Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.884
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Mol Med ; 30(1): 24, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321393

RESUMO

BACKGROUND: Lipid peroxidation is a characteristic metabolic manifestation of diabetic retinopathy (DR) that causes inflammation, eventually leading to severe retinal vascular abnormalities. Selenium (Se) can directly or indirectly scavenge intracellular free radicals. Due to the narrow distinction between Se's effective and toxic doses, porous Se@SiO2 nanospheres have been developed to control the release of Se. They exert strong antioxidant and anti-inflammatory effects. METHODS: The effect of anti-lipid peroxidation and anti-inflammatory effects of porous Se@SiO2 nanospheres on diabetic mice were assessed by detecting the level of Malondialdehyde (MDA), glutathione peroxidase 4 (GPX4), decreased reduced/oxidized glutathione (GSH/GSSG) ratio, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, and interleukin (IL) -1ß of the retina. To further examine the protective effect of porous Se@SiO2 nanospheres on the retinal vasculopathy of diabetic mice, retinal acellular capillary, the expression of tight junction proteins, and blood-retinal barrier destruction was observed. Finally, we validated the GPX4 as the target of porous Se@SiO2 nanospheres via decreased expression of GPX4 and detected the level of MDA, GSH/GSSG, TNF-α, IFN-γ, IL -1ß, wound healing assay, and tube formation in high glucose (HG) cultured Human retinal microvascular endothelial cells (HRMECs). RESULTS: The porous Se@SiO2 nanospheres reduced the level of MDA, TNF-α, IFN-γ, and IL -1ß, while increasing the level of GPX4 and GSH/GSSG in diabetic mice. Therefore, porous Se@SiO2 nanospheres reduced the number of retinal acellular capillaries, depletion of tight junction proteins, and vascular leakage in diabetic mice. Further, we identified GPX4 as the target of porous Se@SiO2 nanospheres as GPX4 inhibition reduced the repression effect of anti-lipid peroxidation, anti-inflammatory, and protective effects of endothelial cell dysfunction of porous Se@SiO2 nanospheres in HG-cultured HRMECs. CONCLUSION: Porous Se@SiO2 nanospheres effectively attenuated retinal vasculopathy in diabetic mice via inhibiting excess lipid peroxidation and inflammation by target GPX4, suggesting their potential as therapeutic agents for DR.


Assuntos
Diabetes Mellitus Experimental , Retinopatia Diabética , Nanosferas , Selênio , Humanos , Camundongos , Animais , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/metabolismo , Selênio/metabolismo , Selênio/farmacologia , Selênio/uso terapêutico , Dióxido de Silício/metabolismo , Dióxido de Silício/farmacologia , Dióxido de Silício/uso terapêutico , Diabetes Mellitus Experimental/metabolismo , Células Endoteliais/metabolismo , Peroxidação de Lipídeos , Porosidade , Fator de Necrose Tumoral alfa/metabolismo , Dissulfeto de Glutationa/metabolismo , Dissulfeto de Glutationa/farmacologia , Dissulfeto de Glutationa/uso terapêutico , Inflamação/metabolismo , Anti-Inflamatórios/uso terapêutico , Proteínas de Junções Íntimas/metabolismo
2.
Nanotechnology ; 35(25)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38452386

RESUMO

Pancreatic cancer's high fatality rates stem from its resistance to systemic drug delivery and aggressive metastasis, limiting the efficacy of conventional treatments. In this study, two-dimensional ultrathin silicene nanosheets were initially synthesized and near-infrared-responsive two-dimensional silicene-mesoporous silica nanoparticles (SMSNs) were successfully constructed to load the clinically-approved conventional pancreatic cancer chemotherapeutic drug gemcitabine. Experiments on nanoparticle characterization show that they have excellent photothermal conversion ability and stability. Then silicene-mesoporous silica nanoparticles loaded with gemcitabine nanoparticles (SMSN@G NPs) were employed in localized photothermal therapy to control pancreatic tumor growth and achieve therapeutic effects. Our research confirmed the functionality of SMSN@G NPs through immunoblotting and apoptotic assays, demonstrating its capacity to enhance the nuclear translocation of the NF-κB p65, further affect the protein levels of apoptosis-related genes, induce the apoptosis of tumor cells, and ultimately inhibit the growth of the tumor. Additionally, the study assessed the inhibitory role of SMSN@G NPs on pancreatic neoplasm growthin vivo, revealing its excellent biocompatibility. SMSN@G NPs have a nice application prospect for anti-pancreatic tumors.


Assuntos
Nanopartículas , Neoplasias Pancreáticas , Humanos , Gencitabina , NF-kappa B/metabolismo , NF-kappa B/farmacologia , NF-kappa B/uso terapêutico , Desoxicitidina/farmacologia , Dióxido de Silício/farmacologia , Linhagem Celular Tumoral , Apoptose , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo
3.
Environ Sci Technol ; 58(1): 751-759, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38113379

RESUMO

Aquatic environments are complicated systems that contain different types of nanoparticles (NPs). Nevertheless, recent studies of NP toxicity, and especially those that have focused on bioaccumulation have mostly investigated only a single type of NPs. Assessments of the environmental risks of NPs that do not consider co-exposure regimes may lead to inaccurate conclusions and ineffective environmental regulation. Thus, the present study examined the effects of differently sized silica NPs (SiO2 NPs) on the uptake of iron oxide NPs (Fe2O3 NPs) by the zooplankton Daphnia magna. Both SiO2 NPs and Fe2O3 NPs were well dispersed in the experimental medium without significant heteroaggregation. Although all three sizes of SiO2 NPs inhibited the uptake of Fe2O3 NPs, the underlying mechanisms differed. SiO2 NPs smaller than the average mesh size (∼200 nm) of the filtering apparatus of D. magna reduced the accumulation of Fe2O3 NPs through uptake competition, whereas larger SiO2 NPs inhibited the uptake of Fe2O3 NPs mainly by reducing the water filtration rate of the daphnids. Overall, in evaluations of the risks of NPs in the natural environment, the different mechanisms underlying the effects of NPs of different sizes on the uptake of dissimilar NPs should be considered.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Animais , Daphnia magna , Daphnia , Dióxido de Silício/farmacologia , Nanopartículas/toxicidade , Nanopartículas Magnéticas de Óxido de Ferro , Poluentes Químicos da Água/toxicidade
4.
Mol Biol Rep ; 51(1): 975, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39259442

RESUMO

BACKGROUND: Many methods are used for cancer treatment, especially chemotherapy. In addition to the their therapeutic effects, chemotherapeutic drugs also have serious disadvantages, such as not being cell and tissue-specific, causing toxicity in many tissues, and developing drug resistance. Many methods, especially nanocarriers, have been designed to overcome these disadvantages. METHODS AND RESULTS: In this study, we synthesized mesoporous silica iron oxide nanoparticles with different pore diameters and loaded idarubicin (6MFe3O4-NH2-IDA and 35MFe3O4-NH2-IDA). The synthesized molecules were characterized using FT-IR, XRD, and SEM methods. The cytotoxic effects of unbound idarubicin and idarubicin-loaded nanoparticles on MCF7 and HL-60 cell lines were examined by MTT test. Additionally, the expression of anti-apoptotic (Survivin and BCL-2) and apoptotic (BAX, PUMA, and NOXA) genes of the nanoparticles were measured by PCR method. As a result of the analyses, it was seen that nanoparticles with the desired properties and sizes were synthesized. In MTT analysis, it was observed that both nanoparticles dramatically decreased the IC50 value in cell lines. However, the 35MFe3O4-NH2-IDA molecule was found to have lower IC50 values. IC50 values ​​for pristine IDA, 6MFe3O4-NH2, and 35MFe3O4-NH2 at 24 h were found to be 3.56, 1.24 and 0.25 µM in the MCF7 cell line and 4.15, 1.16 and 0.34 µM in the HL-60 cell line, respectively. Additionally, apoptotic gene expression increased, and anti-apoptotic gene expression decreased. CONCLUSIONS: Our study demonstrates that the effectiveness of idarubicin can be significantly enhanced by its application with mesoporous nanocarriers. This enhancement is attributed to the controlled release of idarubicin from the nanocarrier, which circumvents drug resistance mechanisms, improves drug solubility, and increases the drug-carrying capacity per unit volume due to the porous structure of the carrier. These findings underscore the potential of the synthesized nanocarrier in cancer treatment and provide a clear direction for future research in this field.


Assuntos
Apoptose , Idarubicina , Nanopartículas de Magnetita , Humanos , Idarubicina/farmacologia , Apoptose/efeitos dos fármacos , Células MCF-7 , Células HL-60 , Nanopartículas de Magnetita/química , Linhagem Celular Tumoral , Portadores de Fármacos/química , Dióxido de Silício/química , Dióxido de Silício/farmacologia , Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Porosidade
5.
J Appl Microbiol ; 135(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38925655

RESUMO

AIMS: In this study, the antifungal efficacy and phytotoxicity of silica coated porous zinc oxide nanoparticle (SZNP) were analyzed as this nanocomposite was observed to be a suitable platform for slow release fungicides and has the promise to bring down the dosage of other agrochemicals as well. METHODS AND RESULTS: Loading and release kinetics of tricyclazole, a potent fungicide, were analyzed by measuring surface area (SBET) using Brunauer-Emmett-Teller (BET) isotherm and liquid chromatography tandem mass spectrometry (LC-MS/MS), respectively. The antifungal efficacy of ZnO nanoparticle (ZNP) and SZNP was investigated on two phytopathogenic fungi (Alternaria solani and Aspergillus niger). The morphological changes to the fungal structure due to ZNP and SZNP treatment were studied by field emission-scanning electron microscopy. Nanoparticle mediated elevation of reactive oxygen species (ROS) in fungal samples was detected by analyzing the levels of superoxide dismutase, catalase, thiol content, lipid peroxidation, and by 2,7-dichlorofluorescin diacetate assay. The phytotoxicity of these two nanostructures was assessed in rice plants by measuring primary plant growth parameters. Further, the translocation of the nanocomposite in the same plant model system was examined by checking the presence of fluorescein isothiocyanate tagged SZNP within the plant tissue. CONCLUSIONS: ZNP had superior antifungal efficacy than SZNP and caused the generation of more ROS in the fungal samples. Even then, SZNP was preferred as an agrochemical delivery vehicle because, unlike ZNP alone, it was not toxic to plant system. Moreover, as silica in nanoform is entomotoxic in nature and nano ZnO has antifungal property, both the cargo (agrochemical) and the carrier system (silica coated porous nano zinc oxide) will have a synergistic effect in crop protection.


Assuntos
Antifúngicos , Nanocompostos , Dióxido de Silício , Óxido de Zinco , Óxido de Zinco/farmacologia , Nanocompostos/toxicidade , Dióxido de Silício/farmacologia , Dióxido de Silício/química , Antifúngicos/farmacologia , Agroquímicos/farmacologia , Aspergillus niger/efeitos dos fármacos , Aspergillus niger/crescimento & desenvolvimento , Oryza/microbiologia , Oryza/crescimento & desenvolvimento , Oryza/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Porosidade , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Preparações de Ação Retardada , Espécies Reativas de Oxigênio/metabolismo
6.
J Nanobiotechnology ; 22(1): 128, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38519978

RESUMO

Accumulating evidence supports the notion that microglia play versatile roles in different chronic pain conditions. However, therapeutic strategies of chronic pain by targeting microglia remain largely overlooked. This study seeks to develop a miRNA-loaded nano-delivery system by targeting microglia, which could provide a decent and long-lasting analgesia for chronic pain. Surface aminated mesoporous silica nanoparticles were adopted to load miR-26a-5p, a potent analgesic miRNA, by electrostatic adsorption, which can avoid miR-26a-5p is rapidly released and degraded. Then, targeting peptide MG1 was modified on the surface of aminated mesoporous silica particles for microglia targeting. In peripheral nerve injury induced neuropathic pain model, a satisfactory anti-allodynia effect with about 6 weeks pain-relief duration were achieved through targeting microglia strategy, which decreased microglia activation and inflammation by Wnt5a, a non-canonical Wnt pathway. In inflammatory pain and chemotherapy induced peripheral neuropathic pain, microglia targeting strategy also exhibited more efficient analgesia and longer pain-relief duration than others. Overall, we developed a microglia-targeting nano-delivery system, which facilitates precisely miR-26a-5p delivery to enhance analgesic effect and duration for several chronic pain conditions.


Assuntos
Analgesia , Dor Crônica , MicroRNAs , Nanopartículas , Neuralgia , Humanos , Microglia/metabolismo , Dor Crônica/tratamento farmacológico , Dor Crônica/metabolismo , MicroRNAs/metabolismo , Neuralgia/tratamento farmacológico , Neuralgia/genética , Neuralgia/metabolismo , Analgésicos/metabolismo , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Dióxido de Silício/farmacologia
7.
J Nanobiotechnology ; 22(1): 486, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143545

RESUMO

Lower back pain (LBP) is a common condition closely associated with intervertebral disc degeneration (IDD), causing a significant socioeconomic burden. Inflammatory activation in degenerated discs involves pro-inflammatory cytokines, dysregulated regulatory cytokines, and increased levels of nerve growth factor (NGF), leading to further intervertebral disc destruction and pain sensitization. Macrophage polarization is closely related to autophagy. Based on these pathological features, a structured biomimetic nanoparticle coated with TrkA-overexpressing macrophage membranes (TMNP@SR) with a rapamycin-loaded mesoporous silica core is developed. TMNP@SR acted like sponges to adsorbe inflammatory cytokines and NGF and delivers the autophagy regulator rapamycin (RAPA) into macrophages through homologous targeting effects of the outer engineered cell membrane. By regulating autophagy activation, TMNP@SR promoted the M1-to-M2 switch of macrophages to avoid continuous activation of inflammation within the degenerated disc, which prevented the apoptosis of nucleus pulposus cells. In addition, TMNP@SR relieved mechanical and thermal hyperalgesia, reduced calcitonin gene-related peptide (CGRP) and substance P (SP) expression in the dorsal root ganglion, and downregulated GFAP and c-FOS signaling in the spinal cord in the rat IDD model. In summary, TMNP@SR spontaneously inhibits the aggravation of disc inflammation to alleviate disc degeneration and reduce the ingress of sensory nerves, presenting a promising treatment strategy for LBP induced by disc degeneration.


Assuntos
Autofagia , Degeneração do Disco Intervertebral , Nanopartículas , Ratos Sprague-Dawley , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/metabolismo , Animais , Autofagia/efeitos dos fármacos , Nanopartículas/química , Ratos , Masculino , Camundongos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Dor Lombar/tratamento farmacológico , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Sirolimo/farmacologia , Dióxido de Silício/química , Dióxido de Silício/farmacologia , Núcleo Pulposo/metabolismo , Inflamação/tratamento farmacológico , Citocinas/metabolismo , Biomimética/métodos , Modelos Animais de Doenças , Fator de Crescimento Neural/metabolismo , Células RAW 264.7
8.
J Nanobiotechnology ; 22(1): 617, 2024 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-39395991

RESUMO

BACKGROUND: Tomato (Solanum lycopersicum L.) production is severely threatened by bacterial wilt, caused by the phytopathogenic bacterium Ralstonia solanacearum. Recently, nano-enabled strategies have shown tremendous potential in crop disease management. OBJECTIVES: This study investigates the efficacy of biogenic nanoformulations (BNFs), comprising biogenic silica nanoparticles (SiNPs) and melatonin (MT), in controlling bacterial wilt in tomato. METHODS: SiNPs were synthesized using Zizania latifolia leaves extract. Further, MT containing BNFs were synthesized through the one-pot approach. Nanomaterials were characterized using standard characterization techniques. Greenhouse disease assays were conducted to assess the impact of SiNPs and BNFs on tomato plant immunity and resistance to bacterial wilt. RESULTS: The SiNPs and BNFs exhibited a spherical morphology, with particle sizes ranging from 13.02 nm to 22.33 nm for the SiNPs and 17.63 nm to 21.79 nm for the BNFs, indicating a relatively uniform size distribution and consistent shape across both materials. Greenhouse experiments revealed that soil application of BNFs outperformed SiNPs, significantly enhancing plant immunity and reducing bacterial wilt incidence by 78.29% in tomato plants by maintaining oxidative stress homeostasis via increasing the activities of antioxidant enzymes such as superoxide dismutase (31.81%), peroxidase (32.9%), catalase (32.65%), and ascorbate peroxidase (47.37%) compared to untreated infected plants. Additionally, BNFs induced disease resistance by enhancing the production of salicylic acid and activating defense-related genes (e.g., SlPAL1, SlICS1, SlNPR1, SlEDS, SlPD4, and SlSARD1) involved in phytohormones signaling in infected tomato plants. High-throughput 16 S rRNA sequencing revealed that BNFs promoted growth of beneficial rhizosphere bacteria (Gemmatimonadaceae, Ramlibacter, Microscillaceae, Anaerolineaceae, Chloroplast and Phormidium) in both healthy and diseased plants, while suppressing R. solanacearum abundance in infected plants. CONCLUSION: Overall, these findings suggest that BNFs offer a more promising and sustainable approach for managing bacterial wilt disease in tomato plants.


Assuntos
Melatonina , Nanopartículas , Doenças das Plantas , Ralstonia solanacearum , Rizosfera , Dióxido de Silício , Solanum lycopersicum , Solanum lycopersicum/microbiologia , Ralstonia solanacearum/efeitos dos fármacos , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Nanopartículas/química , Dióxido de Silício/química , Dióxido de Silício/farmacologia , Melatonina/farmacologia , Resistência à Doença/efeitos dos fármacos , Imunidade Vegetal/efeitos dos fármacos , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/química , Transdução de Sinais/efeitos dos fármacos , Folhas de Planta/química , Folhas de Planta/microbiologia
9.
Ecotoxicol Environ Saf ; 272: 116050, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38325272

RESUMO

Silica nanoparticles (SiNPs) are widely used in the biomedical field and can enter the central nervous system through the blood-brain barrier, causing damage to hippocampal neurons. However, the specific mechanism remains unclear. In this experiment, HT22 cells were selected as the experimental model in vitro, and the survival rate of cells under the action of SiNPs was detected by MTT method, reactive oxygen species (ROS), lactate dehydrogenase (LDH), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and adenosine triphosphate (ATP) were tested by the kit, the ultrastructure of the cells was observed by transmission electron microscope, membrane potential (MMP), calcium ion (Ca2+) and apoptosis rate were measured by flow cytometry, and the expressions of mitochondrial functional protein, mitochondrial dynein, mitochondrial autophagy protein as well as apoptosis related protein were detected by Western blot. The results showed that cell survival rate, SOD, CAT, GSH-Px, ATP and MMP gradually decreased with the increase of SiNPs concentration, while intracellular ROS, Ca2+, LDH and apoptosis rate increased with the increase of SiNPs concentration. In total cellular proteins,the expressions of mitochondrial functional proteins VDAC and UCP2 gradually increased, the expression of mitochondrial dynamic related protein DRP1 increased while the expressions of OPA1 and Mfn2 decreased. The expressions of mitophagy related proteins PINK1, Parkin and LC3Ⅱ/LC3Ⅰ increased and P62 gradually decreased, as well as the expressions of apoptosis related proteins Apaf-1, Cleaved-Caspase-3, Caspase-3, Caspase-9, Bax and Cyt-C. In mitochondrial proteins, the expressions of mitochondrial dynamic related proteins DRP1 and p-DRP1 were increased, while the expressions of OPA1 and Mfn2 were decreased. Expressions of mitochondrial autophagy associated proteins PINK1, Parkin, LC3II/LC3I increased, P62 decreased gradually, as well as the expressions of apoptosis related proteins Cleaved-Caspase-3, Caspase-3, and Caspase-9 increased, and Cyt-C expressions decreased. To further demonstrate the role of ROS and DRP1 in HT22 cell apoptosis induced by SiNPs, we selected the ROS inhibitor N-Acetylcysteine (NAC) and Dynamin-related protein 1 (DRP1) inhibitor Mdivi-1. The experimental results indicated that the above effects were remarkably improved after the use of inhibitors, further confirming that SiNPs induce the production of ROS in cells, activate DRP1, cause excessive mitochondrial division, induce mitophagy, destroy mitochondrial function and eventually lead to apoptosis.


Assuntos
Dinaminas , Mitofagia , Nanopartículas , Dióxido de Silício , Trifosfato de Adenosina , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Caspase 3/metabolismo , Caspase 9/metabolismo , Dinaminas/metabolismo , Nanopartículas/toxicidade , Proteínas Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Dióxido de Silício/farmacologia , Superóxido Dismutase/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Camundongos , Linhagem Celular Tumoral
10.
Foodborne Pathog Dis ; 21(3): 183-193, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37917090

RESUMO

Rice (Oryza sativa) is a major cereal crop that balances the food demand of the worldwide population. The crop quality drops daily due to their exposure to biotic and abiotic stresses, especially pathogens. It needs to be improved to maintain the consumption level to cope with increasing population demands for food. The current study was designed to analyze the comparison of the effects of green synthesis approaches on pathogens associated with rice seeds. In this study, essential oils were extracted from Cymbopogon citratus, Thymus vulgaris, and Origanum vulgaris medicinal plants and used as fungicides on fungal strains of Aspergillus spp. T. vulgaris effectively controlled the growth of Aspergillus niger, Aspergillus flavus, and Aspergillus terreus as compared with O. vulgaris and Cymbopogon. Further, silica nanoparticles (SiNPs) were synthesized from rice husk to evaluate their antifungal activities. SiNPs were characterized by ultraviolet-visible spectroscopy with a broad peak at 281.62 nm. Fourier-transform infrared spectroscopy spectrum confirms the presence of Si-H, Si-OH, and Si-O-Si bonds functional groups, and SiO4 tetrahedral coordination unit. X-ray diffraction pattern describes the crystalline structure with a sharp peak at 2θ = 22°. Scanning electron microscopy and energy-dispersive spectroscopy confirmed the spherical shape, size 70-115 nm, and elemental composition with pure silica contents. SiNPs showed no significant antifungal activity against Aspergillus strains. Moreover, Trichoderma was isolated from the rhizosphere of rice fields and showed a surprising antifungal effect against A. terreus, A. niger, and A. flavus. The current study successfully revealed environment-friendly and cost-effective green synthesizing approaches for analyzing biocontrol potential against rice seed-related Aspergillus spp. They will also help to improve pathogen control strategies in other cereals.


Assuntos
Antifúngicos , Oryza , Antifúngicos/farmacologia , Antifúngicos/química , Aspergillus flavus , Sementes , Dióxido de Silício/farmacologia
11.
Molecules ; 29(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38276616

RESUMO

Silicosis is a complex occupational disease without recognized effective treatment. Celastrol, a natural product, has shown antioxidant, anti-inflammatory, and anti-fibrotic activities, but the narrow therapeutic window and high toxicity severely limit its clinical application. Through structural optimization, we have identified a highly efficient and low-toxicity celastrol derivative, CEL-07. In this study, we systematically investigated the therapeutic potential and underlying mechanisms of CEL-07 in silicosis fibrosis. By constructing a silicosis mouse model and analyzing with HE, Masson, Sirius Red, and immunohistochemical staining, CEL-07 significantly prevented the progress of inflammation and fibrosis, and it effectively improved the lung respiratory function of silicosis mice. Additionally, CEL-07 markedly suppressed the expression of inflammatory factors (IL-6, IL-1α, TNF-α, and TNF-ß) and fibrotic factors (α-SMA, collagen I, and collagen III), and promoted apoptosis of fibroblasts by increasing ROS accumulation. Moreover, bioinformatics analysis combined with experimental validation revealed that CEL-07 inhibited the pathways associated with inflammation (PI3K-AKT and JAK2-STAT3) and the expression of apoptosis-related proteins. Overall, these results suggest that CEL-07 may serve as a potential candidate for the treatment of silicosis.


Assuntos
Triterpenos Pentacíclicos , Dióxido de Silício , Silicose , Camundongos , Animais , Espécies Reativas de Oxigênio/farmacologia , Dióxido de Silício/farmacologia , Fosfatidilinositol 3-Quinases , Silicose/tratamento farmacológico , Silicose/metabolismo , Silicose/prevenção & controle , Fibrose , Colágeno/farmacologia , Inflamação , Apoptose , Fibroblastos
12.
J Biol Chem ; 298(1): 101459, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34864055

RESUMO

Respiratory silicosis is a preventable occupational disease that develops secondary to the aspiration of crystalline silicon dioxide (silica) into the lungs, activation of the NLRP3 inflammasome, and IL-1ß production. Cathepsin Z has been associated with the development of inflammation and IL-1ß production; however, the mechanism of how cathepsin Z leads to IL-1ß production is unknown. Here, the requirement for cathepsin Z in silicosis was determined using WT mice and mice deficient in cathepsin Z. The activation of the NLRP3 inflammasome in macrophages was studied using WT and cathepsin Z-deficient bone marrow-derived murine dendritic cells and the human monocytic cell line THP-1. The cells were activated with silica, and IL-1ß release was determined using enzyme-linked immunosorbent assay or IL-1ß bioassays. The relative contribution of the active domain or integrin-binding domain of cathepsin Z was studied using recombinant cathepsin Z constructs and the α5 integrin neutralizing antibody. We report that the lysosomal cysteine protease cathepsin Z potentiates the development of inflammation associated with respiratory silicosis by augmenting NLRP3 inflammasome-derived IL-1ß expression in response to silica. The secreted cathepsin Z functions nonproteolytically via the internal integrin-binding domain to impact caspase-1 activation and the production of active IL-1ß through integrin α5 without affecting the transcription levels of NLRP3 inflammasome components. This work reveals a regulatory pathway for the NLRP3 inflammasome that occurs in an outside-in fashion and provides a link between extracellular cathepsin Z and inflammation. Furthermore, it reveals a level of NLRP3 inflammasome regulation that has previously only been found downstream of extracellular pathogens.


Assuntos
Catepsina Z , Inflamassomos , Animais , Catepsina Z/metabolismo , Inflamassomos/metabolismo , Inflamação/metabolismo , Integrina alfa5/metabolismo , Interleucina-1beta/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Dióxido de Silício/farmacologia , Silicose/metabolismo
13.
BMC Plant Biol ; 23(1): 329, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37340375

RESUMO

BACKGROUND: Most nanoparticles (NPs) have a significant impact on the structure and function of the plant photosynthetic apparatus. However, their spectrum of action varies significantly, from beneficial stimulation to toxicity, depending on the type of NPs, the concentration used and plant genotypic diversity. Photosynthetic performance can be assessed through chlorophyll a fluorescence (ChlF) measurements. These data allow to indirectly obtain detailed information about primary light reactions, thylakoid electron transport reactions, dark enzymatic stroma reactions, slow regulatory processes, processes at the pigment level. It makes possible, together with leaf reflectance performance, to evaluate photosynthesis sensitivity to stress stimuli. RESULTS: We investigated effects of different metal and metal(oid) oxide nanoparticles on photosynthesis of oakleaf lettuce seedlings by monitoring the chlorophyll a fluorescence light radiation and reflectance from the leaves. Observations of ChlF parameters and changes in leaf morphology were carried out for 9 days in two-day intervals. Spectrophotometric studies were performed at 9th day. Suspensions of NPs with the following concentrations were used: 6% TiO2, SiO2; 3% CeO2, SnO2, Fe2O3; 0.004% (40 ppm) Ag; 0.002% (20 ppm) Au. Nanoparticles were applied directly on the leaves which caused small symptoms of chlorosis, necrosis and leaf veins deformation, but the plants fully recovered to the initial morphological state at 9th day. Leaf reflectance analysis showed an increase in FRI for SiO2-NPs and CeO2-NPs treatments and ARI2 for Fe2O3, however, WBI and PRI coefficients for the latter nanoparticle were lower than in control. Chlorophyll a fluorescence parameters have changed due to NPs treatment. Fe2O3-NPs caused an increase in Fv/F0, PIABS, ET0/RC, DI0/RC, ABS/RC in different time points in comparison to control, also Ag, Au and SnO2 treatment caused an increase in Fv/F0, PIABS or ET0/RC, respectively. On the other hand, TiO2-NPs caused a decrease in Fv/Fm and Fv/F0 parameters, but an increase in DI0/RC value was observed. SnO2-NPs decreased PIABS, but increased ET0/RC than compared to control. Nanoparticles affected the shape of the O-J-I-P curve in slight manner, however, further analyses showed unfavourable changes within the PSII antenna, manifested by a slowdown in the transport of electrons between the Chl molecules of the light-harvesting complex II and the active center of PSII due to NPs application. CONCLUSION: Changes in ChlF parameters and leaf reflectance values clearly proved the significant influence of NPs on the functioning of the photosynthetic apparatus, especially right after NPs application. The nature of these changes was strictly depended on the type of nanoparticles and sometimes underwent very significant changes over time. The greatest changes in ChlF parameters were caused by Fe2O3 nanoparticles, followed by TiO2-NPs. After slight response of O-J-I-P curves to treatment of the plants with NPs the course of the light phase of photosynthesis stabilized and at 9th day were comparable to the control curve.


Assuntos
Clorofila , Nanopartículas , Clorofila A , Lactuca , Óxidos/farmacologia , Fluorescência , Dióxido de Silício/farmacologia , Complexo de Proteína do Fotossistema II , Folhas de Planta/fisiologia
14.
BMC Plant Biol ; 23(1): 504, 2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37864143

RESUMO

BACKGROUND: Silicon nanoparticles (SiO2-NPs) play a crucial role in plants mitigating abiotic stress. However, the regulatory mechanism of SiO2-NPs in response to multiple stress remains unclear. The objectives of this study were to reveal the regulatory mechanism of SiO2-NPs on the growth and photosynthesis in cotton seedlings under salt and low-temperature dual stress. It will provide a theoretical basis for perfecting the mechanism of crop resistance and developing the technology of cotton seedling preservation and stable yield in arid and high salt areas. RESULTS: The results showed that the salt and low-temperature dual stress markedly decreased the plant height, leaf area, and aboveground biomass of cotton seedlings by 9.58%, 15.76%, and 39.80%, respectively. While SiO2-NPs alleviated the damage of the dual stress to cotton seedling growth. In addition to reduced intercellular CO2 concentration, SiO2-NPs significantly improved the photosynthetic rate, stomatal conductance, and transpiration rate of cotton seedling leaves. Additionally, stomatal length, stomatal width, and stomatal density increased with the increase in SiO2-NPs concentration. Notably, SiO2-NPs not only enhanced chlorophyll a, chlorophyll b, and total chlorophyll content, but also slowed the decrease of maximum photochemical efficiency, actual photochemical efficiency, photochemical quenching of variable chlorophyll, and the increase in non-photochemical quenching. Moreover, SiO2-NPs enhanced the activities of ribulose-1,5-bisphosphate carboxylase/oxygenase and phosphoenolpyruvate carboxylase, improved leaf water potential, and decreased abscisic acid and malondialdehyde content. All the parameters obtained the optimal effects at a SiO2-NPs concentration of 100 mg L- 1, and significantly increased the plant height, leaf area, and aboveground biomass by 7.68%, 5.37%, and 43.00%, respectively. Furthermore, significant correlation relationships were observed between photosynthetic rate and stomatal conductance, stomatal length, stomatal width, stomatal density, chlorophyll content, maximum photochemical efficiency, actual photochemical efficiency, photochemical quenching of variable chlorophyll, and Rubisco activity. CONCLUSION: The results suggested that the SiO2-NPs improved the growth and photosynthesis of cotton seedlings might mainly result from regulating the stomatal state, improving the light energy utilization efficiency and electron transport activity of PSII reaction center, and inducing the increase of Rubisco activity to enhance carbon assimilation under the salt and low-temperature dual stress.


Assuntos
Plântula , Silício , Plântula/fisiologia , Silício/farmacologia , Temperatura , Clorofila A , Ribulose-Bifosfato Carboxilase , Dióxido de Silício/farmacologia , Fotossíntese , Clorofila , Cloreto de Sódio/farmacologia , Folhas de Planta/fisiologia
15.
Arch Microbiol ; 205(4): 109, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36884153

RESUMO

The present study aimed to prepare and characterize vancomycin-loaded mesoporous silica nanoparticles (Van-MSNs) to detect inhibitory effects on the planktonic and biofilm forms of methicillin-resistant Staphylococcus aureus (MRSA) isolates, and study the biocompatibility and toxicity of Van-MSNs in vitro as well as antibacterial activity of Van-MSNs against Gram-negative bacteria. The inhibitory effects of Van-MSNs were investigated on MRSA using the determination of minimum inhibitory (MIC) and minimum biofilm-inhibitory concentrations (MBIC) as well as the effect on bacterial attachment. Biocompatibility was studied by examining the effect of Van-MSNs on the lysis and sedimentation rate of red blood cells (RBC). The interaction of Van-MSNs with human blood plasma was detected by the SDS-PAGE approach. The cytotoxic effect of the Van-MSNs on human bone marrow mesenchymal stem cells (hBM-MSCs) was evaluated by the MTT assay. The antibacterial effects of vancomycin and Van-MSNs on Gram-negative bacteria were also investigated using MIC determination using the broth microdilution method. Furthermore, bacteria outer membrane (OM) permeabilization was determined. Van-MSNs showed inhibitory effects on planktonic and biofilm forms of bacteria on all isolates at levels lower than MICs and MBICs of free vancomycin, but the antibiofilm effect of Van-MSNs was not significant. However, Van-MSNs did not affect bacterial attachment to surfaces. Van-loaded MSNs did not show a considerable effect on the lysis and sedimentation of RBC. A low interaction of Van-MSNs was detected with albumin (66.5 kDa). The hBM-MSCs viability in exposure to different levels of Van-MSNs was 91-100%. MICs of ≥ 128 µg/mL were observed for vancomycin against all Gram-negative bacteria. In contrast, Van-MSNs exhibited modest antibacterial activity inhibiting the tested Gram-negative bacterial strains, at concentrations of ≤ 16 µg/mL. Van-MSNs increased the OM permeability of bacteria that can increase the antimicrobial effect of vancomycin. According to our findings, Van-loaded MSNs have low cytotoxicity, desirable biocompatibility, and antibacterial effects and can be an option for the battle against planktonic MRSA.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Nanopartículas , Humanos , Vancomicina/farmacologia , Dióxido de Silício/farmacologia , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Bactérias Gram-Negativas , Bactérias , Biofilmes
16.
Langmuir ; 39(45): 16090-16100, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37921536

RESUMO

Various therapeutic strategies have been developed to address bone diseases caused by aging society and skeletal defects caused by trauma or accidental events. One such approach is using bone fillers, such as hydroxyapatite (HA) and bioactive glasses. Although they have provided effective osteogenesis, infection and inflammation due to the surgical procedure and uncontrolled ion release can hinder the efficiency of bone regeneration. In response to these challenges, immobilizing a neutral metal-phenolic network on the surface of osteoconductive nanoparticles would be the master key to achieving a gradual, controlled release during the mineralization period and reducing infection and inflammation through biological pathways. In this regard, a mesoporous silica nanocomposite modified by an HA precursor was synthesized to enhance bone regeneration. In addition, to improve the therapeutic effects, its surface was wrapped with a magnesium-phenolic network made from pomegranate extract, which can simultaneously produce anti-inflammatory and antibacterial effects. The obtained core-shell nanocomposite was characterized by its physicochemical properties, biocompatibility, and bioactivity. The in vitro studies revealed that the synthesized nanocomposite exhibits higher osteogenic activity than the control groups, as confirmed by alizarin red staining. Moreover, the nanocomposite maintained low toxicity as measured by the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay and increased antibacterial activity against Staphylococcus aureus and Escherichia coli compared with the control groups. Therefore, this research presents a promising strategy for bone regeneration, combining the advantages of mesoporous silica nanocomposite modified by an HA precursor with the beneficial effects of a magnesium-phenolic network.


Assuntos
Durapatita , Magnésio , Humanos , Durapatita/farmacologia , Durapatita/química , Dióxido de Silício/farmacologia , Osteogênese , Regeneração Óssea , Antibacterianos/toxicidade , Antibacterianos/química , Inflamação
17.
J Immunol ; 207(6): 1627-1640, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34433619

RESUMO

Silicosis is a lethal pneumoconiosis for which no therapy is available. Silicosis is a global threat, and more than 2.2 million people per year are exposed to silica in the United States. The initial response to silica is mediated by innate immunity. Phagocytosis of silica particles by macrophages is followed by recruitment of mitochondria to phagosomes, generation of mitochondrial reactive oxygen species, and cytokine (IL-1ß, TNF-α, IFN-ß) release. In contrast with LPS, the metabolic remodeling of silica-exposed macrophages is unclear. This study contrasts mitochondrial and metabolic alterations induced by LPS and silica on macrophages and correlates them with macrophage viability and cytokine production, which are central to the pathogenesis of silicosis. Using high-resolution respirometer and liquid chromatography-high-resolution mass spectrometry, we determined the effects of silica and LPS on mitochondrial respiration and determined changes in central carbon metabolism of murine macrophage cell lines RAW 264.7 and IC-21. We show that silica induces metabolic reprogramming of macrophages. Silica, as well as LPS, enhances glucose uptake and increases aerobic glycolysis in macrophages. In contrast with LPS, silica affects mitochondria respiration, reducing complex I and enhancing complex II activity, to sustain cell viability. These mitochondrial alterations are associated in silica, but not in LPS-exposed macrophages, with reductions of tricarboxylic acid cycle intermediates, including succinate, itaconate, glutamate, and glutamine. Furthermore, in contrast with LPS, these silica-induced metabolic adaptations do not correlate with IL-1ß or TNF-α production, but with the suppressed release of IFN-ß. Our data highlight the importance of complex II activity and tricarboxylic acid cycle remodeling to macrophage survival and cytokine-mediated inflammation in silicosis.


Assuntos
Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Dióxido de Silício/química , Dióxido de Silício/farmacologia , Silicose/imunologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Ciclo do Ácido Cítrico/efeitos dos fármacos , Cristalização , Citocinas/biossíntese , Inflamação/imunologia , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fagocitose/efeitos dos fármacos , Fagossomos/metabolismo , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Silicose/metabolismo
18.
Proc Natl Acad Sci U S A ; 117(1): 285-291, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31871161

RESUMO

The impact of ultrasmall nanoparticles (<10-nm diameter) on the immune system is poorly understood. Recently, ultrasmall silica nanoparticles (USSN), which have gained increasing attention for therapeutic applications, were shown to stimulate T lymphocytes directly and at relatively low-exposure doses. Delineating underlying mechanisms and associated cell signaling will hasten therapeutic translation and is reported herein. Using competitive binding assays and molecular modeling, we established that the T cell receptor (TCR):CD3 complex is required for USSN-induced T cell activation, and that direct receptor complex-particle interactions are permitted both sterically and electrostatically. Activation is not limited to αß TCR-bearing T cells since those with γδ TCR showed similar responses, implying that USSN mediate their effect by binding to extracellular domains of the flanking CD3 regions of the TCR complex. We confirmed that USSN initiated the signaling pathway immediately downstream of the TCR with rapid phosphorylation of both ζ-chain-associated protein 70 and linker for activation of T cells protein. However, T cell proliferation or IL-2 secretion were only triggered by USSN when costimulatory anti-CD28 or phorbate esters were present, demonstrating that the specific impact of USSN is in initiation of the primary, nuclear factor of activated T cells-pathway signaling from the TCR complex. Hence, we have established that USSN are partial agonists for the TCR complex because of induction of the primary T cell activation signal. Their ability to bind the TCR complex rapidly, and then to dissolve into benign orthosilicic acid, makes them an appealing option for therapies targeted at transient TCR:CD3 receptor binding.


Assuntos
Ativação Linfocitária/efeitos dos fármacos , Nanopartículas/química , Complexo Receptor-CD3 de Antígeno de Linfócitos T/efeitos dos fármacos , Complexo Receptor-CD3 de Antígeno de Linfócitos T/metabolismo , Dióxido de Silício/química , Dióxido de Silício/farmacologia , Antígenos CD28/metabolismo , Complexo CD3/química , Complexo CD3/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Interleucina-2/metabolismo , Modelos Moleculares , Fosforilação , Complexo Receptor-CD3 de Antígeno de Linfócitos T/química , Complexo Receptor-CD3 de Antígeno de Linfócitos T/genética , Transdução de Sinais/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo
19.
Int Endod J ; 56(2): 289-303, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36314859

RESUMO

AIM: To avoid root canal recontamination and endodontic treatment failure, endodontic sealers with antibacterial activity could be an alternative. Silver nanoparticles have antibacterial activity and this study aimed to synthesize Ag@SiO2 nanoparticles, incorporate them into an experimental endodontic resin sealer and evaluate their influence on physicochemical and biological properties. METHODOLOGY: Ag@SiO2 nanoparticles were produced using the sol-gel process, based on the Stöber method. The particles were characterized in terms of their chemical structure by Fourier transform-infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), UV-Vis spectral analysis, scanning electron microscopy, and transmission electron microscopy, where the particle morphology and diameter were analysed. A dual-cured experimental endodontic resin sealer was formulated using 70 wt% UDMA, 15 wt% GDMA, and 15 wt% BisEMA. The photoinitiators were added separately in two pastes. The Ag@SiO2 nanoparticles were incorporated into the endodontic sealer at the concentrations of 2.5 wt%, 5 wt%, and 10 wt%, and a control group without nanoparticles was also formulated. The endodontic sealers were evaluated for their flow, film thickness, degree of conversion, softening in solvent, radiopacity, cytotoxicity and antibacterial activity immediately and after 9 months in water storage. RESULTS: Silver was detected in the chemical characterization of Ag@SiO2 that presented a spheric regular shape and average 683.51 nm ± 93.58 diameter. Sealers presented adequate flow and film thickness while radiopacity values were below the ones required by ISO 6876. All groups underwent softening after immersion in a solvent. The 10 wt% groups showed a higher loss of subsurface hardness (∆KHN%). No reduction in cell viability was observed. Enterococcus faecalis viability in biofilm was reduced in 10 wt% groups after 24 h and 9 months. CONCLUSION: The addition of 10 wt% Ag@SiO2 reduced E. faecalis viability at immediate and longitudinal analysis while maintaining the physicochemical properties of developed sealers.


Assuntos
Nanopartículas Metálicas , Materiais Restauradores do Canal Radicular , Materiais Restauradores do Canal Radicular/farmacologia , Materiais Restauradores do Canal Radicular/química , Prata/farmacologia , Dióxido de Silício/farmacologia , Antibacterianos/farmacologia , Solventes , Teste de Materiais , Resinas Epóxi/farmacologia , Resinas Epóxi/química
20.
Pestic Biochem Physiol ; 194: 105524, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532341

RESUMO

Silicon is known for mitigating the biotic and abiotic stresses of crop plants. Many studies have proved beneficial effects of bulk silicon against biotic stresses in general and insect pests in particular. However, the beneficial effects of silica nanoparticles in crop plants against insect pests were barely studied and reported. By virtue of its physical and chemical nature, silica nanoparticles offer various advantages over bulk silicon sources for its applications in the field of insect pest management. Silica nanoparticles can act as insecticide for killing target insect pest or it can act as a carrier of insecticide molecule for its sustained release. Silica nanoparticles can improve plant resistance to insect pests and also aid in attracting natural enemies via enhanced volatile compounds emission. Silica nanoparticles are safe to use and eco-friendly in nature in comparison to synthetic pesticides. This review provides insights into the applications of silica nanoparticles in insect pest management along with discussion on its synthesis, side effects and future course of action.


Assuntos
Inseticidas , Nanopartículas , Animais , Inseticidas/farmacologia , Dióxido de Silício/farmacologia , Silício , Insetos , Controle de Pragas , Plantas , Controle Biológico de Vetores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA