Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.643
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Neurosci ; 44(3)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38050156

RESUMO

Reading acquisition involves the integration of auditory and visual stimuli. Thus, low-level audiovisual multisensory integration might contribute to disrupted reading in developmental dyslexia. Although dyslexia is more frequently diagnosed in males and emerging evidence indicates that the neural basis of dyslexia might differ between sexes, previous studies examining multisensory integration did not evaluate potential sex differences nor tested its neural correlates. In the current study on 88 adolescents and young adults, we found that only males with dyslexia showed a deficit in multisensory integration of simple nonlinguistic stimuli. At the neural level, both females and males with dyslexia presented smaller differences in response to multisensory compared to those in response to unisensory conditions in the N1 and N2 components (early components of event-related potentials associated with sensory processing) than the control group. Additionally, in a subsample of 80 participants matched for nonverbal IQ, only males with dyslexia exhibited smaller differences in the left hemisphere in response to multisensory compared to those in response to unisensory conditions in the N1 component. Our study indicates that deficits of multisensory integration seem to be more severe in males than females with dyslexia. This provides important insights into sex-modulated cognitive processes that might confer vulnerability to reading difficulties.


Assuntos
Percepção Auditiva , Dislexia , Adolescente , Adulto Jovem , Humanos , Masculino , Feminino , Percepção Auditiva/fisiologia , Tempo de Reação/fisiologia , Percepção Visual/fisiologia , Caracteres Sexuais , Estimulação Acústica
2.
Brain ; 147(7): 2530-2541, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38620012

RESUMO

The acquisition of reading modifies areas of the brain associated with vision and with language, in addition to their connections. These changes enable reciprocal translation between orthography and the sounds and meaning of words. Individual variability in the pre-existing cerebral substrate contributes to the range of eventual reading abilities, extending to atypical developmental patterns, including dyslexia and reading-related synaesthesias. The present study is devoted to the little-studied but highly informative ticker-tape synaesthesia, in which speech perception triggers the vivid and irrepressible perception of words in their written form in the mind's eye. We scanned a group of 17 synaesthetes and 17 matched controls with functional MRI, while they listened to spoken sentences, words, numbers or pseudowords (Experiment 1), viewed images and written words (Experiment 2) or were at rest (Experiment 3). First, we found direct correlates of the ticker-tape synaesthesia phenomenon: during speech perception, as ticker-tape synaesthesia was active, synaesthetes showed over-activation of left perisylvian regions supporting phonology and of the occipitotemporal visual word form area, where orthography is represented. Second, we provided support to the hypothesis that ticker-tape synaesthesia results from atypical relationships between spoken and written language processing: the ticker-tape synaesthesia-related regions overlap closely with cortices activated during reading, and the overlap of speech-related and reading-related areas is larger in synaesthetes than in controls. Furthermore, the regions over-activated in ticker-tape synaesthesia overlap with regions under-activated in dyslexia. Third, during the resting state (i.e. in the absence of current ticker-tape synaesthesia), synaesthetes showed increased functional connectivity between left prefrontal and bilateral occipital regions. This pattern might reflect a lowered threshold for conscious access to visual mental contents and might imply a non-specific predisposition to all synaesthesias with a visual content. These data provide a rich and coherent account of ticker-tape synaesthesia as a non-detrimental developmental condition created by the interaction of reading acquisition with an atypical cerebral substrate.


Assuntos
Imageamento por Ressonância Magnética , Leitura , Percepção da Fala , Sinestesia , Humanos , Masculino , Feminino , Adulto , Percepção da Fala/fisiologia , Adulto Jovem , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Pessoa de Meia-Idade , Fala/fisiologia , Dislexia/fisiopatologia , Dislexia/diagnóstico por imagem
3.
Cereb Cortex ; 34(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38610090

RESUMO

The impact of action video games on reading performance has been already demonstrated in individuals with and without neurodevelopmental disorders. The combination of action video games and posterior parietal cortex neuromodulation by a transcranial random noise stimulation could enhance brain plasticity, improving attentional control and reading skills also in adults with developmental dyslexia. In a double blind randomized controlled trial, 20 young adult nonaction video game players with developmental dyslexia were trained for 15 h with action video games. Half of the participants were stimulated with bilateral transcranial random noise stimulation on the posterior parietal cortex during the action video game training, whereas the others were in the placebo (i.e. sham) condition. Word text reading, pseudowords decoding, and temporal attention (attentional blink), as well as electroencephalographic activity during the attentional blink, were measured before and after the training. The action video game + transcranial random noise stimulation group showed temporal attention, word text reading, and pseudoword decoding enhancements and P300 amplitude brain potential changes. The enhancement in temporal attention performance was related with the efficiency in pseudoword decoding improvement. Our results demonstrate that the combination of action video game training with parietal neuromodulation increases the efficiency of visual attention deployment, probably reshaping goal-directed and stimulus-driven fronto-parietal attentional networks interplay in young adults with neurodevelopmental conditions.


Assuntos
Intermitência na Atenção Visual , Dislexia , Jogos de Vídeo , Adulto Jovem , Humanos , Leitura , Lobo Parietal , Dislexia/terapia
4.
Cereb Cortex ; 34(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38664864

RESUMO

The Simple View of Reading model suggests that intact language processing and word decoding lead to proficient reading comprehension, with recent studies pointing at executive functions as an important component contributing to reading proficiency. Here, we aimed to determine the underlying mechanism(s) for these changes. Participants include 120 8- to 12-year-old children (n = 55 with dyslexia, n = 65 typical readers) trained on an executive functions-based reading program, including pre/postfunctional MRI and behavioral data collection. Across groups, improved word reading was related to stronger functional connections within executive functions and sensory networks. In children with dyslexia, faster and more accurate word reading was related to stronger functional connections within and between sensory networks. These results suggest greater synchronization of brain systems after the intervention, consistent with the "neural noise" hypothesis in children with dyslexia and support the consideration of including executive functions as part of the Simple View of Reading model.


Assuntos
Dislexia , Função Executiva , Imageamento por Ressonância Magnética , Leitura , Humanos , Criança , Dislexia/fisiopatologia , Dislexia/psicologia , Dislexia/diagnóstico por imagem , Função Executiva/fisiologia , Masculino , Feminino , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia
5.
Cereb Cortex ; 34(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38610086

RESUMO

Reading skills and developmental dyslexia, characterized by difficulties in developing reading skills, have been associated with brain anomalies within the language network. Genetic factors contribute to developmental dyslexia risk, but the mechanisms by which these genes influence reading skills remain unclear. In this preregistered study (https://osf.io/7sehx), we explored if developmental dyslexia susceptibility genes DNAAF4, DCDC2, NRSN1, and KIAA0319 are associated with brain function in fluently reading adolescents and young adults. Functional MRI and task performance data were collected during tasks involving written and spoken sentence processing, and DNA sequence variants of developmental dyslexia susceptibility genes previously associated with brain structure anomalies were genotyped. The results revealed that variation in DNAAF4, DCDC2, and NRSN1 is associated with brain activity in key language regions: the left inferior frontal gyrus, middle temporal gyrus, and intraparietal sulcus. Furthermore, NRSN1 was associated with task performance, but KIAA0319 did not yield any significant associations. Our findings suggest that individuals with a genetic predisposition to developmental dyslexia may partly employ compensatory neural and behavioral mechanisms to maintain typical task performance. Our study highlights the relevance of these developmental dyslexia susceptibility genes in language-related brain function, even in individuals without developmental dyslexia, providing valuable insights into the genetic factors influencing language processing.


Assuntos
Dislexia , Fenômenos Fisiológicos do Sistema Nervoso , Adolescente , Humanos , Adulto Jovem , Encéfalo/diagnóstico por imagem , Dislexia/diagnóstico por imagem , Dislexia/genética , Genótipo , Proteínas Associadas aos Microtúbulos/genética , Leitura
6.
Eur J Neurosci ; 59(2): 256-282, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38109476

RESUMO

Working memory is integral to a range of critical cognitive functions such as reasoning and decision-making. Although alterations in working memory have been observed in neurodivergent populations, there has been no review mapping how cognitive load is measured in common neurodevelopmental conditions such as attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD) and dyslexia. This scoping review explores the neurophysiological measures used to study cognitive load in these specific populations. Our findings highlight that electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are the most frequently used methods, with a limited number of studies employing functional near-infrared spectroscopy (fNIRs), magnetoencephalography (MEG) or eye-tracking. Notably, eye-related measures are less commonly used, despite their prominence in cognitive load research among neurotypical individuals. The review also highlights potential correlates of cognitive load, such as neural oscillations in the theta and alpha ranges for EEG studies, blood oxygenation level-dependent (BOLD) responses in lateral and medial frontal brain regions for fMRI and fNIRS studies and eye-related measures such as pupil dilation and blink rate. Finally, critical issues for future studies are discussed, including the technical challenges associated with multimodal approaches, the possible impact of atypical features on cognitive load measures and balancing data richness with participant well-being. These insights contribute to a more nuanced understanding of cognitive load measurement in neurodivergent populations and point to important methodological considerations for future neuroscientific research in this area.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Dislexia , Humanos , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico por imagem , Encéfalo , Cognição , Dislexia/diagnóstico por imagem
7.
J Neurosci Res ; 102(2): e25305, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38361418

RESUMO

Brain imaging work aimed at increased classification of dyslexia has underscored an important relationship between anterior (i.e., the inferior frontal gyrus; IFG) and posterior (i.e., superior temporal gyrus and supramarginal gyrus) brain regions. The extent to which the three components of the inferior frontal gyrus, namely the pars orbitalis, triangularis, and opercularis, are differentially related to the posterior regions, namely the superior temporal gyrus and supramarginal gyrus, needs further elucidation. Information about the nature of the anterior-posterior connections would facilitate our understanding of the neural underpinnings associated with dyslexia. Adult participants (N = 38; 16 with dyslexia) took part in an MRI study, whereby high-resolution structural scans were obtained. Volumetric asymmetry of the three regions of the IFG, the superior temporal gyrus, and the supramarginal gyrus was extracted. Significant differences were found for each of the three IFG regions, such that skilled readers had a greater leftward asymmetry of the orbitalis and triangularis, and greater rightward asymmetry of the opercularis, when compared to individuals with dyslexia. Furthermore, the pars triangularis was significantly associated with leftward asymmetry of the superior temporal gyrus for skilled but not dyslexic participants. For individuals with dyslexia, the cortical asymmetry of the IFG, and the corresponding connections with other reading-related brain regions, is inherently different from skilled readers. We discuss our findings in the context of the print-to-speech framework to further our understanding of the neural underpinnings associated with dyslexia.


Assuntos
Dislexia , Substância Cinzenta , Adulto , Humanos , Substância Cinzenta/diagnóstico por imagem , Dislexia/diagnóstico por imagem , Encéfalo , Leitura , Córtex Pré-Frontal , Mapeamento Encefálico , Imageamento por Ressonância Magnética/métodos
8.
Mol Psychiatry ; 28(4): 1719-1730, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36750735

RESUMO

Neuroimaging studies implicate multiple cortical regions in reading ability/disability. However, the neural cell types integral to the reading process are unknown. To contribute to this gap in knowledge, we integrated genetic results from genome-wide association studies for word reading (n = 5054) with gene expression datasets from adult/fetal human brain. Linkage disequilibrium score regression (LDSC) suggested that variants associated with word reading were enriched in genes expressed in adult excitatory neurons, specifically layer 5 and 6 FEZF2 expressing neurons and intratelencephalic (IT) neurons, which express the marker genes LINC00507, THEMIS, or RORB. Inhibitory neurons (VIP, SST, and PVALB) were also found. This finding was interesting as neurometabolite studies previously implicated excitatory-inhibitory imbalances in the etiology of reading disabilities (RD). We also tested traits that shared genetic etiology with word reading (previously determined by polygenic risk scores): attention-deficit/hyperactivity disorder (ADHD), educational attainment, and cognitive ability. For ADHD, we identified enrichment in L4 IT adult excitatory neurons. For educational attainment and cognitive ability, we confirmed previous studies identifying multiple subclasses of adult cortical excitatory and inhibitory neurons, as well as astrocytes and oligodendrocytes. For educational attainment and cognitive ability, we also identified enrichment in multiple fetal cortical excitatory and inhibitory neurons, intermediate progenitor cells, and radial glial cells. In summary, this study supports a role of excitatory and inhibitory neurons in reading and excitatory neurons in ADHD and contributes new information on fetal cell types enriched in educational attainment and cognitive ability, thereby improving our understanding of the neurobiological basis of reading/correlated traits.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Dislexia , Adulto , Humanos , Leitura , Estudo de Associação Genômica Ampla/métodos , Encéfalo , Dislexia/genética , Cognição , Transtorno do Deficit de Atenção com Hiperatividade/genética
9.
Behav Brain Funct ; 20(1): 16, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926731

RESUMO

BACKGROUND: An intronic deletion within intron 2 of the DCDC2 gene encompassing the entire READ1 (hereafter, READ1d) has been associated in both children with developmental dyslexia (DD) and typical readers (TRs), with interindividual variation in reading performance and motion perception as well as with structural and functional brain alterations. Visual motion perception -- specifically processed by the magnocellular (M) stream -- has been reported to be a solid and reliable endophenotype of DD. Hence, we predicted that READ1d should affect neural activations in brain regions sensitive to M stream demands as reading proficiency changes. METHODS: We investigated neural activations during two M-eliciting fMRI visual tasks (full-field sinusoidal gratings controlled for spatial and temporal frequencies and luminance contrast, and sensitivity to motion coherence at 6%, 15% and 40% dot coherence levels) in four subject groups: children with DD with/without READ1d, and TRs with/without READ1d. RESULTS: At the Bonferroni-corrected level of significance, reading skills showed a significant effect in the right polar frontal cortex during the full-field sinusoidal gratings-M task. Regardless of the presence/absence of the READ1d, subjects with poor reading proficiency showed hyperactivation in this region of interest (ROI) compared to subjects with better reading scores. Moreover, a significant interaction was found between READ1d and reading performance in the left frontal opercular area 4 during the 15% coherent motion sensitivity task. Among subjects with poor reading performance, neural activation in this ROI during this specific task was higher for subjects without READ1d than for READ1d carriers. The difference vanished as reading skills increased. CONCLUSIONS: Our findings showed a READ1d-moderated genetic vulnerability to alterations in neural activation in the ventral attentive and salient networks during the processing of relevant stimuli in subjects with poor reading proficiency.


Assuntos
Dislexia , Lobo Frontal , Imageamento por Ressonância Magnética , Percepção de Movimento , Lobo Parietal , Leitura , Humanos , Dislexia/fisiopatologia , Dislexia/genética , Masculino , Criança , Feminino , Imageamento por Ressonância Magnética/métodos , Lobo Parietal/fisiopatologia , Percepção de Movimento/fisiologia , Lobo Frontal/fisiopatologia , Lobo Frontal/diagnóstico por imagem , Proteínas Associadas aos Microtúbulos/genética , Mapeamento Encefálico/métodos , Rede Nervosa/fisiopatologia , Rede Nervosa/diagnóstico por imagem , Estimulação Luminosa/métodos
10.
Dev Sci ; 27(1): e13431, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37403418

RESUMO

As reading is inherently a multisensory, audiovisual (AV) process where visual symbols (i.e., letters) are connected to speech sounds, the question has been raised whether individuals with reading difficulties, like children with developmental dyslexia (DD), have broader impairments in multisensory processing. This question has been posed before, yet it remains unanswered due to (a) the complexity and contentious etiology of DD along with (b) lack of consensus on developmentally appropriate AV processing tasks. We created an ecologically valid task for measuring multisensory AV processing by leveraging the natural phenomenon that speech perception improves when listeners are provided visual information from mouth movements (particularly when the auditory signal is degraded). We designed this AV processing task with low cognitive and linguistic demands such that children with and without DD would have equal unimodal (auditory and visual) performance. We then collected data in a group of 135 children (age 6.5-15) with an AV speech perception task to answer the following questions: (1) How do AV speech perception benefits manifest in children, with and without DD? (2) Do children all use the same perceptual weights to create AV speech perception benefits, and (3) what is the role of phonological processing in AV speech perception? We show that children with and without DD have equal AV speech perception benefits on this task, but that children with DD rely less on auditory processing in more difficult listening situations to create these benefits and weigh both incoming information streams differently. Lastly, any reported differences in speech perception in children with DD might be better explained by differences in phonological processing than differences in reading skills. RESEARCH HIGHLIGHTS: Children with versus without developmental dyslexia have equal audiovisual speech perception benefits, regardless of their phonological awareness or reading skills. Children with developmental dyslexia rely less on auditory performance to create audiovisual speech perception benefits. Individual differences in speech perception in children might be better explained by differences in phonological processing than differences in reading skills.


Assuntos
Dislexia , Percepção da Fala , Criança , Humanos , Adolescente , Dislexia/psicologia , Leitura , Fonética , Conscientização
11.
Dev Sci ; 27(3): e13458, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37985400

RESUMO

In the search for mechanisms that contribute to dyslexia, the term "attention" has been invoked to explain performance in a variety of tasks, creating confusion since all tasks do, indeed, demand "attention." Many studies lack an experimental manipulation of attention that would be necessary to determine its influence on task performance. Nonetheless, an emerging view is that children with dyslexia have an impairment in the exogenous (automatic/reflexive) orienting of spatial attention. Here we investigated the link between exogenous attention and reading ability by presenting exogenous spatial cues in the multi-letter processing task-a task relevant for reading. The task was gamified and administered online to a large sample of children (N = 187) between 6 and 17 years. Children with dyslexia performed worse overall at rapidly recognizing and reporting strings of letters. However, we found no evidence for a difference in the utilization of exogenous spatial cues, resolving two decades of ambiguity in the field. Previous studies that claimed otherwise may have failed to distinguish attention effects from overall task performance or found spurious group differences in small samples. RESEARCH HIGHLIGHTS: We manipulated exogenous visual spatial attention using pre-cues in a task that is relevant for reading and we see robust task effects of exogenous attention. We found no evidence for a deficit in utilizing exogenous spatial pre-cues in children with dyslexia. However, children with dyslexia showed reduced recognition ability for all letter positions. Children with dyslexia were just as likely to make letter transposition errors as typical readers.


Assuntos
Dislexia , Criança , Humanos , Atenção , Leitura , Sinais (Psicologia) , Cognição , Percepção Visual
12.
Dev Sci ; 27(1): e13412, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37219071

RESUMO

Literacy acquisition is a complex process with genetic and environmental factors influencing cognitive and neural processes associated with reading. Previous research identified factors that predict word reading fluency (WRF), including phonological awareness (PA), rapid automatized naming (RAN), and speech-in-noise perception (SPIN). Recent theoretical accounts suggest dynamic interactions between these factors and reading, but direct investigations of such dynamics are lacking. Here, we investigated the dynamic effect of phonological processing and speech perception on WRF. More specifically, we evaluated the dynamic influence of PA, RAN, and SPIN measured in kindergarten (the year prior to formal reading instruction), first grade (the first year of formal reading instruction) and second grade on WRF in second and third grade. We also assessed the effect of an indirect proxy of family risk for reading difficulties using a parental questionnaire (Adult Reading History Questionnaire, ARHQ). We applied path modeling in a longitudinal sample of 162 Dutch-speaking children of whom the majority was selected to have an increased family and/or cognitive risk for dyslexia. We showed that parental ARHQ had a significant effect on WRF, RAN and SPIN, but unexpectedly not on PA. We also found effects of RAN and PA directly on WRF that were limited to first and second grade respectively, in contrast to previous research reporting pre-reading PA effects and prolonged RAN effects throughout reading acquisition. Our study provides important new insights into early prediction of later word reading abilities and into the optimal time window to target a specific reading-related subskill during intervention.


Assuntos
Dislexia , Leitura , Criança , Humanos , Fonética , Idioma , Cognição
13.
Dev Sci ; 27(1): e13428, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37381667

RESUMO

The prevalent "core phonological deficit" model of dyslexia proposes that the reading and spelling difficulties characterizing affected children stem from prior developmental difficulties in processing speech sound structure, for example, perceiving and identifying syllable stress patterns, syllables, rhymes and phonemes. Yet spoken word production appears normal. This suggests an unexpected disconnect between speech input and speech output processes. Here we investigated the output side of this disconnect from a speech rhythm perspective by measuring the speech amplitude envelope (AE) of multisyllabic spoken phrases. The speech AE contains crucial information regarding stress patterns, speech rate, tonal contrasts and intonational information. We created a novel computerized speech copying task in which participants copied aloud familiar spoken targets like "Aladdin." Seventy-five children with and without dyslexia were tested, some of whom were also receiving an oral intervention designed to enhance multi-syllabic processing. Similarity of the child's productions to the target AE was computed using correlation and mutual information metrics. Similarity of pitch contour, another acoustic cue to speech rhythm, was used for control analyses. Children with dyslexia were significantly worse at producing the multi-syllabic targets as indexed by both similarity metrics for computing the AE. However, children with dyslexia were not different from control children in producing pitch contours. Accordingly, the spoken production of multisyllabic phrases by children with dyslexia is atypical regarding the AE. Children with dyslexia may not appear to listeners to exhibit speech production difficulties because their pitch contours are intact. RESEARCH HIGHLIGHTS: Speech production of syllable stress patterns is atypical in children with dyslexia. Children with dyslexia are significantly worse at producing the amplitude envelope of multi-syllabic targets compared to both age-matched and reading-level-matched control children. No group differences were found for pitch contour production between children with dyslexia and age-matched control children. It may be difficult to detect speech output problems in dyslexia as pitch contours are relatively accurate.


Assuntos
Dislexia , Percepção da Fala , Criança , Humanos , Fala , Leitura , Fonética
14.
Dev Sci ; 27(2): e13443, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37675857

RESUMO

Children with dyslexia frequently also struggle with math. However, studies of reading disability (RD) rarely assess math skill, and the neurocognitive mechanisms underlying co-occurring reading and math disability (RD+MD) are not clear. The current study aimed to identify behavioral and neurocognitive factors associated with co-occurring MD among 86 children with RD. Within this sample, 43% had co-occurring RD+MD and 22% demonstrated a possible vulnerability in math, while 35% had no math difficulties (RD-Only). We investigated whether RD-Only and RD+MD students differed behaviorally in their phonological awareness, reading skills, or executive functions, as well as in the brain mechanisms underlying word reading and visuospatial working memory using functional magnetic resonance imaging (fMRI). The RD+MD group did not differ from RD-Only on behavioral or brain measures of phonological awareness related to speech or print. However, the RD+MD group demonstrated significantly worse working memory and processing speed performance than the RD-Only group. The RD+MD group also exhibited reduced brain activations for visuospatial working memory relative to RD-Only. Exploratory brain-behavior correlations along a broad spectrum of math ability revealed that stronger math skills were associated with greater activation in bilateral visual cortex. These converging neuro-behavioral findings suggest that poor executive functions in general, including differences in visuospatial working memory, are specifically associated with co-occurring MD in the context of RD. RESEARCH HIGHLIGHTS: Children with reading disabilities (RD) frequently have a co-occurring math disability (MD), but the mechanisms behind this high comorbidity are not well understood. We examined differences in phonological awareness, reading skills, and executive function between children with RD only versus co-occurring RD+MD using behavioral and fMRI measures. Children with RD only versus RD+MD did not differ in their phonological processing, either behaviorally or in the brain. RD+MD was associated with additional behavioral difficulties in working memory, and reduced visual cortex activation during a visuospatial working memory task.


Assuntos
Dislexia , Deficiências da Aprendizagem , Criança , Humanos , Função Executiva , Encéfalo , Memória de Curto Prazo
15.
Dev Sci ; 27(1): e13420, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37350014

RESUMO

Auditory selective attention forms an important foundation of children's learning by enabling the prioritisation and encoding of relevant stimuli. It may also influence reading development, which relies on metalinguistic skills including the awareness of the sound structure of spoken language. Reports of attentional impairments and speech perception difficulties in noisy environments in dyslexic readers are also suggestive of the putative contribution of auditory attention to reading development. To date, it is unclear whether non-speech selective attention and its underlying neural mechanisms are impaired in children with dyslexia and to which extent these deficits relate to individual reading and speech perception abilities in suboptimal listening conditions. In this EEG study, we assessed non-speech sustained auditory selective attention in 106 7-to-12-year-old children with and without dyslexia. Children attended to one of two tone streams, detecting occasional sequence repeats in the attended stream, and performed a speech-in-speech perception task. Results show that when children directed their attention to one stream, inter-trial-phase-coherence at the attended rate increased in fronto-central sites; this, in turn, was associated with better target detection. Behavioural and neural indices of attention did not systematically differ as a function of dyslexia diagnosis. However, behavioural indices of attention did explain individual differences in reading fluency and speech-in-speech perception abilities: both these skills were impaired in dyslexic readers. Taken together, our results show that children with dyslexia do not show group-level auditory attention deficits but these deficits may represent a risk for developing reading impairments and problems with speech perception in complex acoustic environments. RESEARCH HIGHLIGHTS: Non-speech sustained auditory selective attention modulates EEG phase coherence in children with/without dyslexia Children with dyslexia show difficulties in speech-in-speech perception Attention relates to dyslexic readers' speech-in-speech perception and reading skills Dyslexia diagnosis is not linked to behavioural/EEG indices of auditory attention.


Assuntos
Dislexia , Percepção da Fala , Criança , Humanos , Leitura , Som , Fala , Distúrbios da Fala , Fonética
16.
Brain ; 146(2): 438-447, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36299249

RESUMO

Neurodevelopmental disorders are categorized and studied according to their manifestations as distinct syndromes. For instance, congenital prosopagnosia and dyslexia have largely non-overlapping research literatures and clinical pathways for diagnosis and intervention. On the other hand, the high incidence of neurodevelopmental comorbidities or co-existing extreme strengths and weaknesses suggest that transdiagnostic commonalities may be greater than currently appreciated. The core-periphery model holds that brain regions within the stable core perceptual and motor regions are more densely connected to one another compared to regions in the flexible periphery comprising multimodal association regions. This model provides a framework for the interpretation of neural data in normal development and clinical disorders. Considering network-level commonalities reported in studies of neurodevelopmental disorders, variability in multimodal association cortex connectivity may reflect a shared origin of seemingly distinct neurodevelopmental disorders. This framework helps to explain both comorbidities in neurodevelopmental disorders and profiles of strengths and weaknesses attributable to competitive processing between cognitive systems within an individual.


Assuntos
Dislexia , Transtornos do Neurodesenvolvimento , Prosopagnosia , Humanos , Encéfalo , Córtex Cerebral , Imageamento por Ressonância Magnética , Vias Neurais
17.
Brain Cogn ; 174: 106106, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38016399

RESUMO

Studies with individuals with developmental dyslexia (DD) have documented impaired perception of words and faces, both of which are domains of visual expertise for human adults. In this study, we examined a possible mechanism that might be associated with the impaired acquisition of visual expertise for words and faces in DD, namely, the atypical engagement of the monocular visual pathway. Participants with DD and typical readers (TR) judged whether a pair of sequentially presented unfamiliar faces or nonwords were the same or different, and the pair of stimuli were displayed in an eye-specific fashion using a stereoscope. Based on evidence of greater reliance on subcortical structures early in development, we predicted differences between the groups in the engagement of lower (monocular) versus higher (binocular) regions of the visual pathways. Whereas the TR group showed a monocular advantage for both stimulus types, the DD participants evinced a monocular advantage for faces and words that was much greater than that measured in the TRs. These findings indicate that the DD individuals have enhanced subcortical engagement and that this might arise from the failure to fine-tune cortical correlates mediating the discrimination of homogeneous exemplars in domains of expertise.


Assuntos
Dislexia , Percepção Visual , Adulto , Humanos , Vias Visuais , Leitura
18.
Cereb Cortex ; 33(11): 6959-6989, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-36758954

RESUMO

The purpose of this study is to identify consistencies across functional neuroimaging studies regarding common and unique brain regions/networks for individuals with reading difficulties (RD) and math difficulties (MD) compared to typically developing (TD) individuals. A systematic search of the literature, utilizing multiple databases, yielded 116 functional magnetic resonance imaging and positron emission tomography studies that met the criteria. Coordinates that directly compared TD with either RD or MD were entered into GingerALE (Brainmap.org). An activation likelihood estimate (ALE) meta-analysis was conducted to examine common and unique brain regions for RD and MD. Overall, more studies examined RD (n = 96) than MD (n = 20). Across studies, overactivation for reading and math occurred in the right insula and inferior frontal gyrus for atypically developing (AD) > TD comparisons, albeit in slightly different areas of these regions; however, inherent threshold variability across imaging studies could diminish overlying regions. For TD > AD comparisons, there were no similar or overlapping brain regions. Results indicate there were domain-specific differences for RD and MD; however, there were some similarities in the ancillary recruitment of executive functioning skills. Theoretical and practical implications for researchers and educators are discussed.


Assuntos
Dislexia , Leitura , Humanos , Dislexia/patologia , Funções Verossimilhança , Encéfalo , Cognição , Imageamento por Ressonância Magnética
19.
Cereb Cortex ; 33(6): 3239-3254, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35848850

RESUMO

Reading disability (RD) can manifest itself as a word decoding problem or a reading comprehension problem. In the current study, we identified 3 subtypes of RD: poor decoders (PD), poor comprehenders (PC), and poor-in-both (PB). We found that PD had greater deficits in meta-linguistic skills such as phonological awareness, orthographic skills, and morphological skills than PC, whereas PC had greater deficits in listening comprehension than PD. In the brain, we also found different patterns of deficits during an auditory rhyming judgment task using functional magnetic resonance imaging. PD showed less activation than PC and age controls in the left dorsal inferior frontal gyrus (IFG) and pre-supplementary motor area (SMA), brain activation of which was correlated with phonological awareness and working memory. In contrast, PC showed less activation in the left fusiform gyrus than PD and age controls, which was correlated with reading comprehension fluency and morphological skill. Last, PB showed both PD's and PC's deficits, as well as additional deficits in the bilateral lingual gyri. Our findings contribute to revealing different neural signatures of poor decoding and poor comprehension, which are distinct disorders but co-occur very often. These findings implicate possibility and necessity of precise diagnosis and individualized intervention.


Assuntos
Dislexia , Deficiências da Aprendizagem , Humanos , Criança , Compreensão , Dislexia/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Cognição , Imageamento por Ressonância Magnética
20.
BMC Psychiatry ; 24(1): 509, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020327

RESUMO

BACKGROUND: Developmental dyslexia, a complex neurodevelopmental disorder, not only affects children's academic performance but is also associated with increased healthcare costs, lower employment rates, and reduced productivity. The pathogenesis of dyslexia remains unclear and it is generally considered to be caused by the overlap of genetic and environmental factors. Systematically exploring the close relationship between exposure to environmental compounds and susceptibility genes in the development of dyslexia is currently lacking but high necessary. METHODS: In this study, we systematically compiled 131 publicly reported susceptibility genes for dyslexia sourced from DisGeNET, OMIM, and GeneCards databases. Comparative Toxicogenomics Database database was used to explore the overlap between susceptibility genes and 95 environmental compounds, including metals, persistent organic pollutants, polycyclic aromatic hydrocarbons, and pesticides. Chemical bias towards the dyslexia risk genes was taken into account in the observation/expectation ratios > 1 and the corresponding P value obtained by hypergeometric probability test. RESULTS: Our study found that the number of dyslexia risk genes targeted by each chemical varied from 1 to 109. A total of 35 chemicals were involved in chemical reactions with dyslexia-associated genes, with significant enrichment values (observed/expected dyslexia risk genes) ranging from 1.147 (Atrazine) to 66.901 (Dibenzo(a, h)pyrene). CONCLUSION: The results indicated that dyslexia-associated genes were implicated in certain chemical reactions. However, these findings are exploratory, and further research involving animal or cellular experiments is needed.


Assuntos
Dislexia , Poluentes Ambientais , Predisposição Genética para Doença , Humanos , Dislexia/genética , Predisposição Genética para Doença/genética , Poluentes Ambientais/efeitos adversos , Hidrocarbonetos Policíclicos Aromáticos/efeitos adversos , Toxicogenética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA