Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 363
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Neurosci ; 59(7): 1407-1427, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38123503

RESUMO

DYT1 dystonia is associated with decreased striatal dopamine release. In this study, we examined the possibility that ultrastructural changes of nigrostriatal dopamine terminals could contribute to this neurochemical imbalance using a serial block face/scanning electron microscope (SBF/SEM) and three-dimensional reconstruction to analyse striatal tyrosine hydroxylase-immunoreactive (TH-IR) terminals and their synapses in a DYT1(ΔE) knockin (DYT1-KI) mouse model of DYT1 dystonia. Furthermore, to study possible changes in vesicle packaging capacity of dopamine, we used transmission electron microscopy to assess the synaptic vesicle size in striatal dopamine terminals. Quantitative comparative analysis of 80 fully reconstructed TH-IR terminals in the WT and DYT1-KI mice indicate (1) no significant difference in the volume of TH-IR terminals; (2) no major change in the proportion of axo-spinous versus axo-dendritic synapses; (3) no significant change in the post-synaptic density (PSD) area of axo-dendritic synapses, while the PSDs of axo-spinous synapses were significantly smaller in DYT1-KI mice; (4) no significant change in the contact area between TH-IR terminals and dendritic shafts or spines, while the ratio of PSD area/contact area decreased significantly for both axo-dendritic and axo-spinous synapses in DYT1-KI mice; (5) no significant difference in the mitochondria volume; and (6) no significant difference in the synaptic vesicle area between the two groups. Altogether, these findings suggest that abnormal morphometric changes of nigrostriatal dopamine terminals and their post-synaptic targets are unlikely to be a major source of reduced striatal dopamine release in DYT1 dystonia.


Assuntos
Distonia Muscular Deformante , Distonia , Camundongos , Animais , Dopamina/análise , Distonia/genética , Distonia Muscular Deformante/genética , Corpo Estriado/química , Sinapses/ultraestrutura
2.
J Neurosci ; 41(9): 2024-2038, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33468570

RESUMO

DYT1 dystonia is a hereditary neurologic movement disorder characterized by uncontrollable muscle contractions. It is caused by a heterozygous mutation in Torsin A (TOR1A), a gene encoding a membrane-embedded ATPase. While animal models provide insights into disease mechanisms, significant species-dependent differences exist since animals with the identical heterozygous mutation fail to show pathology. Here, we model DYT1 by using human patient-specific cholinergic motor neurons (MNs) that are generated through either direct conversion of patients' skin fibroblasts or differentiation of induced pluripotent stem cells (iPSCs). These human MNs with the heterozygous TOR1A mutation show reduced neurite length and branches, markedly thickened nuclear lamina, disrupted nuclear morphology, and impaired nucleocytoplasmic transport (NCT) of mRNAs and proteins, whereas they lack the perinuclear "blebs" that are often observed in animal models. Furthermore, we uncover that the nuclear lamina protein LMNB1 is upregulated in DYT1 cells and exhibits abnormal subcellular distribution in a cholinergic MNs-specific manner. Such dysregulation of LMNB1 can be recapitulated by either ectopic expression of the mutant TOR1A gene or shRNA-mediated downregulation of endogenous TOR1A in healthy control MNs. Interestingly, downregulation of LMNB1 can largely ameliorate all the cellular defects in DYT1 MNs. These results reveal the value of disease modeling with human patient-specific neurons and indicate that dysregulation of LMNB1, a crucial component of the nuclear lamina, may constitute a major molecular mechanism underlying DYT1 pathology.SIGNIFICANCE STATEMENT Inaccessibility to patient neurons greatly impedes our understanding of the pathologic mechanisms for dystonia. In this study, we employ reprogrammed human patient-specific motor neurons (MNs) to model DYT1, the most severe hereditary form of dystonia. Our results reveal disease-dependent deficits in nuclear morphology and nucleocytoplasmic transport (NCT). Most importantly, we further identify LMNB1 dysregulation as a major contributor to these deficits, uncovering a new pathologic mechanism for DYT1 dystonia.


Assuntos
Técnicas de Reprogramação Celular/métodos , Distonia Muscular Deformante/metabolismo , Lamina Tipo B/metabolismo , Neurônios Motores/metabolismo , Adolescente , Adulto , Técnicas de Cultura de Células/métodos , Diferenciação Celular/fisiologia , Células Cultivadas , Distonia Muscular Deformante/genética , Feminino , Fibroblastos , Humanos , Células-Tronco Pluripotentes Induzidas , Masculino , Pessoa de Meia-Idade , Chaperonas Moleculares/genética , Neurônios Motores/patologia , Células-Tronco Neurais , Adulto Jovem
3.
Hum Mol Genet ; 28(8): 1343-1356, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30590536

RESUMO

Dystonia is a movement disorder characterized by involuntary and repetitive co-contractions of agonist and antagonist muscles. Dystonia 6 (DYT6) is an autosomal dominant dystonia caused by loss-of-function mutations in the zinc finger transcription factor THAP1. We have generated Thap1 knock-out mice with a view to understanding its transcriptional role. While germ-line deletion of Thap1 is embryonic lethal, mice lacking one Thap1 allele-which in principle should recapitulate the haploinsufficiency of the human syndrome-do not show a discernable phenotype. This is because mice show autoregulation of Thap1 mRNA levels with upregulation at the non-affected locus. We then deleted Thap1 in glial and neuronal precursors using a nestin-conditional approach. Although these mice do not exhibit dystonia, they show pronounced locomotor deficits reflecting derangements in the cerebellar and basal ganglia circuitry. These behavioral features are associated with alterations in the expression of genes involved in nervous system development, synaptic transmission, cytoskeleton, gliosis and dopamine signaling that link DYT6 to other primary and secondary dystonic syndromes.


Assuntos
Proteínas de Ligação a DNA/genética , Distonia Muscular Deformante/genética , Distúrbios Distônicos/genética , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/fisiologia , Proteínas de Ligação a DNA/fisiologia , Modelos Animais de Doenças , Distonia/genética , Distonia Muscular Deformante/fisiopatologia , Distúrbios Distônicos/fisiopatologia , Regulação da Expressão Gênica/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Síndrome , Dedos de Zinco
4.
Int J Mol Sci ; 22(5)2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33799994

RESUMO

We aimed to investigate A2A receptors in the basal ganglia of a DYT1 mouse model of dystonia. A2A was studied in control Tor1a+/+ and Tor1a+/- knock-out mice. A2A expression was assessed by anti-A2A antibody immunofluorescence and Western blotting. The co-localization of A2A was studied in striatal cholinergic interneurons identified by anti-choline-acetyltransferase (ChAT) antibody. A2A mRNA and cyclic adenosine monophosphate (cAMP) contents were also assessed. In Tor1a+/+, Western blotting detected an A2A 45 kDa band, which was stronger in the striatum and the globus pallidus than in the entopeduncular nucleus. Moreover, in Tor1a+/+, immunofluorescence showed A2A roundish aggregates, 0.3-0.4 µm in diameter, denser in the neuropil of the striatum and the globus pallidus than in the entopeduncular nucleus. In Tor1a+/-, A2A Western blotting expression and immunofluorescence aggregates appeared either increased in the striatum and the globus pallidus, or reduced in the entopeduncular nucleus. Moreover, in Tor1a+/-, A2A aggregates appeared increased in number on ChAT positive interneurons compared to Tor1a+/+. Finally, in Tor1a+/-, an increased content of cAMP signal was detected in the striatum, while significant levels of A2A mRNA were neo-expressed in the globus pallidus. In Tor1a+/-, opposite changes of A2A receptors' expression in the striatal-pallidal complex and the entopeduncular nucleus suggest that the pathophysiology of dystonia is critically dependent on a composite functional imbalance of the indirect over the direct pathway in basal ganglia.


Assuntos
Gânglios da Base/metabolismo , Distonia Muscular Deformante/genética , Receptor A2A de Adenosina/metabolismo , Animais , Gânglios da Base/patologia , Neurônios Colinérgicos/metabolismo , Corpo Estriado/metabolismo , AMP Cíclico/metabolismo , Modelos Animais de Doenças , Distonia Muscular Deformante/metabolismo , Distonia Muscular Deformante/patologia , Regulação da Expressão Gênica , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia de Fluorescência , Chaperonas Moleculares/genética , RNA Mensageiro , Receptor A2A de Adenosina/genética
5.
Neurobiol Dis ; 134: 104638, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31618684

RESUMO

DYT1 early-onset generalized torsion dystonia is a hereditary movement disorder characterized by abnormal postures and repeated movements. It is caused mainly by a heterozygous trinucleotide deletion in DYT1/TOR1A, coding for torsinA. The mutation may lead to a partial loss of torsinA function. Functional alterations of the basal ganglia circuits have been implicated in this disease. Striatal dopamine receptor 2 (D2R) levels are significantly decreased in DYT1 dystonia patients and in the animal models of DYT1 dystonia. D2R-expressing cells, such as the medium spiny neurons in the indirect pathway, striatal cholinergic interneurons, and dopaminergic neurons in the basal ganglia circuits, contribute to motor performance. However, the function of torsinA in these neurons and its contribution to the motor symptoms is not clear. Here, D2R-expressing-cell-specific Dyt1 conditional knockout (d2KO) mice were generated and in vivo effects of torsinA loss in the corresponding cells were examined. The Dyt1 d2KO mice showed significant reductions of striatal torsinA, acetylcholine metabolic enzymes, Tropomyosin receptor kinase A (TrkA), and cholinergic interneurons. The Dyt1 d2KO mice also showed significant reductions of striatal D2R dimers and tyrosine hydroxylase without significant alteration in striatal monoamine contents or the number of dopaminergic neurons in the substantia nigra. The Dyt1 d2KO male mice showed motor deficits in the accelerated rotarod and beam-walking tests without overt dystonic symptoms. Moreover, the Dyt1 d2KO male mice showed significant correlations between striatal monoamines and locomotion. The results suggest that torsinA in the D2R-expressing cells play a critical role in the development or survival of the striatal cholinergic interneurons, expression of striatal D2R mature form, and motor performance. Medical interventions to compensate for the loss of torsinA function in these neurons may affect the onset and symptoms of this disease.


Assuntos
Neurônios Colinérgicos/patologia , Distonia Muscular Deformante/metabolismo , Interneurônios/patologia , Chaperonas Moleculares/metabolismo , Receptores de Dopamina D2/metabolismo , Animais , Neurônios Colinérgicos/metabolismo , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Distonia Muscular Deformante/genética , Distonia Muscular Deformante/patologia , Interneurônios/metabolismo , Masculino , Camundongos , Camundongos Knockout , Chaperonas Moleculares/genética , Transtornos Motores/genética , Transtornos Motores/metabolismo
6.
Neurobiol Dis ; 132: 104529, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31301343

RESUMO

A recent report of autosomal-recessive primary isolated dystonia (DYT2 dystonia) identified mutations in HPCA, a gene encoding a neuronal calcium sensor protein, hippocalcin (HPCA), as the cause of this disease. However, how mutant HPCA leads to neuronal dysfunction remains unknown. Using a multidisciplinary approach, we demonstrated the failure of dystonic N75K HPCA mutant to decode short bursts of action potentials and theta rhythms in hippocampal neurons by its Ca2+-dependent translocation to the plasma membrane. This translocation suppresses neuronal activity via slow afterhyperpolarization (sAHP) and we found that the N75K mutant could not control sAHP during physiologically relevant neuronal activation. Simulations based on the obtained experimental results directly demonstrated an increased excitability in neurons expressing N75K mutant instead of wild type (WT) HPCA. In conclusion, our study identifies sAHP as a downstream cellular target perturbed by N75K mutation in DYT2 dystonia, demonstrates its impact on neuronal excitability, and suggests a potential therapeutic strategy to efficiently treat DYT2.


Assuntos
Potenciais de Ação/fisiologia , Sinalização do Cálcio/fisiologia , Distonia Muscular Deformante/genética , Distonia Muscular Deformante/fisiopatologia , Hipocalcina/genética , Mutação/fisiologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Distonia Muscular Deformante/metabolismo , Feminino , Células HEK293 , Hipocalcina/metabolismo , Hipocampo/citologia , Hipocampo/fisiologia , Humanos , Masculino , Ratos , Ratos Wistar
7.
Plant Cell ; 28(5): 1078-93, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27113773

RESUMO

Transcriptional regulation is one of the most important mechanisms controlling development and cellular functions in plants and animals. The Arabidopsis thaliana bHLH transcription factor (TF) DYSFUNCTIONL TAPETUM1 (DYT1) is required for normal male fertility and anther development and activates the expression of the bHLH010/bHLH089/bHLH091 genes. Here, we showed that DYT1 is localized to both the cytoplasm and nucleus at anther stage 5 but specifically to the nucleus at anther stage 6 and onward. The bHLH010/bHLH089/bHLH091 proteins have strong nuclear localization signals, interact with DYT1, and facilitate the nuclear localization of DYT1. We further found that the conserved C-terminal BIF domain of DYT1 is required for its dimerization, nuclear localization, transcriptional activation activity, and function in anther development. Interestingly, when the BIF domain of DYT1 was replaced with that of bHLH010, the DYT1(N)-bHLH010(BIF) chimeric protein shows nuclear-preferential localization at anther stage 5 but could not fully rescue the dyt1-3 phenotype, suggesting that the normal spatio-temporal subcellular localization of DYT1 is important for DYT1 function and/or that the BIF domains from different bHLH members might be functionally distinct. Our results support an important positive feedback regulatory mechanism whereby downstream TFs increase the function of an upstream TF by enhancing its nucleus localization through the BIF domain.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Distonia Muscular Deformante/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Núcleo Celular/metabolismo , Distonia Muscular Deformante/genética , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Ligação Proteica/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Biochem Biophys Res Commun ; 495(1): 346-352, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29127012

RESUMO

Dystonia-1 (DYT1) is an autosomal dominant early-onset torsion form of dystonia, a neurological disease affecting movement. DYT1 is the prototypic hereditary dystonia and is caused by the mutation of the tor1a gene. The gene product has chaperone functions important for the control of protein folding and stability. Dystonia-4 (DYT4) is another autosomal dominant dystonia that is characterized by onset in the second to third decade of progressive laryngeal dysphonia. DYT4 is associated with the mutation of the tubb4a gene, although it remains to be understood how disease-associated mutation affects biochemical as well as cell biological properties of the gene product as the microtubule component (a tubulin beta subunit). Herein we demonstrate that DYT4-associated TUBB4A missense mutants (Arg2-to-Gly or Ala271-to-Thr) form disorganized tubulin networks in cells. Transfected mutants are indeed expressed in cytoplasmic regions, as observed in wild-type transfectants. However, mutant proteins do not exhibit typical radial tubulin networks. Rather, they have diminished ability to interact with tubulin alpha subunits. Processes do not form in sufficient amounts in cells of the N1E-115 neuronal cell line expressing each of these mutants as compared to parental cells. Together, DYT4-associated TUBB4A mutants themselves form aberrant tubulin networks and inhibit neuronal process growth, possibly explaining progress through the pathological states at cellular levels.


Assuntos
Distonia Muscular Deformante/metabolismo , Microtúbulos/metabolismo , Neuritos/metabolismo , Neuritos/patologia , Neurogênese , Tubulina (Proteína)/metabolismo , Células Cultivadas , Distonia Muscular Deformante/genética , Humanos , Microtúbulos/genética , Microtúbulos/patologia , Mutação/genética , Tubulina (Proteína)/genética
9.
Dev Period Med ; 22(1): 33-38, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29641419

RESUMO

OBJECTIVE: Introduction: Torsion dystonia type 1 is the most common form of early-onset primary dystonia. Previous reports have suggested that torsin 1A, a protein mutated in this disease, might function as a chaperone that prevents the toxic aggregation of misfolded polypeptides. The aim of the study: The aim of this study was to verify the chaperone function of torsin 1A by investigating its ability to prevent the aggregation of huntingtin model peptides. PATIENTS AND METHODS: Materials and methods: N-terminal mutant huntingtin fragments of different length were co-expressed in neuronal HT-22 and non-neuronal HeLa cells with either the wild-type or mutant (ΔE302/303) torsin 1A protein. The transfected cells were immunostained and analyzed for the presence of huntingtin aggregates using fluorescence microscopy. RESULTS: Results: The immunofluorescence analysis of huntingtin subcellular distribution within the transfected cells showed no significant difference between the huntingtin aggregation levels in cells co-expressing the wild-type torsin 1A and in control cells co-transfected with an empty vector. Instead, it was the increased level of huntingtin aggregation in the presence of the torsion dystonia-causing ΔE302/303 mutant that reached statistical significance in both neuronal and non-neuronal cells. CONCLUSION: Conclusions: Either torsin 1A does not function as a chaperone protein or huntingtin is not an efficient substrate for such a hypothetical chaperone activity. However, the ability of mutant torsin 1A to stimulate the accumulation of aggregation-prone polypeptides might constitute an important source of ΔE302/303 pathogenicity and thus a potential target for future therapy.


Assuntos
Proteína Huntingtina/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutação , Agregação Patológica de Proteínas , Animais , Linhagem Celular , Distonia Muscular Deformante/genética , Células HeLa , Humanos , Proteína Huntingtina/genética , Camundongos
10.
Crit Rev Biochem Mol Biol ; 50(6): 532-49, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26592310

RESUMO

Torsin ATPases (Torsins) belong to the widespread AAA+ (ATPases associated with a variety of cellular activities) family of ATPases, which share structural similarity but have diverse cellular functions. Torsins are outliers in this family because they lack many characteristics of typical AAA+ proteins, and they are the only members of the AAA+ family located in the endoplasmic reticulum and contiguous perinuclear space. While it is clear that Torsins have essential roles in many, if not all metazoans, their precise cellular functions remain elusive. Studying Torsins has significant medical relevance since mutations in Torsins or Torsin-associated proteins result in a variety of congenital human disorders, the most frequent of which is early-onset torsion (DYT1) dystonia, a severe movement disorder. A better understanding of the Torsin system is needed to define the molecular etiology of these diseases, potentially enabling corrective therapy. Here, we provide a comprehensive overview of the Torsin system in metazoans, discuss functional clues obtained from various model systems and organisms and provide a phylogenetic and structural analysis of Torsins and their regulatory cofactors in relation to disease-causative mutations. Moreover, we review recent data that have led to a dramatically improved understanding of these machines at a molecular level, providing a foundation for investigating the molecular defects underlying the associated movement disorders. Lastly, we discuss our ideas on how recent progress may be utilized to inform future studies aimed at determining the cellular role(s) of these atypical molecular machines and their implications for dystonia treatment options.


Assuntos
Chaperonas Moleculares/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Transporte/metabolismo , Modelos Animais de Doenças , Distonia Muscular Deformante/genética , Distonia Muscular Deformante/metabolismo , Proteínas de Choque Térmico HSC70/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Chaperonas Moleculares/análise , Chaperonas Moleculares/genética , Dados de Sequência Molecular , Mutação , Transporte Proteico , Alinhamento de Sequência
11.
Hum Mol Genet ; 24(22): 6459-72, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26370418

RESUMO

DYT1 dystonia, the most common inherited form of primary dystonia, is a neurodevelopmental disease caused by a dominant mutation in TOR1A. This mutation ('ΔE') removes a single glutamic acid from the encoded protein, torsinA. The effects of this mutation, at the molecular and circuit levels, and the reasons for its neurodevelopmental onset, remain incompletely understood. To uniquely address key questions of disease pathogenesis, we generated a conditional Tor1a knock-in allele that is converted from wild-type to DYT1 mutant ('induced' ΔE: Tor1a(i-ΔE)), following Cre recombination. We used this model to perform a gene dosage study exploring the effects of the ΔE mutation at the molecular, neuropathological and organismal levels. These analyses demonstrated that ΔE-torsinA is a hypomorphic allele and showed no evidence for any gain-of-function toxic properties. The unique capabilities of this model also enabled us to test a circuit-level hypothesis of DYT1 dystonia, which predicts that expression of the DYT1 genotype (Tor1a(ΔE/+)) selectively within hindbrain structures will produce an overtly dystonic animal. In contrast to this prediction, we find no effect of this anatomic-specific expression of the DYT1 genotype, a finding that has important implications for the interpretation of the human and mouse diffusion tensor-imaging studies upon which it is based. These studies advance understanding of the molecular effects of the ΔE mutation, challenge current concepts of the circuit dysfunction that characterize the disease and establish a powerful tool that will be valuable for future studies of disease pathophysiology.


Assuntos
Distonia Muscular Deformante/genética , Chaperonas Moleculares/genética , Mutação , Alelos , Animais , Imagem de Tensor de Difusão , Modelos Animais de Doenças , Distonia Muscular Deformante/metabolismo , Feminino , Técnicas de Introdução de Genes , Genótipo , Masculino , Camundongos , Camundongos Transgênicos , Chaperonas Moleculares/metabolismo , Neurônios/metabolismo
12.
Mov Disord ; 32(3): 371-381, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27911022

RESUMO

Heterozygosity for a 3-base pair deletion (ΔGAG) in TOR1A/torsinA is one of the most common causes of hereditary dystonia. In this review, we highlight current understanding of how this mutation causes disease from research spanning structural biochemistry, cell science, neurobiology, and several model organisms. We now know that homozygosity for ΔGAG has the same effects as Tor1aKO , implicating a partial loss of function mechanism in the ΔGAG/+ disease state. In addition, torsinA loss specifically affects neurons in mice, even though the gene is broadly expressed, apparently because of differential expression of homologous torsinB. Furthermore, certain neuronal subtypes are more severely affected by torsinA loss. Interestingly, these include striatal cholinergic interneurons that display abnormal responses to dopamine in several Tor1a animal models. There is also progress on understanding torsinA molecular cell biology. The structural basis of how ΔGAG inhibits torsinA ATPase activity is defined, although mutant torsinAΔGAG protein also displays some characteristics suggesting it contributes to dystonia by a gain-of-function mechanism. Furthermore, a consistent relationship is emerging between torsin dysfunction and membrane biology, including an evolutionarily conserved regulation of lipid metabolism. Considered together, these findings provide major advances toward understanding the molecular, cellular, and neurobiological pathologies of DYT1/TOR1A dystonia that can hopefully be exploited for new approaches to treat this disease. © 2016 International Parkinson and Movement Disorder Society.


Assuntos
Distonia Muscular Deformante/metabolismo , Chaperonas Moleculares/metabolismo , Animais , Distonia Muscular Deformante/genética , Humanos , Chaperonas Moleculares/genética
13.
Mov Disord ; 32(10): 1348-1355, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28627117

RESUMO

Dystonia is a common movement disorder. In this paper, we review the literature on cognitive function in idiopathic and DYT1 dystonia. In idiopathic or DYT1 dystonia, cognition is largely intact with only isolated executive dysfunction. Dystonia patients also have increased temporal and spatial discrimination thresholds, considered endophenotypes of the disorder because deficits are also shown by unaffected relatives and nonmanifesting carriers of the DYT1 mutation. Anticholinergic medication in high doses can be associated with memory impairment in dystonia. The successful treatment of dystonia with botulinum toxin injections or deep brain stimulation does not produce any major adverse effects on cognition. The aspects of cognition that require further investigation in future studies of dystonia include inhibitory control, decision making, and social cognition. © 2017 International Parkinson and Movement Disorder Society.


Assuntos
Transtornos Cognitivos/etiologia , Distonia Muscular Deformante/complicações , Chaperonas Moleculares/genética , Mutação/genética , Toxinas Botulínicas/uso terapêutico , Estimulação Encefálica Profunda , Distonia Muscular Deformante/genética , Distonia Muscular Deformante/terapia , Humanos
14.
Hum Mol Genet ; 23(10): 2694-710, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24381311

RESUMO

A newly identified lethal form of hereditary sensory and autonomic neuropathy (HSAN), designated HSAN-VI, is caused by a homozygous mutation in the bullous pemphigoid antigen 1 (BPAG1)/dystonin gene (DST). The HSAN-VI mutation impacts all major neuronal BPAG1/dystonin protein isoforms: dystonin-a1, -a2 and -a3. Homozygous mutations in the murine Dst gene cause a severe sensory neuropathy termed dystonia musculorum (dt). Phenotypically, dt mice are similar to HSAN-VI patients, manifesting progressive limb contractures, dystonia, dysautonomia and early postnatal death. To obtain a better molecular understanding of disease pathogenesis in HSAN-VI patients and the dt disorder, we generated transgenic mice expressing a myc-tagged dystonin-a2 protein under the regulation of the neuronal prion protein promoter on the dt(Tg4/Tg4) background, which is devoid of endogenous dystonin-a1 and -a2, but does express dystonin-a3. Restoring dystonin-a2 expression in the nervous system, particularly within sensory neurons, prevented the disorganization of organelle membranes and microtubule networks, attenuated the degeneration of sensory neuron subtypes and ameliorated the phenotype and increased life span in these mice. Despite these improvements, complete rescue was not observed likely because of inadequate expression of the transgene. Taken together, this study provides needed insight into the molecular basis of the dt disorder and other peripheral neuropathies including HSAN-VI.


Assuntos
Proteínas de Transporte/genética , Proteínas do Citoesqueleto/genética , Neuropatias Hereditárias Sensoriais e Autônomas/genética , Proteínas do Tecido Nervoso/genética , Animais , Proteínas de Transporte/metabolismo , Células Cultivadas , Proteínas do Citoesqueleto/metabolismo , Modelos Animais de Doenças , Distonia Muscular Deformante/genética , Distonina , Gânglios Espinais/patologia , Neuropatias Hereditárias Sensoriais e Autônomas/patologia , Humanos , Membranas Intracelulares/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microtúbulos/metabolismo , Fusos Musculares/metabolismo , Fusos Musculares/patologia , Fibras Nervosas Mielinizadas/metabolismo , Fibras Nervosas Mielinizadas/patologia , Proteínas do Tecido Nervoso/metabolismo , Junção Neuromuscular/metabolismo , Junção Neuromuscular/patologia , Fenótipo , Propriocepção , Células Receptoras Sensoriais/patologia , Transgenes
15.
Proc Natl Acad Sci U S A ; 110(17): E1545-54, 2013 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-23569223

RESUMO

TorsinA is a membrane-associated AAA+ (ATPases associated with a variety of cellular activities) ATPase implicated in primary dystonia, an autosomal-dominant movement disorder. We reconstituted TorsinA and its cofactors in vitro and show that TorsinA does not display ATPase activity in isolation; ATP hydrolysis is induced upon association with LAP1 and LULL1, type II transmembrane proteins residing in the nuclear envelope and endoplasmic reticulum. This interaction requires TorsinA to be in the ATP-bound state, and can be attributed to the luminal domains of LAP1 and LULL1. This ATPase activator function controls the activities of other members of the Torsin family in distinct fashion, leading to an acceleration of the hydrolysis step by up to two orders of magnitude. The dystonia-causing mutant of TorsinA is defective in this activation mechanism, suggesting a loss-of-function mechanism for this congenital disorder.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Transporte/metabolismo , Distonia Muscular Deformante/genética , Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico HSC70/metabolismo , Proteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Cromatografia em Gel , Clonagem Molecular , Distonia Muscular Deformante/metabolismo , Células HEK293 , Células HeLa , Humanos , Hidrólise , Immunoblotting , Imunoprecipitação , Chaperonas Moleculares/genética
16.
J Biol Chem ; 289(18): 12727-47, 2014 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-24627482

RESUMO

Early-onset torsion dystonia (EOTD) is a neurological disorder characterized by involuntary and sustained muscle contractions that can lead to paralysis and abnormal posture. EOTD is associated with the deletion of a glutamate (ΔE) in torsinA, an endoplasmic reticulum (ER) resident AAA(+) ATPase. To date, the effect of ΔE on torsinA and the reason that this mutation results in EOTD are unclear. Moreover, there are no specific therapeutic options to treat EOTD. To define the underlying biochemical defects associated with torsinAΔE and to uncover factors that might be targeted to offset defects associated with torsinAΔE, we developed a yeast torsinA expression system and tested the roles of ER chaperones in mediating the folding and stability of torsinA and torsinAΔE. We discovered that the ER lumenal Hsp70, BiP, an associated Hsp40, Scj1, and a nucleotide exchange factor, Lhs1, stabilize torsinA and torsinAΔE. BiP also maintained torsinA and torsinAΔE solubility. Mutations predicted to compromise specific torsinA functional motifs showed a synthetic interaction with the ΔE mutation and destabilized torsinAΔE, suggesting that the ΔE mutation predisposes torsinA to defects in the presence of secondary insults. In this case, BiP was required for torsinAΔE degradation, consistent with data that specific chaperones exhibit either pro-degradative or pro-folding activities. Finally, using two independent approaches, we established that BiP stabilizes torsinA and torsinAΔE in mammalian cells. Together, these data define BiP as the first identified torsinA chaperone, and treatments that modulate BiP might improve symptoms associated with EOTD.


Assuntos
Adenosina Trifosfatases/metabolismo , Distonia Muscular Deformante/metabolismo , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/genética , Animais , Western Blotting , Linhagem Celular , Distonia Muscular Deformante/genética , Retículo Endoplasmático/metabolismo , Chaperona BiP do Retículo Endoplasmático , Glicosilação , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Células HeLa , Proteínas de Choque Térmico/genética , Humanos , Microscopia de Fluorescência , Chaperonas Moleculares/genética , Mutação , Estabilidade Proteica , Interferência de RNA , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
17.
Mov Disord ; 30(6): 828-33, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25545912

RESUMO

Recently, mutations in the TUBB4A gene have been found to underlie hypomyelination with atrophy of the basal ganglia and cerebellum (H-ABC) syndrome, a rare neurodegenerative disorder of infancy and childhood. TUBB4A mutations also have been described as causative of DYT4 ("hereditary whispering dysphonia"). However, in DYT4, brain imaging has been reported to be normal and, therefore, H-ABC syndrome and DYT4 have been construed to be different disorders, despite some phenotypic overlap. Hence, the question of whether these disorders reflect variable expressivity or pleiotropy of TUBB4A mutations has been raised. We report four unrelated patients with imaging findings either partially or totally consistent with H-ABC syndrome, who were found to have TUBB4A mutations. All four subjects had a relatively homogenous phenotype characterized by severe generalized dystonia with superimposed pyramidal and cerebellar signs, and also bulbar involvement leading to complete aphonia and swallowing difficulties, even though one of the cases had an intermediate phenotype between H-ABC syndrome and DYT4. Genetic analysis of the TUBB4A gene showed one previously described and two novel mutations (c.941C>T; p.Ala314Val and c.900G>T; p.Met300Ile) in the exon 4 of the gene. While expanding the genetic spectrum of H-ABC syndrome, we confirm its radiological heterogeneity and demonstrate that phenotypic overlap with DYT4. Moreover, reappraisal of previously reported cases would also argue against pleiotropy of TUBB4A mutations. We therefore suggest that H-ABC and DYT4 belong to a continuous phenotypic spectrum associated with TUBB4A mutations.


Assuntos
Gânglios da Base/patologia , Cerebelo/patologia , Distonia Muscular Deformante/genética , Pleiotropia Genética , Leucoencefalopatias/genética , Tubulina (Proteína)/genética , Distúrbios da Voz/congênito , Adulto , Distonia Muscular Deformante/patologia , Distonia Muscular Deformante/fisiopatologia , Éxons , Feminino , Heterozigoto , Humanos , Leucoencefalopatias/patologia , Leucoencefalopatias/fisiopatologia , Masculino , Mutação , Fenótipo , Distúrbios da Voz/genética , Distúrbios da Voz/patologia , Distúrbios da Voz/fisiopatologia
18.
Postepy Biochem ; 61(1): 35-41, 2015.
Artigo em Polonês | MEDLINE | ID: mdl-26281352

RESUMO

Torsin 1A is a protein mutated in torsion dystonia type 1, a hereditary neurological disorder of early onset and variable clinical picture. The basic cellular function of torsin 1A, a polypeptide localized predominantly in the endoplasmic reticulum and nuclear envelope, remains unknown, although the protein is suspected of being involved in many different cellular processes, including regulating a proper structure and function of nuclear envelope, contributing to the synaptic vesicular trafficking, or assisting in proper folding of misfolded proteins. This review summarizes the current state of knowledge regarding the potential functions of torsin 1A in the context of hypothetical pathomechanisms responsible for torsion dystonia type 1.


Assuntos
Distonia Muscular Deformante/genética , Distonia Muscular Deformante/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Animais , Humanos , Mutação , Membrana Nuclear/metabolismo
19.
Hum Mutat ; 35(9): 1101-13, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24930953

RESUMO

Early-onset dystonia is associated with the deletion of one of a pair of glutamic acid residues (c.904_906delGAG/c.907_909delGAG; p.Glu302del/Glu303del; ΔE 302/303) near the carboxyl-terminus of torsinA, a member of the AAA(+) protein family that localizes to the endoplasmic reticulum lumen and nuclear envelope. This deletion commonly underlies early-onset DYT1 dystonia. While the role of the disease-causing mutation, torsinAΔE, has been established through genetic association studies, it is much less clear whether other rare human variants of torsinA are pathogenic. Two missense variations have been described in single patients: R288Q (c.863G>A; p.Arg288Gln; R288Q) identified in a patient with onset of severe generalized dystonia and myoclonus since infancy and F205I (c.613T>A, p.Phe205Ile; F205I) in a psychiatric patient with late-onset focal dystonia. In this study, we have undertaken a series of analyses comparing the biochemical and cellular effects of these rare variants to torsinAΔE and wild-type (wt) torsinA to reveal whether there are common dysfunctional features. The results revealed that the variants, R288Q and F205I, are more similar in their properties to torsinAΔE protein than to torsinAwt. These findings provide functional evidence for the potential pathogenic nature of these rare sequence variants in the TOR1A gene, thus implicating these pathologies in the development of dystonia.


Assuntos
Distonia Muscular Deformante/genética , Variação Genética , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Retículo Endoplasmático/metabolismo , Fibroblastos/metabolismo , Técnicas de Silenciamento de Genes , Estudos de Associação Genética , Humanos , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Simulação de Dinâmica Molecular , Mutação , Fenótipo , Conformação Proteica , Multimerização Proteica , Transporte Proteico , Proteínas do Envelope Viral/metabolismo
20.
Hum Mutat ; 35(9): 1114-22, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24931141

RESUMO

A three-nucleotide (GAG) deletion (ΔE) in TorsinA (TOR1A) has been identified as the most common cause of dominantly inherited early-onset torsion dystonia (DYT1). TOR1A encodes a chaperone-like AAA+-protein localized in the endoplasmic reticulum. Currently, only three additional, likely mutations have been reported in single dystonia patients. Here, we report two new, putative TOR1A mutations (p.A14_P15del and p.E121K) that we examined functionally in comparison with wild-type (WT) protein and two known mutations (ΔE and p.R288Q). While inclusion formation is a characteristic feature for ΔE TOR1A, elevated levels of aggregates for other mutations were not observed when compared with WT TOR1A. WT and mutant TOR1A showed preferred degradation through the autophagy-lysosome pathway, which is most pronounced for p.A14_P15del, p.R288Q, and ΔE TOR1A. Notably, blocking of the autophagy pathway with bafilomycin resulted in a significant increase in inclusion formation in p.E121K TOR1A. In addition, all variants had an influence on protein stability. Although the p.A14_P15del mutation affects the proposed oligomerization domain of TOR1A, this mutation did not disturb the ability to dimerize. Our findings demonstrate functional changes for all four mutations on different levels. Thus, both diagnostic and research genetic screening of dystonia patients should not be limited to testing for the ∆E mutation.


Assuntos
Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Fenótipo , Adulto , Idade de Início , Autofagia , Linhagem Celular , Distonia Muscular Deformante/diagnóstico , Distonia Muscular Deformante/genética , Distonia Muscular Deformante/metabolismo , Feminino , Frequência do Gene , Humanos , Espaço Intracelular/metabolismo , Lisossomos/metabolismo , Masculino , Pessoa de Meia-Idade , Chaperonas Moleculares/química , Mutação , Polimorfismo de Nucleotídeo Único , Multimerização Proteica , Estabilidade Proteica , Transporte Proteico , Proteólise , Transdução de Sinais , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA