Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51.425
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 180(6): 1198-1211.e19, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32200801

RESUMO

It has generally proven challenging to produce functional ß cells in vitro. Here, we describe a previously unidentified protein C receptor positive (Procr+) cell population in adult mouse pancreas through single-cell RNA sequencing (scRNA-seq). The cells reside in islets, do not express differentiation markers, and feature epithelial-to-mesenchymal transition characteristics. By genetic lineage tracing, Procr+ islet cells undergo clonal expansion and generate all four endocrine cell types during adult homeostasis. Sorted Procr+ cells, representing ∼1% of islet cells, can robustly form islet-like organoids when cultured at clonal density. Exponential expansion can be maintained over long periods by serial passaging, while differentiation can be induced at any time point in culture. ß cells dominate in differentiated islet organoids, while α, δ, and PP cells occur at lower frequencies. The organoids are glucose-responsive and insulin-secreting. Upon transplantation in diabetic mice, these organoids reverse disease. These findings demonstrate that the adult mouse pancreatic islet contains a population of Procr+ endocrine progenitors.


Assuntos
Técnicas de Cultura de Células/métodos , Receptor de Proteína C Endotelial/metabolismo , Ilhotas Pancreáticas/citologia , Animais , Diferenciação Celular/fisiologia , Linhagem Celular , Células Cultivadas , Diabetes Mellitus Experimental/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Feminino , Glucose/metabolismo , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/citologia , Ilhotas Pancreáticas/crescimento & desenvolvimento , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Nus , Organoides/crescimento & desenvolvimento , Organoides/metabolismo , Pâncreas/citologia , Pâncreas/metabolismo , Proteína C/metabolismo , Células-Tronco/citologia
2.
Cell ; 173(5): 1135-1149.e15, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29754817

RESUMO

A primary cause of disease progression in type 2 diabetes (T2D) is ß cell dysfunction due to inflammatory stress and insulin resistance. However, preventing ß cell exhaustion under diabetic conditions is a major therapeutic challenge. Here, we identify the vitamin D receptor (VDR) as a key modulator of inflammation and ß cell survival. Alternative recognition of an acetylated lysine in VDR by bromodomain proteins BRD7 and BRD9 directs association to PBAF and BAF chromatin remodeling complexes, respectively. Mechanistically, ligand promotes VDR association with PBAF to effect genome-wide changes in chromatin accessibility and enhancer landscape, resulting in an anti-inflammatory response. Importantly, pharmacological inhibition of BRD9 promotes PBAF-VDR association to restore ß cell function and ameliorate hyperglycemia in murine T2D models. These studies reveal an unrecognized VDR-dependent transcriptional program underpinning ß cell survival and identifies the VDR:PBAF/BAF association as a potential therapeutic target for T2D.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Receptores de Calcitriol/metabolismo , Fatores de Transcrição/metabolismo , Vitamina D/farmacologia , Animais , Calcitriol/análogos & derivados , Calcitriol/farmacologia , Montagem e Desmontagem da Cromatina , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Humanos , Insulina/sangue , Insulina/metabolismo , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Mutagênese Sítio-Dirigida , Fosforilação Oxidativa/efeitos dos fármacos , Ligação Proteica , Interferência de RNA , RNA Guia de Cinetoplastídeos/genética , RNA Interferente Pequeno/metabolismo , Receptores de Calcitriol/antagonistas & inibidores , Receptores de Calcitriol/genética , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Transcrição Gênica/efeitos dos fármacos
3.
Cell ; 168(1-2): 7-9, 2017 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-28086099

RESUMO

GABA and the antimalarial drug artemether, which acts on GABAergic pathways, can drive pancreatic cells with an α-cell phenotype toward a ß-cell-like phenotype. As reported in two papers (Ben-Othman et al. and Li et al.), these drugs can stimulate the production of sufficient numbers of new ß-like cells to reverse severe diabetes in mice.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Células Secretoras de Insulina/metabolismo , Animais , Camundongos , Regeneração , Transdução de Sinais , Ácido gama-Aminobutírico/metabolismo
4.
Immunity ; 54(4): 721-736.e10, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33725478

RESUMO

Hyperglycemia and hyperlipidemia are often observed in individuals with type II diabetes (T2D) and related mouse models. One dysmetabolic biochemical consequence is the non-enzymatic reaction between sugars, lipids, and proteins, favoring protein glycation, glycoxidation, and lipoxidation. Here, we identified oxidative alterations in key components of the major histocompatibility complex (MHC) class II molecule antigen processing and presentation machinery in vivo under conditions of hyperglycemia-induced metabolic stress. These modifications were linked to epitope-specific changes in endosomal processing efficiency, MHC class II-peptide binding, and DM editing activity. Moreover, we observed some quantitative and qualitative changes in the MHC class II immunopeptidome of Ob/Ob mice on a high-fat diet compared with controls, including changes in the presentation of an apolipoprotein B100 peptide associated previously with T2D and metabolic syndrome-related clinical complications. These findings highlight a link between glycation reactions and altered MHC class II antigen presentation that may contribute to T2D complications.


Assuntos
Apresentação de Antígeno/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Estresse Fisiológico/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Tipo 2/imunologia , Modelos Animais de Doenças , Epitopos/imunologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos/imunologia , Ligação Proteica/imunologia
5.
Nature ; 628(8008): 604-611, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538784

RESUMO

The immune system has a critical role in orchestrating tissue healing. As a result, regenerative strategies that control immune components have proved effective1,2. This is particularly relevant when immune dysregulation that results from conditions such as diabetes or advanced age impairs tissue healing following injury2,3. Nociceptive sensory neurons have a crucial role as immunoregulators and exert both protective and harmful effects depending on the context4-12. However, how neuro-immune interactions affect tissue repair and regeneration following acute injury is unclear. Here we show that ablation of the NaV1.8 nociceptor impairs skin wound repair and muscle regeneration after acute tissue injury. Nociceptor endings grow into injured skin and muscle tissues and signal to immune cells through the neuropeptide calcitonin gene-related peptide (CGRP) during the healing process. CGRP acts via receptor activity-modifying protein 1 (RAMP1) on neutrophils, monocytes and macrophages to inhibit recruitment, accelerate death, enhance efferocytosis and polarize macrophages towards a pro-repair phenotype. The effects of CGRP on neutrophils and macrophages are mediated via thrombospondin-1 release and its subsequent autocrine and/or paracrine effects. In mice without nociceptors and diabetic mice with peripheral neuropathies, delivery of an engineered version of CGRP accelerated wound healing and promoted muscle regeneration. Harnessing neuro-immune interactions has potential to treat non-healing tissues in which dysregulated neuro-immune interactions impair tissue healing.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Macrófagos , Neutrófilos , Nociceptores , Cicatrização , Animais , Camundongos , Comunicação Autócrina , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Eferocitose , Macrófagos/citologia , Macrófagos/metabolismo , Monócitos/citologia , Monócitos/metabolismo , Músculo Esquelético , Canal de Sódio Disparado por Voltagem NAV1.8/deficiência , Canal de Sódio Disparado por Voltagem NAV1.8/genética , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo , Neutrófilos/citologia , Neutrófilos/metabolismo , Nociceptores/metabolismo , Comunicação Parácrina , Doenças do Sistema Nervoso Periférico/complicações , Proteína 1 Modificadora da Atividade de Receptores/metabolismo , Regeneração/efeitos dos fármacos , Pele , Trombospondina 1/metabolismo , Cicatrização/efeitos dos fármacos , Cicatrização/imunologia , Humanos , Masculino , Feminino
6.
Nat Immunol ; 18(7): 744-752, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28553952

RESUMO

The single-nucleotide polymorphism rs1990760 in the gene encoding the cytosolic viral sensor IFIH1 results in an amino-acid change (A946T; IFIH1T946) that is associated with multiple autoimmune diseases. The effect of this polymorphism on both viral sensing and autoimmune pathogenesis remains poorly understood. Here we found that human peripheral blood mononuclear cells (PBMCs) and cell lines expressing the risk variant IFIH1T946 exhibited heightened basal and ligand-triggered production of type I interferons. Consistent with those findings, mice with a knock-in mutation encoding IFIH1T946 displayed enhanced basal expression of type I interferons, survived a lethal viral challenge and exhibited increased penetrance in autoimmune models, including a combinatorial effect with other risk variants. Furthermore, IFIH1T946 mice manifested an embryonic survival defect consistent with enhanced responsiveness to RNA self ligands. Together our data support a model wherein the production of type I interferons driven by an autoimmune risk variant and triggered by ligand functions to protect against viral challenge, which probably accounts for its selection within human populations but provides this advantage at the cost of modestly promoting the risk of autoimmunity.


Assuntos
Autoimunidade/genética , Infecções por Cardiovirus/genética , Interferon Tipo I/imunologia , Helicase IFIH1 Induzida por Interferon/genética , Adolescente , Adulto , Animais , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Autoimunidade/imunologia , Southern Blotting , Infecções por Cardiovirus/imunologia , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Vírus da Encefalomiocardite/imunologia , Feminino , Predisposição Genética para Doença , Células HEK293 , Humanos , Immunoblotting , Helicase IFIH1 Induzida por Interferon/imunologia , Masculino , Camundongos , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Viroses/genética , Viroses/imunologia , Adulto Jovem
7.
Nature ; 614(7946): 118-124, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36697822

RESUMO

Diabetes represents a spectrum of disease in which metabolic dysfunction damages multiple organ systems including liver, kidneys and peripheral nerves1,2. Although the onset and progression of these co-morbidities are linked with insulin resistance, hyperglycaemia and dyslipidaemia3-7, aberrant non-essential amino acid (NEAA) metabolism also contributes to the pathogenesis of diabetes8-10. Serine and glycine are closely related NEAAs whose levels are consistently reduced in patients with metabolic syndrome10-14, but the mechanistic drivers and downstream consequences of this metabotype remain unclear. Low systemic serine and glycine are also emerging as a hallmark of macular and peripheral nerve disorders, correlating with impaired visual acuity and peripheral neuropathy15,16. Here we demonstrate that aberrant serine homeostasis drives serine and glycine deficiencies in diabetic mice, which can be diagnosed with a serine tolerance test that quantifies serine uptake and disposal. Mimicking these metabolic alterations in young mice by dietary serine or glycine restriction together with high fat intake markedly accelerates the onset of small fibre neuropathy while reducing adiposity. Normalization of serine by dietary supplementation and mitigation of dyslipidaemia with myriocin both alleviate neuropathy in diabetic mice, linking serine-associated peripheral neuropathy to sphingolipid metabolism. These findings identify systemic serine deficiency and dyslipidaemia as novel risk factors for peripheral neuropathy that may be exploited therapeutically.


Assuntos
Diabetes Mellitus Experimental , Insulina , Metabolismo dos Lipídeos , Doenças do Sistema Nervoso Periférico , Serina , Animais , Camundongos , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Glicina/metabolismo , Insulina/metabolismo , Doenças do Sistema Nervoso Periférico/metabolismo , Serina/metabolismo , Dieta Hiperlipídica , Adiposidade , Esfingolipídeos/metabolismo , Neuropatia de Pequenas Fibras , Dislipidemias
8.
Mol Cell ; 77(5): 1143-1152.e7, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-31866147

RESUMO

In eukaryotes, gene expression is performed by three RNA polymerases that are targeted to promoters by molecular complexes. A unique common factor, the TATA-box binding protein (TBP), is thought to serve as a platform to assemble pre-initiation complexes competent for transcription. Here, we describe a novel molecular mechanism of nutrient regulation of gene transcription by dynamic O-GlcNAcylation of TBP. We show that O-GlcNAcylation at T114 of TBP blocks its interaction with BTAF1, hence the formation of the B-TFIID complex, and its dynamic cycling on and off of DNA. Transcriptomic and metabolomic analyses of TBPT114A CRISPR/Cas9-edited cells showed that loss of O-GlcNAcylation at T114 increases TBP binding to BTAF1 and directly impacts expression of 408 genes. Lack of O-GlcNAcylation at T114 is associated with a striking reprogramming of cellular metabolism induced by a profound modification of the transcriptome, leading to gross alterations in lipid storage.


Assuntos
Glucose/metabolismo , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Proteína de Ligação a TATA-Box/metabolismo , Fator de Transcrição TFIID/metabolismo , Animais , Cromatina/genética , Cromatina/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Regulação da Expressão Gênica , Glicosilação , Células HEK293 , Células HeLa , Humanos , Metabolismo dos Lipídeos/genética , Masculino , Complexos Multiproteicos , Ratos Sprague-Dawley , Transdução de Sinais , Fatores Associados à Proteína de Ligação a TATA/genética , Proteína de Ligação a TATA-Box/genética , Fatores de Tempo , Fator de Transcrição TFIID/genética , Transcrição Gênica , Transcriptoma
9.
Proc Natl Acad Sci U S A ; 121(41): e2320034121, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39348530

RESUMO

Diabetic retinopathy (DR) is a common complication of diabetes characterized by vascular pathology and neuroinflammation. Pentraxin 3 (PTX3) is a soluble pattern recognition molecule that functions at the crossroads between innate immunity, inflammation, and tissue remodeling. DR is known to involve inflammatory pathways, although the potential relevance of PTX3 has not been explored. We found that PTX3 protein levels increased in the retina of diabetic mice. Similarly, evaluation of a publicly available transcriptomic human dataset revealed increased PTX3 expression in DR with diabetic macular edema and proliferative retinopathy, when compared to nondiabetic retinas or diabetic retinas without complications. To further understand the role of PTX3 within DR, we employed the streptozotocin-induced diabetes model in PTX3 knockout mice (PTX3KO), which were followed up for 9 mo to evaluate hallmarks of disease progression. In diabetic PTX3KO mice, we observed decreased reactive gliosis, diminished microglia activation, and reduced vasodegeneration, when compared to diabetic PTX3 wild-type littermates. The decrease in DR-associated pathological features in PTX3KO retinas translated into preserved visual function, as evidenced by improved optokinetic response, restored b-wave amplitude in electroretinograms, and attenuated neurodegeneration. We showed that PTX3 induced an inflammatory phenotype in human retinal macroglia, characterized by GFAP upregulation and increased secretion of IL6 and PAI-1. We confirmed that PTX3 was required for TNF-α-induced reactive gliosis, as PTX3KO retinal explants did not up-regulate GFAP in response to TNF-α. This study reveals a unique role for PTX3 as an enhancer of sterile inflammation in DR, which drives pathogenesis and ultimately visual impairment.


Assuntos
Proteína C-Reativa , Diabetes Mellitus Experimental , Retinopatia Diabética , Camundongos Knockout , Retina , Animais , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Retinopatia Diabética/genética , Retinopatia Diabética/fisiopatologia , Camundongos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Experimental/complicações , Retina/metabolismo , Retina/patologia , Proteína C-Reativa/metabolismo , Proteína C-Reativa/genética , Humanos , Componente Amiloide P Sérico/metabolismo , Componente Amiloide P Sérico/genética , Masculino , Camundongos Endogâmicos C57BL , Inflamação/metabolismo , Inflamação/patologia , Microglia/metabolismo , Microglia/patologia , Edema Macular/metabolismo , Edema Macular/patologia , Edema Macular/genética , Proteínas do Tecido Nervoso
10.
Proc Natl Acad Sci U S A ; 121(22): e2322935121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38771877

RESUMO

Current treatment options for diabetic wounds face challenges due to low efficacy, as well as potential side effects and the necessity for repetitive treatments. To address these issues, we report a formulation utilizing trisulfide-derived lipid nanoparticle (TS LNP)-mRNA therapy to accelerate diabetic wound healing by repairing and reprogramming the microenvironment of the wounds. A library of reactive oxygen species (ROS)-responsive TS LNPs was designed and developed to encapsulate interleukin-4 (IL4) mRNA. TS2-IL4 LNP-mRNA effectively scavenges excess ROS at the wound site and induces the expression of IL4 in macrophages, promoting the polarization from the proinflammatory M1 to the anti-inflammatory M2 phenotype at the wound site. In a diabetic wound model of db/db mice, treatment with this formulation significantly accelerates wound healing by enhancing the formation of an intact epidermis, angiogenesis, and myofibroblasts. Overall, this TS LNP-mRNA platform not only provides a safe, effective, and convenient therapeutic strategy for diabetic wound healing but also holds great potential for clinical translation in both acute and chronic wound care.


Assuntos
Nanopartículas , RNA Mensageiro , Espécies Reativas de Oxigênio , Cicatrização , Cicatrização/efeitos dos fármacos , Animais , Nanopartículas/química , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Interleucina-4/metabolismo , Diabetes Mellitus Experimental , Humanos , Lipídeos/química , Modelos Animais de Doenças , Masculino , Lipossomos
11.
EMBO J ; 41(4): e106825, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35023164

RESUMO

Despite extensive analysis of pRB phosphorylation in vitro, how this modification influences development and homeostasis in vivo is unclear. Here, we show that homozygous Rb∆K4 and Rb∆K7 knock-in mice, in which either four or all seven phosphorylation sites in the C-terminal region of pRb, respectively, have been abolished by Ser/Thr-to-Ala substitutions, undergo normal embryogenesis and early development, notwithstanding suppressed phosphorylation of additional upstream sites. Whereas Rb∆K4 mice exhibit telomere attrition but no other abnormalities, Rb∆K7 mice are smaller and display additional hallmarks of premature aging including infertility, kyphosis, and diabetes, indicating an accumulative effect of blocking pRb phosphorylation. Diabetes in Rb∆K7 mice is insulin-sensitive and associated with failure of quiescent pancreatic ß-cells to re-enter the cell cycle in response to mitogens, resulting in induction of DNA damage response (DDR), senescence-associated secretory phenotype (SASP), and reduced pancreatic islet mass and circulating insulin level. Pre-treatment with the epigenetic regulator vitamin C reduces DDR, increases cell cycle re-entry, improves islet morphology, and attenuates diabetes. These results have direct implications for cell cycle regulation, CDK-inhibitor therapeutics, diabetes, and longevity.


Assuntos
Envelhecimento/fisiologia , Ácido Ascórbico/farmacologia , Diabetes Mellitus Experimental/prevenção & controle , Proteína do Retinoblastoma/metabolismo , Animais , Senescência Celular/efeitos dos fármacos , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Fator de Transcrição E2F1/metabolismo , Desenvolvimento Embrionário/genética , Feminino , Fibroblastos/efeitos dos fármacos , Técnicas de Introdução de Genes , Células Secretoras de Insulina/patologia , Camundongos , Fosforilação , Gravidez , Proteína do Retinoblastoma/genética , Telômero/genética
12.
PLoS Pathog ; 20(5): e1012148, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38728367

RESUMO

Previously, we found that Mycobacterium tuberculosis (Mtb) infection in type 2 diabetes mellitus (T2DM) mice enhances inflammatory cytokine production which drives pathological immune responses and mortality. In the current study, using a T2DM Mtb infection mice model, we determined the mechanisms that make T2DM mice alveolar macrophages (AMs) more inflammatory upon Mtb infection. Among various cell death pathways, necroptosis is a major pathway involved in inflammatory cytokine production by T2DM mice AMs. Anti-TNFR1 antibody treatment of Mtb-infected AMs from T2DM mice significantly reduced expression of receptor interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like (MLKL) (necroptosis markers) and IL-6 production. Metabolic profile comparison of Mtb-infected AMs from T2DM mice and Mtb-infected AMs of nondiabetic control mice indicated that 2-ketohexanoic acid and deoxyadenosine monophosphate were significantly abundant, and acetylcholine and pyridoxine (Vitamin B6) were significantly less abundant in T2DM mice AMs infected with Mtb. 2-Ketohexanoic acid enhanced expression of TNFR1, RIPK3, MLKL and inflammatory cytokine production in the lungs of Mtb-infected nondiabetic mice. In contrast, pyridoxine inhibited RIPK3, MLKL and enhanced expression of Caspase 3 (apoptosis marker) in the lungs of Mtb-infected T2DM mice. Our findings demonstrate that metabolic changes in Mtb-infected T2DM mice enhance TNFR1-mediated necroptosis of AMs, which leads to excess inflammation and lung pathology.


Assuntos
Diabetes Mellitus Tipo 2 , Mycobacterium tuberculosis , Necroptose , Animais , Camundongos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/microbiologia , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/microbiologia , Camundongos Endogâmicos C57BL , Tuberculose/imunologia , Tuberculose/metabolismo , Tuberculose/microbiologia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/microbiologia , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Masculino , Citocinas/metabolismo
13.
Blood ; 144(13): 1433-1444, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-38861671

RESUMO

ABSTRACT: Ferroportin (Fpn) is the only iron exporter, playing a crucial role in systemic iron homeostasis. Fpn is negatively regulated by its ligand hepcidin, but other potential regulators in physiological and disease conditions remain poorly understood. Diabetes is a metabolic disorder that develops body iron loading with unknown mechanisms. By using diabetic mouse models and human duodenal specimens, we demonstrated that intestinal Fpn expression was increased in diabetes in a hepcidin-independent manner. Protein kinase C (PKC) is hyperactivated in diabetes. We showed that PKCα was required to sustain baseline Fpn expression and diabetes-induced Fpn upregulation in the enterocytes and macrophages. Knockout of PKCα abolished diabetes-associated iron overload. Mechanistically, activation of PKCα increased the exocytotic trafficking of Fpn and decreased the endocytic trafficking of Fpn in the resting state. Hyperactive PKCα also suppressed hepcidin-induced ubiquitination, internalization, and degradation of Fpn. We further observed that iron loading in the enterocytes and macrophages activated PKCα, acting as a novel mechanism to enhance Fpn-dependent iron efflux. Finally, we demonstrated that the loss-of-function of PKCα and pharmacological inhibition of PKC significantly alleviated hereditary hemochromatosis-associated iron overload. Our study has highlighted, to our knowledge, for the first time, that PKCα is an important positive regulator of Fpn and a new target in the control of iron homeostasis.


Assuntos
Proteínas de Transporte de Cátions , Hemocromatose , Hepcidinas , Sobrecarga de Ferro , Proteína Quinase C-alfa , Animais , Sobrecarga de Ferro/metabolismo , Proteína Quinase C-alfa/metabolismo , Proteína Quinase C-alfa/genética , Camundongos , Humanos , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cátions/genética , Hemocromatose/metabolismo , Hemocromatose/genética , Hemocromatose/patologia , Hepcidinas/metabolismo , Hepcidinas/genética , Camundongos Knockout , Masculino , Ferro/metabolismo , Diabetes Mellitus Experimental/metabolismo , Camundongos Endogâmicos C57BL , Enterócitos/metabolismo , Enterócitos/patologia , Macrófagos/metabolismo
14.
Nat Chem Biol ; 20(4): 432-442, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37872400

RESUMO

Cell-based therapies represent potent enabling technologies in biomedical science. However, current genetic control systems for engineered-cell therapies are predominantly based on the transcription or translation of therapeutic outputs. Here we report a protease-based rapid protein secretion system (PASS) that regulates the secretion of pretranslated proteins retained in the endoplasmic reticulum (ER) owing to an ER-retrieval signal. Upon cleavage by inducible proteases, these proteins are secreted. Three PASS variants (chemPASS, antigenPASS and optoPASS) are developed. With chemPASS, we demonstrate the reversal of hyperglycemia in diabetic mice within minutes via drug-induced insulin secretion. AntigenPASS-equipped cells recognize the tumor antigen and secrete granzyme B and perforin, inducing targeted cell apoptosis. Finally, results from mouse models of diabetes, hypertension and inflammatory pain demonstrate light-induced, optoPASS-mediated therapeutic peptide secretion within minutes, conferring anticipated therapeutic benefits. PASS is a flexible platform for rapid delivery of therapeutic proteins that can facilitate the development and adoption of cell-based precision therapies.


Assuntos
Diabetes Mellitus Experimental , Insulina , Camundongos , Animais , Insulina/metabolismo , Peptídeo Hidrolases/metabolismo , Diabetes Mellitus Experimental/terapia , Endopeptidases/metabolismo , Secreção de Insulina , Apoptose/fisiologia
15.
PLoS Biol ; 21(6): e3002142, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37289842

RESUMO

Rab26 is known to regulate multiple membrane trafficking events, but its role in insulin secretion in pancreatic ß cells remains unclear despite it was first identified in the pancreas. In this study, we generated Rab26-/- mice through CRISPR/Cas9 technique. Surprisingly, insulin levels in the blood of the Rab26-/- mice do not decrease upon glucose stimulation but conversely increase. Deficiency of Rab26 promotes insulin secretion, which was independently verified by Rab26 knockdown in pancreatic insulinoma cells. Conversely, overexpression of Rab26 suppresses insulin secretion in both insulinoma cell lines and isolated mouse islets. Islets overexpressing Rab26, upon transplantation, also failed to restore glucose homeostasis in type 1 diabetic mice. Immunofluorescence microscopy revealed that overexpression of Rab26 results in clustering of insulin granules. GST-pulldown experiments reveal that Rab26 interacts with synaptotagmin-1 (Syt1) through directly binding to its C2A domain, which interfering with the interaction between Syt1 and SNAP25, and consequently inhibiting the exocytosis of newcomer insulin granules revealed by TIRF microscopy. Our results suggest that Rab26 serves as a negative regulator of insulin secretion, via suppressing insulin granule fusion with plasma membrane through sequestering Syt1.


Assuntos
Diabetes Mellitus Experimental , Células Secretoras de Insulina , Insulinoma , Ilhotas Pancreáticas , Neoplasias Pancreáticas , Animais , Camundongos , Diabetes Mellitus Experimental/metabolismo , Exocitose/fisiologia , Glucose/metabolismo , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Insulinoma/metabolismo , Ilhotas Pancreáticas/metabolismo , Neoplasias Pancreáticas/metabolismo
16.
Circ Res ; 134(7): 858-871, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38362769

RESUMO

BACKGROUND: Vascular large conductance Ca2+-activated K+ (BK) channel, composed of the α-subunit (BK-α) and the ß1-subunit (BK-ß1), is a key determinant of coronary vasorelaxation and its function is impaired in diabetic vessels. However, our knowledge of diabetic BK channel dysregulation is incomplete. The Sorbs2 (Sorbin homology [SoHo] and Src homology 3 [SH3] domains-containing protein 2), is ubiquitously expressed in arteries, but its role in vascular pathophysiology is unknown. METHODS: The role of Sorbs2 in regulating vascular BK channel activity was determined using patch-clamp recordings, molecular biological techniques, and in silico analysis. RESULTS: Sorbs2 is not only a cytoskeletal protein but also an RNA-binding protein that binds to BK channel proteins and BK-α mRNA, regulating BK channel expression and function in coronary smooth muscle cells. Molecular biological studies reveal that the SH3 domain of Sorbs2 is necessary for Sorbs2 interaction with BK-α subunits, while both the SH3 and SoHo domains of Sorbs2 interact with BK-ß1 subunits. Deletion of the SH3 or SoHo domains abolishes the Sorbs2 effect on the BK-α/BK-ß1 channel current density. Additionally, Sorbs2 is a target gene of the Nrf2 (nuclear factor erythroid-2-related factor 2), which binds to the promoter of Sorbs2 and regulates Sorbs2 expression in coronary smooth muscle cells. In vivo studies demonstrate that Sorbs2 knockout mice at 4 months of age display a significant decrease in BK channel expression and function, accompanied by impaired BK channel Ca2+-sensitivity and BK channel-mediated vasodilation in coronary arteries, without altering their body weights and blood glucose levels. Importantly, Sorbs2 expression is significantly downregulated in the coronary arteries of db/db type 2 diabetic mice. CONCLUSIONS: Sorbs2, a downstream target of Nrf2, plays an important role in regulating BK channel expression and function in vascular smooth muscle cells. Vascular Sorbs2 is downregulated in diabetes. Genetic knockout of Sorbs2 manifests coronary BK channelopathy and vasculopathy observed in diabetic mice, independent of obesity and glucotoxicity.


Assuntos
Canalopatias , Diabetes Mellitus Experimental , Camundongos , Animais , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Canalopatias/metabolismo , Subunidades beta do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Subunidades beta do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Músculo Liso Vascular/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Vasos Coronários/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
17.
Circ Res ; 135(3): 416-433, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38946541

RESUMO

BACKGROUND: Exercise intolerance is an independent predictor of poor prognosis in diabetes. The underlying mechanism of the association between hyperglycemia and exercise intolerance remains undefined. We recently demonstrated that the interaction between ARRDC4 (arrestin domain-containing protein 4) and GLUT1 (glucose transporter 1) regulates cardiac metabolism. METHODS: To determine whether this mechanism broadly impacts diabetic complications, we investigated the role of ARRDC4 in the pathogenesis of diabetic cardiac/skeletal myopathy using cellular and animal models. RESULTS: High glucose promoted translocation of MondoA into the nucleus, which upregulated Arrdc4 transcriptional expression, increased lysosomal GLUT1 trafficking, and blocked glucose transport in cardiomyocytes, forming a feedback mechanism. This role of ARRDC4 was confirmed in human muscular cells from type 2 diabetic patients. Prolonged hyperglycemia upregulated myocardial Arrdc4 expression in multiple types of mouse models of diabetes. We analyzed hyperglycemia-induced cardiac and skeletal muscle abnormalities in insulin-deficient mice. Hyperglycemia increased advanced glycation end-products and elicited oxidative and endoplasmic reticulum stress leading to apoptosis in the heart and peripheral muscle. Deletion of Arrdc4 augmented tissue glucose transport and mitochondrial respiration, protecting the heart and muscle from tissue damage. Stress hemodynamic analysis and treadmill exhaustion test uncovered that Arrdc4-knockout mice had greater cardiac inotropic/chronotropic reserve with higher exercise endurance than wild-type animals under diabetes. While multiple organs were involved in the mechanism, cardiac-specific overexpression using an adenoassociated virus suggests that high levels of myocardial ARRDC4 have the potential to contribute to exercise intolerance by interfering with cardiac metabolism through its interaction with GLUT1 in diabetes. Importantly, the ARRDC4 mutation mouse line exhibited greater exercise tolerance, showing the potential therapeutic impact on diabetic cardiomyopathy by disrupting the interaction between ARRDC4 and GLUT1. CONCLUSIONS: ARRDC4 regulates hyperglycemia-induced toxicities toward cardiac and skeletal muscle, revealing a new molecular framework that connects hyperglycemia to cardiac/skeletal myopathy to exercise intolerance.


Assuntos
Tolerância ao Exercício , Transportador de Glucose Tipo 1 , Camundongos Knockout , Animais , Humanos , Masculino , Camundongos , Células Cultivadas , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/fisiopatologia , Cardiomiopatias Diabéticas/etiologia , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Hiperglicemia/metabolismo , Hiperglicemia/genética , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Miócitos Cardíacos/metabolismo
18.
EMBO Rep ; 25(4): 1752-1772, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38491313

RESUMO

Emerging evidence indicates that parental diseases can impact the health of subsequent generations through epigenetic inheritance. Recently, it was shown that maternal diabetes alters the metaphase II oocyte transcriptome, causing metabolic dysfunction in offspring. However, type 1 diabetes (T1D) mouse models frequently utilized in previous studies may be subject to several confounding factors due to severe hyperglycemia. This limits clinical translatability given improvements in glycemic control for T1D subjects. Here, we optimize a T1D mouse model to investigate the effects of appropriately managed maternal glycemic levels on oocytes and intrauterine development. We show that diabetic mice with appropriate glycemic control exhibit better long-term health, including maintenance of the oocyte transcriptome and chromatin accessibility. We further show that human oocytes undergoing in vitro maturation challenged with mildly increased levels of glucose, reflecting appropriate glycemic management, also retain their transcriptome. However, fetal growth and placental function are affected in mice despite appropriate glycemic control, suggesting the uterine environment rather than the germline as a pathological factor in developmental programming in appropriately managed diabetes.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Hiperglicemia , Humanos , Feminino , Gravidez , Camundongos , Animais , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Placenta , Hiperglicemia/genética , Hiperglicemia/metabolismo , Oócitos/metabolismo , Modelos Animais de Doenças
19.
J Immunol ; 212(8): 1287-1306, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38426910

RESUMO

Myocarditis has emerged as an immune-related adverse event of immune checkpoint inhibitor (ICI) cancer therapy associated with significant mortality. To ensure patients continue to safely benefit from life-saving cancer therapy, an understanding of fundamental immunological phenomena underlying ICI myocarditis is essential. We recently developed the NOD-cMHCI/II-/-.DQ8 mouse model that spontaneously develops myocarditis with lower mortality than observed in previous HLA-DQ8 NOD mouse strains. Our strain was rendered murine MHC class I and II deficient using CRISPR/Cas9 technology, making it a genetically clean platform for dissecting CD4+ T cell-mediated myocarditis in the absence of classically selected CD8+ T cells. These mice are highly susceptible to myocarditis and acute heart failure following anti-PD-1 ICI-induced treatment. Additionally, anti-PD-1 administration accelerates skeletal muscle myositis. Using histology, flow cytometry, adoptive transfers, and RNA sequencing analyses, we performed a thorough characterization of cardiac and skeletal muscle T cells, identifying shared and unique characteristics of both populations. Taken together, this report details a mouse model with features of a rare, but highly lethal clinical presentation of overlapping myocarditis and myositis following ICI therapy. This study sheds light on underlying immunological mechanisms in ICI myocarditis and provides the basis for further detailed analyses of diagnostic and therapeutic strategies.


Assuntos
Diabetes Mellitus Experimental , Antígenos HLA-DQ , Miocardite , Miosite , Neoplasias , Humanos , Camundongos , Animais , Camundongos Endogâmicos NOD , Inibidores de Checkpoint Imunológico/uso terapêutico , Miosite/induzido quimicamente , Miosite/patologia
20.
Nature ; 586(7830): 606-611, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32814902

RESUMO

Islets derived from stem cells hold promise as a therapy for insulin-dependent diabetes, but there remain challenges towards achieving this goal1-6. Here we generate human islet-like organoids (HILOs) from induced pluripotent stem cells and show that non-canonical WNT4 signalling drives the metabolic maturation necessary for robust ex vivo glucose-stimulated insulin secretion. These functionally mature HILOs contain endocrine-like cell types that, upon transplantation, rapidly re-establish glucose homeostasis in diabetic NOD/SCID mice. Overexpression of the immune checkpoint protein programmed death-ligand 1 (PD-L1) protected HILO xenografts such that they were able to restore glucose homeostasis in immune-competent diabetic mice for 50 days. Furthermore, ex vivo stimulation with interferon-γ induced endogenous PD-L1 expression and restricted T cell activation and graft rejection. The generation of glucose-responsive islet-like organoids that are able to avoid immune detection provides a promising alternative to cadaveric and device-dependent therapies in the treatment of diabetes.


Assuntos
Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Experimental/patologia , Evasão da Resposta Imune , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/imunologia , Organoides/citologia , Organoides/imunologia , Animais , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Linhagem Celular , Epigênese Genética , Feminino , Glucose/metabolismo , Rejeição de Enxerto , Xenoenxertos , Homeostase , Humanos , Tolerância Imunológica , Secreção de Insulina , Transplante das Ilhotas Pancreáticas , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Organoides/transplante , Linfócitos T/citologia , Linfócitos T/imunologia , Via de Sinalização Wnt/efeitos dos fármacos , Proteína Wnt4/metabolismo , Proteína Wnt4/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA