Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 961
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Neurosci ; 40: 453-477, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28772097

RESUMO

Modern functional neurosurgery for movement disorders such as Parkinson's disease, tremor, and dystonia involves the placement of focal lesions or the application of deep brain stimulation (DBS) within circuits that modulate motor function. Precise targeting of these motor structures can be further refined by the use of electrophysiological approaches. In particular, microelectrode recordings enable the delineation of neuroanatomic structures. In the course of these operations, there is an opportunity not only to map basal ganglia structures but also to gain insights into how disturbances in neural activity produce movement disorders. In this review, we aim to highlight what the field has uncovered thus far about movement disorders through DBS. The work to date lays the foundation for future studies that will shed further light on dysfunctional circuits mediating diseases of the nervous system and how we might modulate these circuits therapeutically.


Assuntos
Gânglios da Base/fisiopatologia , Distúrbios Distônicos/fisiopatologia , Distúrbios Distônicos/terapia , Doença de Parkinson/fisiopatologia , Doença de Parkinson/terapia , Tremor/fisiopatologia , Tremor/terapia , Gânglios da Base/cirurgia , Estimulação Encefálica Profunda , Distúrbios Distônicos/cirurgia , Humanos , Procedimentos Neurocirúrgicos , Doença de Parkinson/cirurgia , Tremor/cirurgia
2.
Proc Natl Acad Sci U S A ; 117(42): 26398-26405, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33004625

RESUMO

Isolated dystonia is a neurological disorder of heterogeneous pathophysiology, which causes involuntary muscle contractions leading to abnormal movements and postures. Its diagnosis is remarkably challenging due to the absence of a biomarker or gold standard diagnostic test. This leads to a low agreement between clinicians, with up to 50% of cases being misdiagnosed and diagnostic delays extending up to 10.1 y. We developed a deep learning algorithmic platform, DystoniaNet, to automatically identify and validate a microstructural neural network biomarker for dystonia diagnosis from raw structural brain MRIs of 612 subjects, including 392 patients with three different forms of isolated focal dystonia and 220 healthy controls. DystoniaNet identified clusters in corpus callosum, anterior and posterior thalamic radiations, inferior fronto-occipital fasciculus, and inferior temporal and superior orbital gyri as the biomarker components. These regions are known to contribute to abnormal interhemispheric information transfer, heteromodal sensorimotor processing, and executive control of motor commands in dystonia pathophysiology. The DystoniaNet-based biomarker showed an overall accuracy of 98.8% in diagnosing dystonia, with a referral of 3.5% of cases due to diagnostic uncertainty. The diagnostic decision by DystoniaNet was computed in 0.36 s per subject. DystoniaNet significantly outperformed shallow machine-learning algorithms in benchmark comparisons, showing nearly a 20% increase in its diagnostic performance. Importantly, the microstructural neural network biomarker and its DystoniaNet platform showed substantial improvement over the current 34% agreement on dystonia diagnosis between clinicians. The translational potential of this biomarker is in its highly accurate, interpretable, and generalizable performance for enhanced clinical decision-making.


Assuntos
Distonia/diagnóstico , Distúrbios Distônicos/diagnóstico , Distúrbios Distônicos/fisiopatologia , Adulto , Biomarcadores , Encéfalo/fisiopatologia , Mapeamento Encefálico/métodos , Córtex Cerebral/fisiopatologia , Corpo Caloso/fisiopatologia , Aprendizado Profundo , Distúrbios Distônicos/genética , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Rede Nervosa/fisiopatologia , Vias Neurais/fisiopatologia , Substância Branca/fisiopatologia
3.
Ann Neurol ; 89(3): 485-497, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33236446

RESUMO

OBJECTIVE: The study was undertaken to identify a monogenic cause of early onset, generalized dystonia. METHODS: Methods consisted of genome-wide linkage analysis, exome and Sanger sequencing, clinical neurological examination, brain magnetic resonance imaging, and protein expression studies in skin fibroblasts from patients. RESULTS: We identified a heterozygous variant, c.388G>A, p.Gly130Arg, in the eukaryotic translation initiation factor 2 alpha kinase 2 (EIF2AK2) gene, segregating with early onset isolated generalized dystonia in 5 patients of a Taiwanese family. EIF2AK2 sequencing in 191 unrelated patients with unexplained dystonia yielded 2 unrelated Caucasian patients with an identical heterozygous c.388G>A, p.Gly130Arg variant, occurring de novo in one case, another patient carrying a different heterozygous variant, c.413G>C, p.Gly138Ala, and one last patient, born from consanguineous parents, carrying a third, homozygous variant c.95A>C, p.Asn32Thr. These 3 missense variants are absent from gnomAD, and are located in functional domains of the encoded protein. In 3 patients, additional neurological manifestations were present, including intellectual disability and spasticity. EIF2AK2 encodes a kinase (protein kinase R [PKR]) that phosphorylates eukaryotic translation initiation factor 2 alpha (eIF2α), which orchestrates the cellular stress response. Our expression studies showed abnormally enhanced activation of the cellular stress response, monitored by PKR-mediated phosphorylation of eIF2α, in fibroblasts from patients with EIF2AK2 variants. Intriguingly, PKR can also be regulated by PRKRA (protein interferon-inducible double-stranded RNA-dependent protein kinase activator A), the product of another gene causing monogenic dystonia. INTERPRETATION: We identified EIF2AK2 variants implicated in early onset generalized dystonia, which can be dominantly or recessively inherited, or occur de novo. Our findings provide direct evidence for a key role of a dysfunctional eIF2α pathway in the pathogenesis of dystonia. ANN NEUROL 2021;89:485-497.


Assuntos
Distúrbios Distônicos/genética , Fibroblastos/metabolismo , eIF-2 Quinase/genética , Adolescente , Adulto , Idade de Início , Povo Asiático , Encéfalo/diagnóstico por imagem , Criança , Pré-Escolar , Distúrbios Distônicos/metabolismo , Distúrbios Distônicos/fisiopatologia , Feminino , Estudo de Associação Genômica Ampla , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Linhagem , População Branca , Sequenciamento do Exoma , Adulto Jovem , eIF-2 Quinase/metabolismo
4.
Brain ; 144(6): 1774-1786, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-33889943

RESUMO

The pathophysiology of dystonic tremor and essential tremor remains partially understood. In patients with medication-refractory dystonic tremor or essential tremor, deep brain stimulation (DBS) targeting the thalamus or posterior subthalamic area has evolved into a promising treatment option. However, the optimal DBS targets for these disorders remains unknown. This retrospective study explored the optimal targets for DBS in essential tremor and dystonic tremor using a combination of volumes of tissue activated estimation and functional and structural connectivity analyses. We included 20 patients with dystonic tremor who underwent unilateral thalamic DBS, along with a matched cohort of 20 patients with essential tremor DBS. Tremor severity was assessed preoperatively and approximately 6 months after DBS implantation using the Fahn-Tolosa-Marin Tremor Rating Scale. The tremor-suppressing effects of DBS were estimated using the percentage improvement in the unilateral tremor-rating scale score contralateral to the side of implantation. The optimal stimulation region, based on the cluster centre of gravity for peak contralateral motor score improvement, for essential tremor was located in the ventral intermediate nucleus region and for dystonic tremor in the ventralis oralis posterior nucleus region along the ventral intermediate nucleus/ventralis oralis posterior nucleus border (4 mm anterior and 3 mm superior to that for essential tremor). Both disorders showed similar functional connectivity patterns: a positive correlation between tremor improvement and involvement of the primary sensorimotor, secondary motor and associative prefrontal regions. Tremor improvement, however, was tightly correlated with the primary sensorimotor regions in essential tremor, whereas in dystonic tremor, the correlation was tighter with the premotor and prefrontal regions. The dentato-rubro-thalamic tract, comprising the decussating and non-decussating fibres, significantly correlated with tremor improvement in both dystonic and essential tremor. In contrast, the pallidothalamic tracts, which primarily project to the ventralis oralis posterior nucleus region, significantly correlated with tremor improvement only in dystonic tremor. Our findings support the hypothesis that the pathophysiology underpinning dystonic tremor involves both the cerebello-thalamo-cortical network and the basal ganglia-thalamo-cortical network. Further our data suggest that the pathophysiology of essential tremor is primarily attributable to the abnormalities within the cerebello-thalamo-cortical network. We conclude that the ventral intermediate nucleus/ventralis oralis posterior nucleus border and ventral intermediate nucleus region may be a reasonable DBS target for patients with medication-refractory dystonic tremor and essential tremor, respectively. Uncovering the pathophysiology of these disorders may in the future aid in further improving DBS outcomes.


Assuntos
Estimulação Encefálica Profunda/métodos , Tremor Essencial/fisiopatologia , Tremor Essencial/cirurgia , Tremor/fisiopatologia , Tremor/cirurgia , Adulto , Distúrbios Distônicos/complicações , Distúrbios Distônicos/fisiopatologia , Distúrbios Distônicos/cirurgia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Vias Neurais/fisiopatologia , Núcleos Posteriores do Tálamo/fisiopatologia , Núcleos Posteriores do Tálamo/cirurgia , Estudos Retrospectivos , Tálamo/fisiopatologia , Tálamo/cirurgia , Tremor/etiologia
5.
Cereb Cortex ; 31(10): 4853-4863, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34013319

RESUMO

Musician's dystonia is a type of focal task-specific dystonia (FTSD) characterized by abnormal muscle hypercontraction and loss of fine motor control specifically during instrument playing. Although the neuropathophysiology of musician's dystonia remains unclear, it has been suggested that maladaptive functional abnormalities in subcortical and cortical regions may be involved. Here, we hypothesized that aberrant effective connectivity between the cerebellum (subcortical) and motor/somatosensory cortex may underlie the neuropathophysiology of musician's dystonia. Using functional magnetic resonance imaging, we measured the brain activity of 30 pianists with or without FTSD as they played a magnetic resonance imaging-compatible piano-like keyboard, which elicited dystonic symptoms in many but not all pianists with FTSD. Pianists with FTSD showed greater activation of the right cerebellum during the task than healthy pianists. Furthermore, patients who reported dystonic symptoms during the task demonstrated greater cerebellar activation than those who did not, establishing a link between cerebellar activity and overt dystonic symptoms. Using multivoxel pattern analysis, moreover, we found that dystonic and healthy pianists differed in the task-related effective connectivity between the right cerebellum and left premotor/somatosensory cortex. The present study indicates that abnormal cerebellar activity and cerebello-cortical connectivity may underlie the pathophysiology of FTSD in musicians.


Assuntos
Cerebelo/fisiopatologia , Córtex Cerebral/fisiopatologia , Distúrbios Distônicos/fisiopatologia , Música , Vias Neurais/fisiopatologia , Adulto , Cerebelo/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Distúrbios Distônicos/diagnóstico por imagem , Feminino , Lateralidade Funcional/fisiologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Córtex Motor/fisiopatologia , Vias Neurais/diagnóstico por imagem , Desempenho Psicomotor , Córtex Somatossensorial/diagnóstico por imagem , Córtex Somatossensorial/fisiopatologia , Adulto Jovem
6.
J Integr Neurosci ; 21(1): 35, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35164471

RESUMO

Owing to the small number of patients with tyrosine hydroxylase (TH) deficiency, no genotype-phenotype correlations have yet been identified. To investigate the genotype-phenotype correlation of R233H mutation in TH deficiency, we analyzed the clinical manifestations and treatment responses of four patients with the R233H homozygous mutation. Thirty-eight additional patients, available from the literature, known to be homozygous or heterozygous for the R233H mutation, were combined with the four cases from our hospital. Data for a total of 42 patients were retrieved. Our four patients showed clinical presentation consistent with Type A TH deficiency, and responded well to levodopa therapy, with an improvement in clinical symptoms within 1-2 weeks. In the 42 patients, 20 of 42 patients (48%) were homozygous and 22 (52%) were heterozygous for the R233H mutation. Of the 20 patients who were homozygous for the R233H mutation, a majority (80%) suffered from Type A TH deficiency. Of the 8 patients that were heterozygous for the R233H/the mutation located downstream of exon 11, 7 patients (86%) suffered from Type B TH deficiency. Of the 7 patients who were heterozygous for the R233H/nonsense mutation, 6 (86%) suffered from Type B TH deficiency. Genotype-phenotype correlation of R233H mutation was observed in TH deficiency. The homozygous R233H mutation frequently manifests as Type A TH deficiency, whereas R233H/nonsense mutation or any mutation located downstream of exon 11 manifests as Type B TH deficiency.


Assuntos
Distúrbios Distônicos/congênito , Criança , Pré-Escolar , Distúrbios Distônicos/genética , Distúrbios Distônicos/fisiopatologia , Feminino , Estudos de Associação Genética , Humanos , Lactente , Masculino , Fenótipo
7.
J Neurosci ; 40(48): 9317-9326, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33097635

RESUMO

There are two types of dystonic tremor syndromes (DTS), dystonic tremor (DT) and tremor associated with dystonia (TAWD), and neither is understood. DTS likely share some mechanisms with nontremulous dystonia, and there may also be overlaps with essential tremor (ET). We studied 21 ET (8 females, 13 males) and 22 DTS human patients (10 females, 12 males), including 13 human patients with DT (writer's cramp with writing tremor) and 9 human patients with tremor associated with dystonia (TAWD; cervical dystonia with hand tremor). Tremors were analyzed using accelerometry and surface EMG of the antagonist pairs of arm muscles during posture, simple kinetic movement, and writing. Cerebellar inhibition was performed to assess cerebello-thalamo-cortical involvement. DT exhibited higher variability of peak frequency and greater instability of tremor burst intervals over time (higher tremor stability index) than ET or TAWD regardless of tasks. Intermuscular coherence magnitude between the antagonist pairs increased during the writing task in DT, but not ET or TAWD. ET and TAWD exhibited different phase relationships of the temporal fluctuations of voluntary movement and tremor in the kinetic condition. A linear discriminant classifier based on these tremor parameters was able to distinguish the three groups with a classification accuracy of 95.1%. Cerebellar inhibition was significantly reduced in DT, but not in TAWD, compared with ET and healthy controls. Our study shows that the two DTS are distinct entities with DT closer to nontremorous dystonia and TAWD closer to ET.SIGNIFICANCE STATEMENT This study provides novel findings about characteristics and pathophysiology of the two different types of dystonic tremor syndromes compared with essential tremor. Patients with DTS are classified into DT who have dystonia and tremor in the same area, and tremor associated with dystonia (TAWD) who have dystonia and tremor elsewhere. Our results showed that DT exhibits increased tremor variability, instability, and intermuscular coherence, and decreased cerebello-thalamo-cortical inhibition compared with TAWD. Our study shows that DT and TAWD are distinct phenotypes, and that the physiological characteristics of DT are more similar to nontremorous dystonia, and TAWD is closer to ET.


Assuntos
Distonia/fisiopatologia , Tremor Essencial/fisiopatologia , Tremor/fisiopatologia , Acelerometria , Idoso , Cerebelo/fisiopatologia , Distúrbios Distônicos/fisiopatologia , Eletromiografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Movimento/fisiologia , Estimulação Magnética Transcraniana
8.
Neurobiol Dis ; 157: 105444, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34265424

RESUMO

Task-specific dystonia is a neurological movement disorder that abnormal contractions of muscles result in the twisting of fixed postures or muscle spasm during specific tasks. Due to the rareness and the pathophysiology of the disease, there is no test to confirm the diagnosis of task-specific dystonia, except comprehensive observations by the experts. Evidence from neural electrophysiological data suggests that enhanced low frequency (4-12 Hz) oscillations in the subcortical structure of the globus pallidus were associated with the pathological abnormalities concerning ß and γ rhythms in motor areas and motor cortical network in patients with task-specific dystonia. However, whether patients with task-specific dystonia have any low-frequency abnormalities in motor cortical areas remains unclear. In this study, we hypothesized that low-frequency abnormalities are present in core motor areas and motor cortical networks in patients with task-specific dystonia during performing the non-symptomatic movements and those low-frequency abnormalities can help the diagnosis of this disease. We tested this hypothesis by using EEG, effective connectivity analysis, and a machine learning method. Fifteen patients with task-specific dystonia and 15 healthy controls were recruited. The machine learning method identified 8 aberrant movement-related network connections concerning low frequency, ß and γ frequencies, which enabled the separation of the data of patients from those of controls with an accuracy of 90%. Importantly, 7 of the 8 aberrant connections engaged the premotor area contralateral to the affected hand, suggesting an important role of the premotor area in the pathological abnormities. The patients exhibited significantly lower low frequency activities during the movement preparation and significantly lower ß rhythms during movements compared with healthy controls in the core motor areas. Our findings of low frequency- and ß-related abnormalities at the cortical level and aberrant motor network could help diagnose task-specific dystonia in the clinical setting, and the importance of the contralesional premotor area suggests its diagnostic potential for task-specific dystonia.


Assuntos
Ondas Encefálicas/fisiologia , Distúrbios Distônicos/diagnóstico , Vias Eferentes/fisiopatologia , Córtex Motor/fisiopatologia , Adulto , Ritmo beta/fisiologia , Estudos de Casos e Controles , Distúrbios Distônicos/fisiopatologia , Eletroencefalografia , Feminino , Humanos , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Adulto Jovem
9.
Neurobiol Dis ; 159: 105511, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34537328

RESUMO

One of the great mysteries in dystonia pathophysiology is the role of environmental factors in disease onset and development. Progress has been made in defining the genetic components of dystonic syndromes, still the mechanisms behind the discrepant relationship between dystonic genotype and phenotype remain largely unclear. Within this review, the preclinical and clinical evidence for environmental stressors as disease modifiers in dystonia pathogenesis are summarized and critically evaluated. The potential role of extragenetic factors is discussed in monogenic as well as adult-onset isolated dystonia. The available clinical evidence for a "second hit" is analyzed in light of the reduced penetrance of monogenic dystonic syndromes and put into context with evidence from animal and cellular models. The contradictory studies on adult-onset dystonia are discussed in detail and backed up by evidence from animal models. Taken together, there is clear evidence of a gene-environment interaction in dystonia, which should be considered in the continued quest to unravel dystonia pathophysiology.


Assuntos
Distúrbios Distônicos/fisiopatologia , Exposição Ambiental/estatística & dados numéricos , Interação Gene-Ambiente , Plasticidade Neuronal/fisiologia , Animais , Modelos Animais de Doenças , Distúrbios Distônicos/epidemiologia , Distúrbios Distônicos/genética , Humanos , Técnicas In Vitro , Plasticidade Neuronal/genética , Penetrância
10.
Neurobiol Dis ; 148: 105223, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33316367

RESUMO

Focal dystonias are the most common forms of isolated dystonia; however, the etiopathophysiological signatures of disorder penetrance and clinical manifestation remain unclear. Using an imaging genetics approach, we investigated functional and structural representations of neural endophenotypes underlying the penetrance and manifestation of laryngeal dystonia in families, including 21 probands and 21 unaffected relatives, compared to 32 unrelated healthy controls. We further used a supervised machine-learning algorithm to predict the risk for dystonia development in susceptible individuals based on neural features of identified endophenotypes. We found that abnormalities in prefrontal-parietal cortex, thalamus, and caudate nucleus were commonly shared between patients and their unaffected relatives, representing an intermediate endophenotype of laryngeal dystonia. Machine learning classified 95.2% of unaffected relatives as patients rather than healthy controls, substantiating that these neural alterations represent the endophenotypic marker of dystonia penetrance, independent of its symptomatology. Additional abnormalities in premotor-parietal-temporal cortical regions, caudate nucleus, and cerebellum were present only in patients but not their unaffected relatives, likely representing a secondary endophenotype of dystonia manifestation. Based on alterations in the parietal cortex and caudate nucleus, the machine learning categorized 28.6% of unaffected relative as patients, indicating their increased lifetime risk for developing clinical manifestation of dystonia. The identified endophenotypic neural markers may be implemented for screening of at-risk individuals for dystonia development, selection of families for genetic studies of novel variants based on their risk for disease penetrance, or stratification of patients who would respond differently to a particular treatment in clinical trials.


Assuntos
Encéfalo/diagnóstico por imagem , Distúrbios Distônicos/diagnóstico por imagem , Endofenótipos , Doenças da Laringe/diagnóstico por imagem , Penetrância , Adulto , Idoso , Encéfalo/fisiopatologia , Estudos de Casos e Controles , Núcleo Caudado/diagnóstico por imagem , Núcleo Caudado/fisiopatologia , Cerebelo/diagnóstico por imagem , Cerebelo/fisiopatologia , Distúrbios Distônicos/genética , Distúrbios Distônicos/fisiopatologia , Família , Feminino , Neuroimagem Funcional , Humanos , Doenças da Laringe/genética , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Córtex Motor/diagnóstico por imagem , Córtex Motor/fisiopatologia , Lobo Parietal/diagnóstico por imagem , Lobo Parietal/fisiopatologia , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiopatologia , Medição de Risco , Aprendizado de Máquina Supervisionado , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/fisiopatologia , Tálamo/diagnóstico por imagem , Tálamo/fisiopatologia
11.
Hum Mol Genet ; 28(8): 1343-1356, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30590536

RESUMO

Dystonia is a movement disorder characterized by involuntary and repetitive co-contractions of agonist and antagonist muscles. Dystonia 6 (DYT6) is an autosomal dominant dystonia caused by loss-of-function mutations in the zinc finger transcription factor THAP1. We have generated Thap1 knock-out mice with a view to understanding its transcriptional role. While germ-line deletion of Thap1 is embryonic lethal, mice lacking one Thap1 allele-which in principle should recapitulate the haploinsufficiency of the human syndrome-do not show a discernable phenotype. This is because mice show autoregulation of Thap1 mRNA levels with upregulation at the non-affected locus. We then deleted Thap1 in glial and neuronal precursors using a nestin-conditional approach. Although these mice do not exhibit dystonia, they show pronounced locomotor deficits reflecting derangements in the cerebellar and basal ganglia circuitry. These behavioral features are associated with alterations in the expression of genes involved in nervous system development, synaptic transmission, cytoskeleton, gliosis and dopamine signaling that link DYT6 to other primary and secondary dystonic syndromes.


Assuntos
Proteínas de Ligação a DNA/genética , Distonia Muscular Deformante/genética , Distúrbios Distônicos/genética , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/fisiologia , Proteínas de Ligação a DNA/fisiologia , Modelos Animais de Doenças , Distonia/genética , Distonia Muscular Deformante/fisiopatologia , Distúrbios Distônicos/fisiopatologia , Regulação da Expressão Gênica/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Síndrome , Dedos de Zinco
12.
Mol Genet Metab ; 133(4): 352-361, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34092491

RESUMO

Dystonia is characterized by involuntary muscle contractions that cause debilitating twisting movements and postures. Although dysfunction of the basal ganglia, a brain region that mediates movement, is implicated in many forms of dystonia, the underlying mechanisms are unclear. The inherited metabolic disorder DOPA-responsive dystonia is considered a prototype for understanding basal ganglia dysfunction in dystonia because it is caused by mutations in genes necessary for the synthesis of the neurotransmitter dopamine, which mediates the activity of the basal ganglia. Therefore, to reveal abnormal striatal cellular processes and pathways implicated in dystonia, we used an unbiased proteomic approach in a knockin mouse model of DOPA-responsive dystonia, a model in which the striatum is known to play a central role in the expression of dystonia. Fifty-seven of the 1805 proteins identified were differentially regulated in DOPA-responsive dystonia mice compared to control mice. Most differentially regulated proteins were associated with gene ontology terms that implicated either mitochondrial or synaptic dysfunction whereby proteins associated with mitochondrial function were generally over-represented and proteins associated with synaptic function were largely under-represented. Remarkably, nearly 20% of the differentially regulated striatal proteins identified in our screen are associated with pathogenic variants that cause inherited disorders with dystonia as a sign in humans suggesting shared mechanisms across many different forms of dystonia.


Assuntos
Distúrbios Distônicos/genética , Proteômica/métodos , Animais , Gânglios da Base/metabolismo , Gânglios da Base/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Distúrbios Distônicos/fisiopatologia , Feminino , Técnicas de Introdução de Genes , Ontologia Genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL
13.
Brain ; 143(2): 396-406, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31628799

RESUMO

The current model of the basal ganglia system based on the 'direct', 'indirect' and 'hyperdirect' pathways provides striking predictions about basal ganglia function that have been used to develop deep brain stimulation approaches for Parkinson's disease and dystonia. The aim of this review is to challenge this scheme in light of new tract tracing information that has recently become available from the human brain using MRI-based tractography, thus providing a novel perspective on the basal ganglia system. We also explore the implications of additional direct pathways running from cortex to basal ganglia and between basal ganglia and cerebellum in the pathophysiology of movement disorders.


Assuntos
Conectoma , Distúrbios Distônicos/fisiopatologia , Vias Neurais/fisiopatologia , Doença de Parkinson/fisiopatologia , Encéfalo/fisiopatologia , Estimulação Encefálica Profunda/métodos , Distúrbios Distônicos/terapia , Humanos , Doença de Parkinson/terapia
14.
Brain ; 143(6): 1766-1779, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32428227

RESUMO

Humans have a distinguishing ability for fine motor control that is subserved by a highly evolved cortico-motor neuronal network. The acquisition of a particular motor skill involves a long series of practice movements, trial and error, adjustment and refinement. At the cortical level, this acquisition begins in the parieto-temporal sensory regions and is subsequently consolidated and stratified in the premotor-motor cortex. Task-specific dystonia can be viewed as a corruption or loss of motor control confined to a single motor skill. Using a multimodal experimental approach combining neuroimaging and non-invasive brain stimulation, we explored interactions between the principal nodes of the fine motor control network in patients with writer's cramp and healthy matched controls. Patients and healthy volunteers underwent clinical assessment, diffusion-weighted MRI for tractography, and functional MRI during a finger tapping task. Activation maps from the task-functional MRI scans were used for target selection and neuro-navigation of the transcranial magnetic stimulation. Single- and double-pulse TMS evaluation included measurement of the input-output recruitment curve, cortical silent period, and amplitude of the motor evoked potentials conditioned by cortico-cortical interactions between premotor ventral (PMv)-motor cortex (M1), anterior inferior parietal lobule (aIPL)-M1, and dorsal inferior parietal lobule (dIPL)-M1 before and after inducing a long term depression-like plastic change to dIPL node with continuous theta-burst transcranial magnetic stimulation in a randomized, sham-controlled design. Baseline dIPL-M1 and aIPL-M1 cortico-cortical interactions were facilitatory and inhibitory, respectively, in healthy volunteers, whereas the interactions were converse and significantly different in writer's cramp. Baseline PMv-M1 interactions were inhibitory and similar between the groups. The dIPL-PMv resting state functional connectivity was increased in patients compared to controls, but no differences in structural connectivity between the nodes were observed. Cortical silent period was significantly prolonged in writer's cramp. Making a long term depression-like plastic change to dIPL node transformed the aIPL-M1 interaction to inhibitory (similar to healthy volunteers) and cancelled the PMv-M1 inhibition only in the writer's cramp group. These findings suggest that the parietal multimodal sensory association region could have an aberrant downstream influence on the fine motor control network in writer's cramp, which could be artificially restored to its normal function.


Assuntos
Distúrbios Distônicos/metabolismo , Distúrbios Distônicos/fisiopatologia , Lobo Parietal/fisiopatologia , Adulto , Encéfalo/fisiopatologia , Mapeamento Encefálico/métodos , Distúrbios Distônicos/diagnóstico por imagem , Potencial Evocado Motor/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Córtex Motor/fisiopatologia , Plasticidade Neuronal/fisiologia , Lobo Parietal/metabolismo , Desempenho Psicomotor/fisiologia , Estimulação Magnética Transcraniana/métodos
15.
Acta Neurochir (Wien) ; 163(1): 211-217, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33052494

RESUMO

Limited data are available regarding the electrophysiology of status dystonicus (SD). We report simultaneous microelectrode recordings (MERs) from the globus pallidus internus (GPi) of a patient with SD who was treated with bilateral deep brain stimulation (DBS). Mean neuronal discharge rate was of 30.1 ± 10.9 Hz and 38.5 Hz ± 11.1 Hz for the right and left GPi, respectively. On the right side, neuronal electrical activity was completely abolished at the target point, whereas the mean burst index values showed a predominance of bursting and irregular activity along trajectories on both sides. Our data are in line with previous findings of pallidal irregular hypoactivity as a potential electrophysiological marker of dystonia and thus SD, but further electrophysiological studies are needed to confirm our results.


Assuntos
Estimulação Encefálica Profunda/métodos , Distúrbios Distônicos/fisiopatologia , Globo Pálido/fisiopatologia , Estimulação Encefálica Profunda/instrumentação , Distúrbios Distônicos/terapia , Feminino , Humanos , Masculino , Microeletrodos
16.
J Hand Ther ; 34(2): 309-314, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34176657

RESUMO

BACKGROUND: Movement dysfunctions are commonly reported in musicians, and in extreme cases may result in a persisting loss of motor control. This condition, whereby motor control of the hand during previously highly trained movements on the instrument is lost, is termed focal hand dystonia. It is widely considered to be a consequence of prolonged repetitive daily practice, often in combination with exposure to a range of other risk factors. Current literature recommends retraining as a promising treatment intervention, although only scant scientific evidence exists on which components should be included in a retraining program, and how these may be best administered. METHODS: A progressive muscle activation and movement exercise program was devised by one of the authors applying a series of anatomy-based off-instrument movement tasks. This series of fine motor control exercises, was used to both assess and retrain focal hand dystonia in a population of musicians. The standardized approach aimed to provide a systematic method of retraining musically relevant muscular synergies that could later be applied to the instrument, while still allowing individual modifications. Retraining sessions were mostly run online as a consequence of the coronavirus pandemic, although some early sessions were also able to be undertaken face to face. Both qualitative and quantitative measures were used in this case series to evaluate program efficacy, due to the typical heterogeneity of the focal hand dystonia participants. This included: blinded external neurological evaluation of video footage using the Tubiana grading system, written subjective feedback, exercise progressions, and performance outcomes. RESULTS: Pilot testing of 4 patients indicated the utility of the program over approximately a 12- month time period. All subjects improved, 2 of whom have returned to pre-dystonia performance levels. These patients reported the importance of patience and persistence with daily exercise sessions in their recovery. CONCLUSION: Using off-instrument playing-relevant exercises to enhance fine motor control and muscle activation can be effective in retraining focal hand dystonia, regardless of additional treatments or level of performance. They should be regularly practiced and progressed in order for effects to be best progressed to instrumental applications. Further research may elucidate whether there are optimal outcomes with single or particular combinations of treatment approaches.


Assuntos
Distúrbios Distônicos/prevenção & controle , Ergonomia , Terapia por Exercício/métodos , Mãos/fisiopatologia , Doenças Profissionais/prevenção & controle , Adulto , Distúrbios Distônicos/fisiopatologia , Estudos de Viabilidade , Feminino , Humanos , Masculino , Dor Musculoesquelética/fisiopatologia , Dor Musculoesquelética/prevenção & controle , Música , Doenças Profissionais/fisiopatologia , Educação de Pacientes como Assunto , Projetos Piloto , Adulto Jovem
17.
Hum Brain Mapp ; 41(11): 3059-3076, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32243055

RESUMO

Previous studies suggested that brain regions subtending affective-cognitive processes can be implicated in the pathophysiology of functional dystonia (FD). In this study, the role of the affective-cognitive network was explored in two phenotypes of FD: fixed (FixFD) and mobile dystonia (MobFD). We hypothesized that each of these phenotypes would show peculiar functional connectivity (FC) alterations in line with their divergent disease clinical expressions. Resting state fMRI (RS-fMRI) was obtained in 40 FD patients (12 FixFD; 28 MobFD) and 43 controls (14 young FixFD-age-matched [yHC]; 29 old MobFD-age-matched [oHC]). FC of brain regions of interest, known to be involved in affective-cognitive processes, and independent component analysis of RS-fMRI data to explore brain networks were employed. Compared to HC, all FD patients showed reduced FC between the majority of affective-cognitive seeds of interest and the fronto-subcortical and limbic circuits; enhanced FC between the right affective-cognitive part of the cerebellum and the bilateral associative parietal cortex; enhanced FC of the bilateral amygdala with the subcortical and posterior cortical brain regions; and altered FC between the left medial dorsal nucleus and the sensorimotor and associative brain regions (enhanced in MobFD and reduced in FixFD). Compared with yHC and MobFD patients, FixFD patients had an extensive pattern of reduced FC within the cerebellar network, and between the majority of affective-cognitive seeds of interest and the sensorimotor and high-order function ("cognitive") areas with a unique involvement of dorsal anterior cingulate cortex connectivity. Brain FC within the affective-cognitive network is altered in FD and presented specific features associated with each FD phenotype, suggesting an interaction between brain connectivity and clinical expression of the disease.


Assuntos
Afeto/fisiologia , Encéfalo/fisiopatologia , Cognição/fisiologia , Conectoma , Distúrbios Distônicos/fisiopatologia , Transtornos Somatoformes/fisiopatologia , Adulto , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/fisiopatologia , Encéfalo/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiopatologia , Estudos Transversais , Distúrbios Distônicos/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Transtornos Somatoformes/diagnóstico por imagem , Adulto Jovem
18.
J Neurol Neurosurg Psychiatry ; 91(4): 426-433, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32079672

RESUMO

OBJECTIVE: Genetic subtypes of dystonia may respond differentially to deep brain stimulation of the globus pallidus pars interna (GPi DBS). We sought to compare GPi DBS outcomes among the most common monogenic dystonias. METHODS: This systematic review and meta-analysis followed the Preferred Reporting Items for Systematic Reviews and Meta-analyses and Meta-analysis of Observational Studies in Epidemiology guidelines. We searched PubMed for studies on genetically confirmed monogenic dystonia treated with GPi DBS documenting pre-surgical and post-surgical assessments using the Burke-Fahn-Marsden Dystonia Rating Scale Motor Score (BFMMS) and Burke-Fahn-Marsden Disability Score (BFMDS). We performed (i) meta-analysis for each gene mutation; (ii) weighted ordinary linear regression analyses to compare BFMMS and BFMDS outcomes between DYT-TOR1A and other monogenic dystonias, adjusting for age and disease duration and (iii) weighted linear regression analysis to estimate the effect of age, sex and disease duration on GPi DBS outcomes. Results were summarised with mean change and 95% CI. RESULTS: DYT-TOR1A (68%, 38.4 points; p<0.001), DYT-THAP1 (37% 14.5 points; p<0.001) and NBIA/DYT-PANK2 (27%, 21.4 points; p<0.001) improved in BFMMS; only DYT-TOR1A improved in BFMDS (69%, 9.7 points; p<0.001). Improvement in DYT-TOR1A was significantly greater than in DYT-THAP1 (BFMMS -31%), NBIA/DYT-PANK2 (BFMMS -35%; BFMDS -53%) and CHOR/DYT-ADCY5 (BFMMS -36%; BFMDS -42%). Worse motor outcomes were associated with longer dystonia duration and older age at dystonia onset in DYT-TOR1A, longer dystonia duration in DYT/PARK-TAF1 and younger age at dystonia onset in DYT-SGCE. CONCLUSIONS: GPi DBS outcomes vary across monogenic dystonias. These data serve to inform patient selection and prognostic counselling.


Assuntos
Estimulação Encefálica Profunda , Distonia/terapia , Distúrbios Distônicos/terapia , Globo Pálido , Idade de Início , Distonia/genética , Distonia/fisiopatologia , Distúrbios Distônicos/genética , Distúrbios Distônicos/fisiopatologia , Humanos , Terapêutica , Fatores de Tempo , Resultado do Tratamento
19.
Mov Disord ; 35(1): 151-160, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31571302

RESUMO

BACKGROUND: Abnormal sensory processing, including temporal discrimination threshold, has been described in various dystonic syndromes. OBJECTIVE: To investigate visual sensory processing in DYT-SGCE and identify its structural correlates. METHODS: DYT-SGCE patients without DBS (DYT-SGCE-non-DBS) and with DBS (DYT-SGCE-DBS) were compared to healthy volunteers in three tasks: a temporal discrimination threshold, a movement orientation discrimination, and movement speed discrimination. Response times attributed to accumulation of sensory visual information were computationally modelized, with µ parameter indicating sensory mean growth rate. We also identified the structural correlates of behavioral performance for temporal discrimination threshold. RESULTS: Twenty-four DYT-SGCE-non-DBS, 13 DYT-SGCE-DBS, and 25 healthy volunteers were included in the study. In DYT-SGCE-DBS, the discrimination threshold was higher in the temporal discrimination threshold (P = 0.024), with no difference among the groups in other tasks. The sensory mean growth rate (µ) was lower in DYT-SGCE in all three tasks (P < 0.01), reflecting a slower rate of sensory accumulation for the visual information in these patients independent of DBS. Structural imaging analysis showed a thicker left primary visual cortex (P = 0.001) in DYT-SGCE-non-DBS compared to healthy volunteers, which also correlated with lower µ in temporal discrimination threshold (P = 0.029). In DYT-SGCE-non-DBS, myoclonus severity also correlated with a lower µ in the temporal discrimination threshold task (P = 0.048) and with thicker V1 on the left (P = 0.022). CONCLUSION: In DYT-SGCE, we showed an alteration of the visual sensory processing in the temporal discrimination threshold that correlated with myoclonus severity and structural changes in the primary visual cortex. © 2019 International Parkinson and Movement Disorder Society.


Assuntos
Distúrbios Distônicos/fisiopatologia , Transtornos dos Movimentos/fisiopatologia , Movimento/fisiologia , Percepção Visual/fisiologia , Adulto , Distúrbios Distônicos/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos dos Movimentos/patologia , Mioclonia/patologia , Mioclonia/fisiopatologia
20.
Am J Med Genet A ; 182(10): 2207-2213, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33001581

RESUMO

The clinical presentation of bilateral perisylvian polymicrogyria (PMG) is highly variable, including oromotor dysfunction, epilepsy, intellectual disability, and pyramidal signs. Extrapyramidal features are extremely rare. We present four apparently unrelated patients with a unique association of PMG with dystonia. The clinical, genetic, and radiologic features are described and possible mechanisms of dystonia are discussed. All patients were female and two were born to consanguineous families. All presented with early childhood onset dystonia. Other neurologic symptoms and signs classically seen in bilateral perisylvian PMG were observed, including oromotor dysfunction and speech abnormalities ranging from dysarthria to anarthria (4/4), pyramidal signs (3/4), hypotonia (3/4), postnatal microcephaly (1/4), and seizures (1/4). Neuroimaging showed a unique pattern of bilateral PMG with an infolded cortex originating primarily from the perisylvian region in three out of four patients. Whole exome sequencing was performed in two out of four patients and did not reveal pathogenic variants in known genes for cortical malformations or movement disorders. The dystonia seen in our patients is not described in bilateral PMG and suggests an underlying mechanism of impaired connectivity within the motor network or compromised cortical inhibition. The association of bilateral PMG with dystonia in our patients may represent a new neurogenetic disorder.


Assuntos
Anormalidades Múltiplas/diagnóstico , Distonia/diagnóstico , Distúrbios Distônicos/diagnóstico , Deficiência Intelectual/diagnóstico , Malformações do Desenvolvimento Cortical/diagnóstico , Polimicrogiria/diagnóstico , Anormalidades Múltiplas/diagnóstico por imagem , Anormalidades Múltiplas/fisiopatologia , Adolescente , Adulto , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiopatologia , Criança , Pré-Escolar , Distonia/complicações , Distonia/diagnóstico por imagem , Distonia/fisiopatologia , Distúrbios Distônicos/diagnóstico por imagem , Distúrbios Distônicos/fisiopatologia , Eletroencefalografia , Epilepsia/complicações , Epilepsia/diagnóstico , Epilepsia/diagnóstico por imagem , Epilepsia/fisiopatologia , Feminino , Humanos , Deficiência Intelectual/diagnóstico por imagem , Deficiência Intelectual/fisiopatologia , Imageamento por Ressonância Magnética , Malformações do Desenvolvimento Cortical/diagnóstico por imagem , Malformações do Desenvolvimento Cortical/fisiopatologia , Neuroimagem/métodos , Polimicrogiria/complicações , Polimicrogiria/diagnóstico por imagem , Polimicrogiria/fisiopatologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA