cone. Then, with no obvious overall preference for AG (class C + D) genes in female/male cones, it seems likely that these genes are involved in the development of both cones. Finally, a small number of genes such as GGM7, SVP, AGL15, that were specifically expressed in female/male cones, making them candidate genes for sex-specific cone development. CONCLUSIONS: Our study identified a number of MIKC MADS-box genes showing differential expression between female and male cones in C. lanceolata, illustrating a potential link of these genes with C. lanceolata cone development. On the basis of this, we postulated a possible cone development model for C. lanceolata. The gene expression library showing differential expression between female and male cones shown here, can be used to discover unknown regulatory networks related to sex-specific cone development in the future.
Assuntos
Cunninghamia/genética , Genes de Plantas/fisiologia , Proteínas de Domínio MADS/fisiologia , Componentes Aéreos da Planta/crescimento & desenvolvimento , Transcriptoma/genética , Cunninghamia/crescimento & desenvolvimento , Cunninghamia/ultraestrutura , Perfilação da Expressão Gênica , Genes de Plantas/genética , Proteínas de Domínio MADS/genética , Microscopia Eletrônica de Varredura , Componentes Aéreos da Planta/metabolismo , Componentes Aéreos da Planta/ultraestrutura , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma/fisiologiaRESUMO
The functional balance between leaves and roots is believed to be mediated by the specific location of shoots and roots, i.e. differences in transport distances and degrees of organ connectivity. However, it remains unknown whether the adaptive responses of trees to biomass removal depend on the relative orientation of leaf and root pruning. Here, we applied five pruning treatments to saplings of Cunninghamia lanceolata (Chinese fir) under field and glasshouse conditions, namely no pruning (control), half of lateral branches pruned, half of lateral roots pruned, half of the branches and roots pruned on the same side of the plant, and half of the branches and roots pruned on opposite sides of the plant. The effects of pruning on the growth, carbon storage and allocation, and physiology of leaves and fine roots on the same and opposite sides of the plant were investigated. Compared with the effect of root-pruning on leaves, fine roots were more limited by carbon availability and their physiological activity was more strongly reduced by shoot pruning, especially when branches on the same side of the plant were removed. Pruning of branches and roots on the opposite side of the plant resulted in the lowest carbon assimilation rates and growth among all treatments. The results of a stable-isotope labeling indicated that less C was distributed to fine roots from the leaves on the opposite side of the plant compared to those on the same side, but N allocation from roots to leaves depended less on the relative root and leaf orientation. The results collectively indicate that the functional responses of C. lanceolata to pruning are not only determined by the source-sink balance model but are also related to interactions between leaves and fine roots. We argue that the connectivity among lateral branches and roots depends on their relative orientation, which is therefore critical for the functional balance between leaves and fine roots.
Assuntos
Cunninghamia/fisiologia , Folhas de Planta/fisiologia , Raízes de Plantas/fisiologia , Biomassa , Carbono/metabolismo , Cunninghamia/crescimento & desenvolvimento , Agricultura Florestal , Nitrogênio/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimentoRESUMO
The influence of acid rain on plant growth includes direct effects on foliage as well as indirect soil-mediated effects that cause a reduction in root growth. In addition, the concentration of NO3- in acid rain increases along with the rapid growth of nitrogen deposition. In this study, we investigated the impact of simulated acid rain with different SO42-/NO3- (S/N) ratios, which were 1:0, 5:1, 1:1, 1:5 and 0:1, on Chinese fir sapling growth from March 2015 to April 2016. Results showed that Chinese fir sapling height growth rate (HGR) and basal diameter growth rate (DGR) decreased as acid rain pH decreased, and also decreased as the percentage of NO3- increased in acid rain. Acid rain pH significantly decreased the Chlorophyll a (Chla) and Chlorophyll b (Chlb) content, and Chla and Chlb contents with acid rain S/N 1:5 were significantly lower than those with S/N 1:0 at pH 2.5. The chlorophyll fluorescence parameters, maximal efficiency of Photosystem II photochemistry (Fv/Fm) and non-photochemical quenching coefficient (NPQ), with most acid rain treatments were significantly lower than those with CK treatments. Root activities first increased and then decreased as acid rain pH decreased, when acid rain S/N ratios were 1:1, 1:5 and 0:1. Redundancy discriminant analysis (RDA) showed that the Chinese fir DGR and HGR had positive correlations with Chla, Chlb, Fv/Fm ratio, root activity, catalase and superoxide dismutase activities in roots under the stress of acid rain with different pH and S/N ratios. The structural equation modelling (SEM) results showed that acid rain NO3- concentration and pH had stronger direct effects on Chinese fir sapling HGR and DGR, and the direct effects of acid rain NO3- concentration and pH on HGR were lower than those on DGR. Our results suggest that the ratio of SO42- to NO3- in acid rain is an important factor which could affect the sustainable development of monoculture Chinese fir plantations in southern China.
Assuntos
Chuva Ácida/toxicidade , Cunninghamia/efeitos dos fármacos , Ácido Nítrico/toxicidade , Ácidos Sulfúricos/toxicidade , China , Clorofila/metabolismo , Clorofila A , Cunninghamia/crescimento & desenvolvimento , Cunninghamia/metabolismo , Complexo de Proteína do Fotossistema II/metabolismoRESUMO
Pollen grains produce certain metabolites, which can improve or inhibit germination and tube growth. Metabolomic analysis of germinating and growing Chinese fir pollen has not been reported. Therefore, this study aimed to analyse metabolites changes, content and expression in the germinating pollen of Chinese fir. To understand the metabolic differences, two clones from Chinese fir were selected. Metabolomics analyses were performed on three stages (1-, 24- and 48-h) during in vitro pollen germination. The metabolites profiles at different time points were analyzed by using liquid chromatography-mass spectrometry. The results showed that 171 peaks were screened; the corresponding differential metabolites of 121 peaks were classified into nine types of substances. The expression of metabolites showed significant differences across and between clones, and the variation was evident at all germination stages. The expression was obvious at the early stage of germination, which differed clearly from that of the late stage after pollen tube growth. Moreover, the metabolites were mainly enriched in 14 metabolic pathways. Pollen germination and tube growth and metabolites expressions changed per incubation time. Since this work is preliminary, we suggest further investigations to understand the relationship between the differential metabolites and pollen development, and factors affecting pollen germination process.
Assuntos
Cunninghamia/crescimento & desenvolvimento , Cunninghamia/metabolismo , Germinação , Metabolômica/métodos , Pólen/metabolismo , Células Clonais , Redes e Vias Metabólicas , Metaboloma , Análise Multivariada , Tubo Polínico/crescimento & desenvolvimento , Tubo Polínico/metabolismoRESUMO
Ammonia-oxidizing bacteria (AOB) and archaea (AOA) are the main nitrifiers which are well studied in natural environments, and AOA frequently outnumber AOB by orders especially in acidic conditions, making AOA the most promising ammonia oxidizers. The phylogeny of AOA revealed in related studies, however, often varied and hardly reach a consensus on functional phylotypes. The objective of this study was to compare ammonia-oxidizing communities by amoA gene and transcript based on both genomic DNA and RNA in extremely acidic forest soils (pH <4.5). Our results support the numerical and functional dominance of AOA over AOB in acidic soils as bacterial amoA gene and transcript were both under detection limits and archaeal amoA, in contrast, were abundant and responded to the fluctuations of environmental factors. Organic matter from tree residues was proposed as the main source of microbial available nitrogen, and the potential co-precipitation of dissolved organic matter (DOM) with soluble Al3+ species in acidic soil matrix may further restrict the amount of nitrogen sources required by AOB besides NH3/NH4+ equilibrium. Although AOA were better adapted to oligotrophic environments, they were susceptible to the toxicity of exchangeable Al3+. Phylotypes affiliated to Nitrososphaera, Nitrososphaera sister group, and Nitrosotalea were detected by amoA gene and transcript. Nitrosotalea devantaerra and Nitrososphaera sister group were the major AOA. Compared to the genomic DNA data, higher relative abundances of Nitrososphaera and Nitrososphaera sister group were recognized in amoA transcript inferred AOA communities, where Nitrosotalea relative abundance was found lower, implying the functional activities of Nitrososphaera sister group and Nitrososphaera were easily underestimated and Nitrosotalea did not attribute proportionally to nitrification in extremely acidic soils. Further comparison of the different AOA community compositions and relative abundance of each phylotypes revealed by amoA genes and transcripts make it possible to identify the functional AOA species and assess their ecological role in extremely acidic soils.
Assuntos
Archaea/fisiologia , Proteínas Arqueais/análise , Agricultura Florestal , Microbiota , Microbiologia do Solo , Amônia/metabolismo , Archaea/classificação , China , Cunninghamia/crescimento & desenvolvimento , Florestas , Oxirredução , FilogeniaRESUMO
Cunninghamia lanceolata (Chinese fir) is a fast-growing and commercially important conifer of the Cupressaceae family. Due to the unavailability of complete genome sequences and relatively poor genetic background information of the Chinese fir, it is necessary to identify and analyze the expression levels of suitable housekeeping genes (HKGs) as internal reference for precise analysis. Based on the results of database analysis and transcriptome sequencing, we have chosen five candidate HKGs (Actin, GAPDH, EF1a, 18S rRNA, and UBQ) with conservative sequences in the Chinese fir and related species for quantitative analysis. The expression levels of these HKGs in roots and cotyledons under five different abiotic stresses in different time intervals were measured by qRT-PCR. The data were statistically analyzed using the following algorithms: NormFinder, BestKeeper, and geNorm. Finally, RankAggreg was applied to merge the sequences generated from three programs and rank these according to consensus sequences. The expression levels of these HKGs showed variable stabilities under different abiotic stresses. Among these, Actin was the most stable internal control in root, and GAPDH was the most stable housekeeping gene in cotyledon. We have also described an experimental procedure for selecting HKGs based on the de novo sequencing database of other non-model plants.
Assuntos
Cotilédone/genética , Cunninghamia/genética , Genes Essenciais/genética , Proteínas de Plantas/genética , Raízes de Plantas/genética , Cotilédone/crescimento & desenvolvimento , Cunninghamia/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Ensaios de Triagem em Larga Escala , Raízes de Plantas/crescimento & desenvolvimento , Reação em Cadeia da Polimerase em Tempo RealRESUMO
MicroRNAs (miRNAs) are small noncoding regulatory RNAs that play key roles in the process of plant development. To date, extensive studies of miRNAs have been performed in a few model plants, but few efforts have focused on small RNAs (sRNAs) in conifers because of the lack of reference sequences for their enormous genomes. In this study, Solexa sequencing of three sRNA libraries obtained from dormant, reactivating, and active vascular cambium in Chinese ï¬r (Cunninghamia lanceolata) using tangential cryosectioning identified 20 known miRNA families and 18 novel potential miRNAs, of which nine novel miRNA precursors were validated by RT-PCR and sequencing. More than half of these novel miRNAs displayed stage-specific expression patterns in the vascular cambium. Furthermore, analysing the 103 miRNAs and their predicted targets indicated that about 70% appeared to negatively regulate their targets, of which two target genes involved in the regulation of cambial cell division were validated via RNA ligase-mediated rapid amplification of 5'-cDNA ends (RLM 5'-RACE) and transient co-expression in Nicotiana benthamiana leaves. Interestingly, miRNA156 and miRNA172 may regulate the phase transition in vascular cambium from dormancy to active growth. These results provide new insights into the important regulatory functions of miRNAs in vascular cambium development and wood formation in conifers.
Assuntos
Cunninghamia/genética , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Sequência de Bases , Câmbio/genética , Câmbio/crescimento & desenvolvimento , Cunninghamia/crescimento & desenvolvimento , Expressão Gênica , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/química , Dados de Sequência Molecular , Especificidade de Órgãos , Filogenia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , RNA de Plantas/química , RNA de Plantas/genética , Pequeno RNA não Traduzido/química , Pequeno RNA não Traduzido/genética , Análise de Sequência de RNA , Nicotiana/genética , Nicotiana/crescimento & desenvolvimentoRESUMO
Climate changes may have immediate implications for forest productivity and may produce dramatic shifts in tree species distributions in the future. Quantifying these implications is significant for both scientists and managers. Cunninghamia lanceolata is an important coniferous timber species due to its fast growth and wide distribution in China. This paper proposes a methodology aiming at enhancing the distribution and productivity of C. lanceolata against a background of climate change. First, we simulated the potential distributions and establishment probabilities of C. lanceolata based on a species distribution model. Second, a process-based model, the PnET-II model, was calibrated and its parameterization of water balance improved. Finally, the improved PnET-II model was used to simulate the net primary productivity (NPP) of C. lanceolata. The simulated NPP and potential distribution were combined to produce an integrated indicator, the estimated total NPP, which serves to comprehensively characterize the productivity of the forest under climate change. The results of the analysis showed that (1) the distribution of C. lanceolata will increase in central China, but the mean probability of establishment will decrease in the 2050s; (2) the PnET-II model was improved, calibrated, and successfully validated for the simulation of the NPP of C. lanceolata in China; and (3) all scenarios predicted a reduction in total NPP in the 2050s, with a markedly lower reduction under the a2 scenario than under the b2 scenario. The changes in NPP suggested that forest productivity will show a large decrease in southern China and a mild increase in central China. All of these findings could improve our understanding of the impact of climate change on forest ecosystem structure and function and could provide a basis for policy-makers to apply adaptive measures and overcome the unfavorable influences of climate change.
Assuntos
Mudança Climática , Cunninghamia/crescimento & desenvolvimento , Monitoramento Ambiental , China , Ecossistema , Modelos BiológicosRESUMO
Studies on niche and interspecific association can reveal plant interspecific relationship in the community, and provide theoretical support for promoting the transformation and development of plantation to natural forest. Based on Cunninghamia lanceolata investigation data of permanent plots of plantation in Jianfengling area of Hainan Tropical Rainforest National Park, we analyzed niche and interspecific association of the top 20 woody species in the community according to their importance values. The results showed that there were 163 species of woody species belonging to 101 genera and 55 families in the C. lanceolata plantation community, with complex species composition. As a constructive species, C. lanceolata had the highest importance value and niche breadth, and thus was the absolute dominant species in the community. It had a large niche overlap and niche similarity with many other species, among which the highest was observed in Adinandra hainanensis. The average niche overlap and niche similarity of the community were 0.54 and 0.49, respectively. The change trends of those two niche indicators were basically the same, indicating that some species were similar in resource demands. The overall association of main woody species was significantly positive. The χ2 test, association coefficient, Pearson correlation coefficient, and Spearman rank correlation coefficient suggested that the amounts of pairs with positive association were more than that with negative ones. The proportion of significant association species pairs was relatively low, indicating that the community stability was strong, species could coexist stably, and most species did not form close ties. On the whole, C. lanceolata had inhibited the regeneration of original tree species, and A. hainanensis, Garcinia oblongifolia, and Heptapleurum heptaphyllum could be used in natural transformation and restoration of C. lanceolata plantation in the Hainan Tropical Rainforest National Park.
Assuntos
Cunninghamia , Ecossistema , Cunninghamia/crescimento & desenvolvimento , Cunninghamia/classificação , China , Floresta Úmida , Conservação dos Recursos Naturais , Árvores/crescimento & desenvolvimento , Árvores/classificação , BiodiversidadeRESUMO
Plant phenology plays an important role in nutrient cycling and carbon balance in forest ecosystems, but its response to the interaction of global warming and precipitation reduction remains unclear. In this study, an experiment with factorial soil warming (ambient, ambient +5 °C) and precipitation exclusion (ambient, ambient -50 %) was conducted in a subtropical Chinese fir (Cunninghamia lanceolata) plantation. We investigated the effects of soil warming, precipitation exclusion, and their interactions on Chinese fir phenology involving tree height and fine root growth. In the meantime, the impact of tree height growth and related climatic factors on fine root production was also assessed. The results showed that: (1) more variable phenology responses were observed in fine root growth than in tree height growth to the climatic treatments; the duration of fine root growth and tree height growth was significantly reduced by the precipitation exclusion and warming treatment, respectively; phenology differences of fine root and tree height growth caused by the solo warming and precipitation exclusion treatment were further enhanced by the combined treatment; and despite the greater inter-annual phenology stability of tree height growth than that of fine root growth, both of them showed insignificant response to all the climate treatments; (2) asynchrony of phenology between tree height and fine root growth was significantly enlarged by solo warming and precipitation exclusion treatments, and further enlarged by the combined treatment; (3) fine root production was significantly and positively correlated with air, and soil temperature, and tree height growth as well, which was altered by warming and precipitation exclusion treatments. Our results demonstrated that climatic changes significantly and differently alter phenology of, and extend the phenology asynchrony between, above and below ground plant components, and also highlight the climate-sensitive and variable nature of root phenology. Overall, these phenology responses to climatic change may weaken the close link between fine root production and tree height growth, which may result in temporal mismatch between nutrient demand and supply in Chinese fir plantation.
Assuntos
Cunninghamia , Aquecimento Global , Solo , Cunninghamia/crescimento & desenvolvimento , Solo/química , China , Raízes de Plantas/crescimento & desenvolvimento , Chuva , Mudança Climática , FlorestasRESUMO
Soil matrix infiltration is an important pathway for plantations to obtain water, which affects ecological benefits and water conservation function of plantations. The changes of soil matrix infiltration and its influencing factors in different growth stages of Chinese fir plantations remain unclear. We measured soil matrix infiltration process using a tension infiltrometer in Chinese fir plantations (5, 8, 11, and 15 years old) of Beijiang River Forest Farm in Rongshui, Guangxi, and analyzed soil basic physicochemical properties to identify the dominant factors influencing soil matrix infiltration. The results showed that initial infiltration rate, stable infiltration rate, and cumulative infiltration increased with stand ages. The ranges of different stand ages were 141-180 mm·h-1, 109-150 mm·h-1, and 188-251 mm, respectively. The initial infiltration rate, stable infiltration rate, and cumulative infiltration were significantly positively correlated with soil capillary porosity, soil organic matter, soil water stable macroaggregate, sand content, and clay content, while negatively correlated with soil bulk density and silt content. Early thinning had a positive effect on soil matrix infiltration, but thinning measures after 11 years did not enhance soil matrix infiltration further. Philip model was optimal for describing soil matrix infiltration process in this region. In conclusion, soil matrix infiltration capacity of Chinese fir plantations gradually increased from young to middle-aged stands, but matrix infiltration capacity tended to stabilize after 11 years old. Silt content and water stable macroaggregate were the dominant factors influencing matrix infiltration.
Assuntos
Solo , Solo/química , China , Cunninghamia/crescimento & desenvolvimento , Água/análise , Ecossistema , Fatores de Tempo , Abies/crescimento & desenvolvimentoRESUMO
We investigated the dynamics of soil viral community in Cunninghamia lanceolata plantations with different stand ages (8, 21, 27, and 40 years old) in a subtropical region. The viral metagenomics and bioinformatics analysis were used to analyze the compositional and functional differences of soil viral communities across different stand ages, and to explore the environmental driving factors. The results showed that tailed phages dominated soil viral community in subtropical C. lanceolata plantations, with the highest proportion of Siphoviridae (19.6%-39.5%). There was significant difference in soil viral community structure among different stand ages, with the main driving factors being electrical conductance and available phosphorus. The metabolic functional genes encoded by viruses exhibited higher relative abundance. The α-diversity of soil viral function in mature C. lanceolata plantations was higher than other stands. There were significant differences in soil viral functional structure among different stand ages, which were mainly driven by ammonium nitrogen. During the development of C. lanceolata plantations, auxiliary metabolic genes encoded by virus related to nitrogen and phosphorus may regulate the metabolism of host microorganisms, thereby potentially impacting biogeochemical cycling of these elements.
Assuntos
Cunninghamia , Microbiologia do Solo , Cunninghamia/crescimento & desenvolvimento , Cunninghamia/virologia , Solo/química , Vírus/classificação , Vírus/isolamento & purificação , Vírus/genética , China , Viroma , Fósforo/análiseRESUMO
Rhizosphere is a vital area for substance exchange and energy transfer between roots and soil microorganisms. Therefore, diazotrophs in the rhizosphere play a pivotal role in facilitating plant nitrogen acquisition. We investigated the variability in the abundance and community structure of soil diazotrophs and the influencing factors across rhizosphere soils of Cunninghamia lanceolata in three locations: Baisha State-owned Forest Farm in Longyan City (BS), Sanming Forest Ecosystem and Global Change Research Station (SM), and Wuyishan National Forest Park in Nanping City (WYS), located in the western region of Fujian Province, quantified the diazotrophic abundance by using real-time quantitative PCR, and assessed the community structure by high-throughput sequencing. The results showed that soil pH, C:N ratio, and C:(N:P) stoichiometry in SM were notably lower compared to those in BS and WYS. In SM, the abundance of the nifH gene was 6.38×108 copies·g-1, significantly lower than 1.35×109 copies·g-1 in BS and 1.10×109 copies·g-1 in WYS. Additionally, α diversity index of diazotrophs was lower in SM compared to BS and WYS, while the community structure of diazotrophs in rhizosphere soils of BS and WYS was similar, which differed significantly from that in SM. The diazotrophic sequences in the three forest farms could be divided into 5 phylum, 8 classes, 15 orders, 23 families and 33 genera, with Proteobacteria, α-proteobacteria, and Bradyrhizobium as the dominant phylotypes. Soil pH, available phosphorus, NO3--N and C:(N:P) ratio were identified as significant factors influencing both the abundance and community structure of nifH genes, with soil pH performing the greatest. Taken together, there were spatial variations in the distribution of diazotrophic abundance and community structure in C. lanceolata rhizosphere soils, with soil pH as the primary driving factor.