Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Genet Metab ; 141(2): 108116, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38161139

RESUMO

Multiple sulfatase deficiency (MSD) is an ultra-rare, inherited lysosomal storage disease caused by mutations in the gene sulfatase modifying factor 1 (SUMF1). MSD is characterized by the functional deficiency of all sulfatase enzymes, leading to the storage of sulfated substrates including glycosaminoglycans (GAGs), sulfolipids, and steroid sulfates. Patients with MSD experience severe neurological impairment, hearing loss, organomegaly, corneal clouding, cardiac valve disease, dysostosis multiplex, contractures, and ichthyosis. Here, we generated a novel human model of MSD by reprogramming patient peripheral blood mononuclear cells to establish an MSD induced pluripotent stem cell (iPSC) line (SUMF1 p.A279V). We also generated an isogenic control iPSC line by correcting the pathogenic variant with CRISPR/Cas9 gene editing. We successfully differentiated these iPSC lines into neural progenitor cells (NPCs) and NGN2-induced neurons (NGN2-iN) to model the neuropathology of MSD. Mature neuronal cells exhibited decreased SUMF1 gene expression, increased lysosomal stress, impaired neurite outgrowth and maturation, reduced sulfatase activities, and GAG accumulation. Interestingly, MSD iPSCs and NPCs did not exhibit as severe of phenotypes, suggesting that as neurons differentiate and mature, they become more vulnerable to loss of SUMF1. In summary, we demonstrate that this human iPSC-derived neuronal model recapitulates the cellular and biochemical features of MSD. These cell models can be used as tools to further elucidate the mechanisms of MSD pathology and for the development of therapeutics.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doença da Deficiência de Múltiplas Sulfatases , Humanos , Leucócitos Mononucleares/metabolismo , Neurônios/patologia , Sulfatases , Oxirredutases atuantes sobre Doadores de Grupo Enxofre
2.
Clin Genet ; 106(4): 505-511, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38863195

RESUMO

Biallelic variants in SUMF1 are associated with multiple sulfatase deficiency (MSD), a rare lysosomal storage disorder typically diagnosed in early infancy or childhood, marked by severe neurodegeneration and early mortality. We present clinical and molecular characterisation of three unrelated patients aged 13 to 58 years with milder clinical manifestations due to SUMF1 disease variants, including two adult patients presenting with apparent non-syndromic retinal dystrophy. Whole genome sequencing identified biallelic SUMF1 variants in all three patients; Patient 1 homozygous for a complex allele c.[290G>T;293T>A]; p.[(Gly97Val);(Val98Glu)], Patient 2 homozygous for c.866A>G; p.(Tyr289Cys), and Patient 3 compound heterozygous for c.726-1G>C and p.(Tyr289Cys). Electroretinography indicated a rod-cone dystrophy with additional possible inner retinal dysfunction in all three patients. Biochemical studies confirmed reduced, but not absent, sulfatase enzyme activity in the absence of extra-ocular disease (Patient 1) or only mild systemic disease (Patients 2, 3). These cases are suggestive that non-null SUMF1 genotypes can cause an attenuated clinical phenotype, including retinal dystrophy without systemic complications, in adulthood.


Assuntos
Alelos , Distrofias Retinianas , Sulfatases , Humanos , Masculino , Feminino , Adulto , Adolescente , Distrofias Retinianas/genética , Distrofias Retinianas/patologia , Pessoa de Meia-Idade , Sulfatases/genética , Sulfatases/deficiência , Leucócitos/patologia , Leucócitos/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Doença da Deficiência de Múltiplas Sulfatases/genética , Doença da Deficiência de Múltiplas Sulfatases/patologia , Mutação , Fenótipo , Adulto Jovem , Sequenciamento Completo do Genoma , Genótipo
3.
J Inherit Metab Dis ; 47(2): 374-386, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37870986

RESUMO

Sulfatases catalyze essential cellular reactions, including degradation of glycosaminoglycans (GAGs). All sulfatases are post-translationally activated by the formylglycine generating enzyme (FGE) which is deficient in multiple sulfatase deficiency (MSD), a neurodegenerative lysosomal storage disease. Historically, patients were presumed to be deficient of all sulfatase activities; however, a more nuanced relationship is emerging. Each sulfatase may differ in their degree of post-translational modification by FGE, which may influence the phenotypic spectrum of MSD. Here, we evaluate if residual sulfatase activity and accumulating GAG patterns distinguish cases from controls and stratify clinical severity groups in MSD. We quantify sulfatase activities and GAG accumulation using three complementary methods in MSD participants. Sulfatases differed greatly in their tolerance of reduction in FGE-mediated activation. Enzymes that degrade heparan sulfate (HS) demonstrated lower residual activities than those that act on other GAGs. Similarly, HS-derived urinary GAG subspecies preferentially accumulated, distinguished cases from controls, and correlated with disease severity. Accumulation patterns of specific sulfatase substrates in MSD provide fundamental insights into sulfatase regulation and will serve as much-needed biomakers for upcoming clinical trials. This work highlights that biomarker investigation of an ultra-rare disease can simultaneously inform our understanding of fundamental biology and advance clinical trial readiness efforts.


Assuntos
Doenças por Armazenamento dos Lisossomos , Doença da Deficiência de Múltiplas Sulfatases , Humanos , Doença da Deficiência de Múltiplas Sulfatases/genética , Sulfatases , Glicosaminoglicanos , Heparitina Sulfato , Oxirredutases atuantes sobre Doadores de Grupo Enxofre , Gravidade do Paciente
4.
Cerebellum ; 22(6): 1250-1256, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36482027

RESUMO

Multiple Sulfatase Deficiency (MSD) is a rare autosomal recessive disease with specific clinical findings such as psychomotor retardation and neurological deterioration. No therapy is available for this genetic disorder. Previous studies have shown that N-acetyl-L-leucine (NALL) can improve the neurological inflammation in the cerebellum.In the current study, the effects of NALL on ataxia symptoms and quality of life were explored in a patient with MSD.This study was a crossover case study. The subject, a girl aged 12 years old, received NALL at a dose of 3 g/day (1 g in the morning, 1 g in the afternoon, and 1 g in the evening). A fasting blood sample was taken from the subject to evaluate side effects before the intervention and 4 weeks after taking supplement/placebo in every study stage. The ataxia moving symptoms were evaluated using the Scale for the Assessment and Rating of Ataxia (SARA) score in every study stage. Dietary intake was measured using 24-h dietary recall before and after the intervention. The diet compositions were assessed by Nutritionist IV software. Serum IL-6 level was measured using an ELISA kit.There was no significant change in complete blood count (CBC) and serum biochemical factors in the patient with MSD after receiving NALL (3 g/day) over 4 weeks. The SARA score was reduced by 25%. The gait whose maximum score accounts for approximately one-fifth of the maximum total SARA score (8/40) was decreased. The heel-to-shin slide, the only SARA item performed without visual control, was also improved after therapy. Furthermore, there was a downward trend in the 8MWT (8.71 to 7.93 s). Regarding quality of life assessments, the parent and child reported improved quality of life index, physical health, and emotional function after taking NALL. Moreover, total energy intake was increased with NALL treatment through the study period.Supplementation with NALL at a dose of 3 g/day over 4 weeks was well tolerated and improved ataxia symptoms, quality of life measure, and serum IL-6 levels in the patient with MSD. Further proof-of-concept trials are warranted to confirm the present findings.


Assuntos
Ataxia Cerebelar , Doença da Deficiência de Múltiplas Sulfatases , Criança , Feminino , Humanos , Qualidade de Vida , Interleucina-6/uso terapêutico , Ataxia Cerebelar/tratamento farmacológico , Ataxia
5.
J Inherit Metab Dis ; 46(2): 335-347, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36433920

RESUMO

Multiple sulfatase deficiency (MSD) is an ultrarare lysosomal storage disorder due to deficiency of all known sulfatases. MSD is caused by mutations in the Sulfatase Modifying Factor 1 (SUMF1) gene encoding the enzyme responsible for the post-translational modification and activation of all sulfatases. Most MSD patients carry hypomorph SUMF1 variants resulting in variable degrees of residual sulfatase activities. In contrast, Sumf1 null mice with complete deficiency in all sulfatase enzyme activities, have very short lifespan with significant pre-wean lethality, owing to a challenging preclinical model. To overcome this limitation, we genetically engineered and characterized in mice two commonly identified patient-based SUMF1 pathogenic variants, namely p.Ser153Pro and p.Ala277Val. These pathogenic missense variants correspond to variants detected in patients with attenuated MSD presenting with partial-enzyme deficiency and relatively less severe disease. These novel MSD mouse models have a longer lifespan and show biochemical and pathological abnormalities observed in humans. In conclusion, mice harboring the p.Ser153Pro or the p.Ala277Val variant mimic the attenuated MSD and are attractive preclinical models for investigation of pathogenesis and treatments for MSD.


Assuntos
Doenças por Armazenamento dos Lisossomos , Doença da Deficiência de Múltiplas Sulfatases , Humanos , Animais , Camundongos , Doença da Deficiência de Múltiplas Sulfatases/genética , Mutação , Sulfatases , Mutação de Sentido Incorreto , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética
6.
BMC Pediatr ; 23(1): 133, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36959582

RESUMO

BACKGROUND: Multiple sulfatase deficiency (MSD) is a rare lysosomal storage disorder caused due to pathogenic variants in the SUMF1 gene. The SUMF1 gene encodes for formylglycine generating enzyme (FGE) that is involved in the catalytic activation of the family of sulfatases. The affected patients present with a wide spectrum of clinical features including multi-organ involvement. To date, almost 140 cases of MSD have been reported worldwide, with only four cases reported from India. The present study describes two cases of late infantile form of MSD from India and the identification of a novel missense variant in the SUMF1 gene. CASE PRESENTATION: In case 1, a male child presented to us at the age of 6 years. The remarkable presenting features included ichthyosis, presence of irritability, poor social response, thinning of corpus callosum on MRI and, speech regression. Clinical suspicion of MSD was confirmed by enzyme analysis of two sulfatase enzymes followed by gene sequencing. We identified a novel missense variant c.860A > T (p.Asn287Ile) in exon 7 of the SUMF1 gene. In case 2, a two and a half years male child presented with ichthyosis, leukodystrophy and facial dysmorphism. We performed an enzyme assay for two sulfatases, which showed significantly reduced activities thereby confirming MSD diagnosis. CONCLUSION: Overall, present study has added to the existing data on MSD from India. Based on the computational analysis, the novel variant c.860A > T identified in this study is likely to be associated with a milder phenotype and prolonged survival.


Assuntos
Ictiose , Doença da Deficiência de Múltiplas Sulfatases , Masculino , Humanos , Doença da Deficiência de Múltiplas Sulfatases/diagnóstico , Doença da Deficiência de Múltiplas Sulfatases/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Mutação de Sentido Incorreto , Sulfatases/genética
7.
J Clin Lab Anal ; 36(12): e24786, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36441600

RESUMO

BACKGROUND: Multiple sulfatase deficiency (MSD) (MIM#272200) is an ultra-rare autosomal recessive lysosomal storage disorder caused by mutation of the Sulfatase Modifying Factor 1 (SUMF1) gene. METHODS: Herein, we report an eight-year-old boy with a late infantile form of multiple sulfatase deficiency. A combination of copy-number variation sequencing (CNV-seq) and whole-exome sequencing (WES) were used to analyze the genetic cause for the MSD patient. RESULTS: Our results, previously not seen in China, show a novel compound heterozygous mutation with one allele containing a 240.55 kb microdeletion on 3p26.1 encompassing the SETMAR gene and exons 4-9 of the SUMF1 gene, and the other allele containing a novel missense mutation of c.671G>A (p.Arg224Gln) in the SUMF1 gene. Both were inherited from the proband's unaffected parents, one from each. Bioinformatics analyses show the novel variation to be "likely pathogenic." SWISS-MODEL analysis shows that the missense mutation may alter the three-dimensional (3D) structure. CONCLUSIONS: In summary, this study reported a novel compound heterozygous with microdeletion in SUMF1 gene, which has not been reported in China. The complex clinical manifestations of MSD may delay diagnosis; however, molecular genetic analysis of the SUMF1 gene can be performed to help obtain an early diagnosis.


Assuntos
Doença da Deficiência de Múltiplas Sulfatases , Masculino , Humanos , Criança , Doença da Deficiência de Múltiplas Sulfatases/genética , Doença da Deficiência de Múltiplas Sulfatases/diagnóstico , Sulfatases/genética , Mutação/genética , Mutação de Sentido Incorreto , Biologia Computacional , Histona-Lisina N-Metiltransferase/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética
8.
Anal Chem ; 92(9): 6341-6348, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-31922725

RESUMO

Liquid chromatography-tandem mass spectrometry (LC-MS/MS) assays were developed to measure arylsulfatase A (ARSA) activity in leukocytes and dried blood spots (DBS) using deuterated natural sulfatide substrate. These new assays were highly specific and sensitive. Patients with metachromatic leukodystrophy (MLD) and multiple sulfatase deficiency (MSD) displayed a clear deficit in the enzymatic activity and could be completely distinguished from normal controls. The leukocyte assay reported here will be important for diagnosing MLD and MSD patients and for monitoring the efficacy of therapeutic treatments. ARSA activity was measured in DBS for the first time without an antibody. This new ARSA DBS assay can serve as a second-tier test following the sulfatide measurement in DBS for newborn screening of MLD. This leads to an elimination of most of the false positives identified by the sulfatide assay.


Assuntos
Cerebrosídeo Sulfatase/análise , Teste em Amostras de Sangue Seco , Leucócitos/enzimologia , Leucodistrofia Metacromática/sangue , Doença da Deficiência de Múltiplas Sulfatases/sangue , Cerebrosídeo Sulfatase/metabolismo , Cromatografia Líquida , Humanos , Leucodistrofia Metacromática/diagnóstico , Leucodistrofia Metacromática/enzimologia , Estrutura Molecular , Doença da Deficiência de Múltiplas Sulfatases/diagnóstico , Doença da Deficiência de Múltiplas Sulfatases/enzimologia , Sulfoglicoesfingolipídeos/química , Espectrometria de Massas em Tandem
9.
Mol Genet Metab ; 130(4): 283-288, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32620537

RESUMO

Multiple Sulfatase Deficiency (MSD) is an inborn error of metabolism caused by pathogenic variants in the SUMF1 gene encoding the formylglycine-generating enzyme (FGE) that activates all known sulfatases. FGE deficiency results in widespread tissue accumulation of multiple sulphated substrates. Through a systematic analysis of published cases, we retrieved 80 MSD cases and reviewed the disease clinical, biochemical, and genetic findings. Leukodystrophy, neurosensorial hearing loss, and ichthyosis were the most frequent findings at diagnosis. Of 51 reported pathogenic variants, 20 were likely gene disruptive and the remaining were missense variants. No correlations between class of variants and clinical severity or degree of enzyme deficiency were detected. However, cases harboring variants located at N-terminal always had severe neonatal presentations. Moreover, cases with neonatal onset showed the lowest overall survival rate compared to late-infantile and juvenile onsets. Using GnomAD, carrier frequency for pathogenic SUMF1 variants was estimated to be ~1/700 and the disease prevalence was approximately 1/2,000,000. In summary, MSD is an ultra-rare multisystem disorder with mainly neurologic, hearing and skin involvements. Although the collected data were retrospective and heterogenous, the quantitative data inform the disease natural history and are important for both counseling and design of future interventional studies.


Assuntos
Doença da Deficiência de Múltiplas Sulfatases/diagnóstico , Mutação , Sulfatases/deficiência , Sulfatases/genética , Adolescente , Criança , Pré-Escolar , Estudos Transversais , Feminino , Seguimentos , Humanos , Lactente , Recém-Nascido , Masculino , Doença da Deficiência de Múltiplas Sulfatases/enzimologia , Doença da Deficiência de Múltiplas Sulfatases/genética , Prognóstico , Taxa de Sobrevida , Revisões Sistemáticas como Assunto
10.
J Inherit Metab Dis ; 43(6): 1298-1309, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32749716

RESUMO

Multiple sulfatase deficiency (MSD) is an ultra-rare neurodegenerative disorder caused by pathogenic variants in SUMF1. This gene encodes formylglycine-generating enzyme (FGE), a protein required for sulfatase activation. The clinical course of MSD results from additive effect of each sulfatase deficiency, including metachromatic leukodystrophy (MLD), several mucopolysaccharidoses (MPS II, IIIA, IIID, IIIE, IVA, VI), chondrodysplasia punctata, and X-linked ichthyosis. While it is known that affected individuals demonstrate a complex and severe phenotype, the genotype-phenotype relationship and detailed clinical course is unknown. We report on 35 cases enrolled in our retrospective natural history study, n = 32 with detailed histories. Neurologic function was longitudinally assessed with retrospective scales. Biochemical and computational modeling of novel SUMF1 variants was performed. Genotypes were classified based on predicted functional change, and each individual was assigned a genotype severity score. The median age at symptom onset was 0.25 years; median age at diagnosis was 2.7 years; and median age at death was 13 years. All individuals demonstrated developmental delay, and only a subset of individuals attained ambulation and verbal communication. All subjects experienced an accumulating systemic symptom burden. Earlier age at symptom onset and severe variant pathogenicity correlated with poor neurologic outcomes. Using retrospective deep phenotyping and detailed variant analysis, we defined the natural history of MSD. We found that attenuated cases can be distinguished from severe cases by age of onset, attainment of ambulation, and genotype. Results from this study can help inform prognosis and facilitate future study design.


Assuntos
Leucodistrofia Metacromática/genética , Mucopolissacaridoses/genética , Doença da Deficiência de Múltiplas Sulfatases/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Adolescente , Criança , Pré-Escolar , Feminino , Genótipo , Glicina/análogos & derivados , Glicina/genética , Glicina/metabolismo , Humanos , Lactente , Internacionalidade , Leucodistrofia Metacromática/patologia , Masculino , Mucopolissacaridoses/patologia , Doença da Deficiência de Múltiplas Sulfatases/patologia , Mutação , Fenótipo , Doenças Raras , Estudos Retrospectivos , Sulfatases/deficiência , Sulfatases/genética
11.
J Inherit Metab Dis ; 43(6): 1288-1297, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32621519

RESUMO

Multiple Sulfatase Deficiency (MSD, MIM#272200) is an ultra-rare lysosomal storage disorder arising from mutations in the SUMF1 gene, which encodes the formylglycine-generating enzyme (FGE). FGE is necessary for the activation of sulfatases, a family of enzymes that are involved in the degradation of sulfated substrates such as glycosaminoglycans and sulfolipids. SUMF1 mutations lead to functionally impaired FGE and individuals with MSD demonstrate clinical signs of single sulfatase deficiencies, including metachromatic leukodystrophy (MLD) and several mucopolysaccharidosis (MPS) subtypes. Comprehensive information related to the natural history of MSD is missing. We completed a systematic literature review and a meta-analysis on data from published cases reporting on MSD. As available from these reports, we extracted clinical, genetic, biochemical, and brain imaging information. We identified 75 publications with data on 143 MSD patients with a total of 53 unique SUMF1 mutations. The mean survival was 13 years (95% CI 9.8-16.2 years). Seventy-five clinical signs and 11 key clusters of signs were identified. The most frequently affected organs systems were the nervous, skeletal, and integumentary systems. The most frequent MRI features were abnormal myelination and cerebral atrophy. Individuals with later onset MSD signs and survived longer than those with signs at birth. Less severe mutations, low disease burden and achievement of independent walking positively correlated with longer survival. Despite the limitations of our approach, we were able to define clinical characteristics and disease outcomes in MSD. This work will provide the foundation of natural disease history data needed for future clinical trial design.


Assuntos
Leucodistrofia Metacromática/genética , Mucopolissacaridoses/genética , Doença da Deficiência de Múltiplas Sulfatases/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Glicina/análogos & derivados , Glicina/genética , Glicina/metabolismo , Humanos , Leucodistrofia Metacromática/patologia , Mucopolissacaridoses/patologia , Doença da Deficiência de Múltiplas Sulfatases/patologia , Processamento de Proteína Pós-Traducional/genética , Sulfatases/deficiência , Sulfatases/genética
12.
Int J Mol Sci ; 21(10)2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32414121

RESUMO

Multiple sulfatase deficiency (MSD, MIM #272200) is an ultra-rare disease comprising pathophysiology and clinical features of mucopolysaccharidosis, sphingolipidosis and other sulfatase deficiencies. MSD is caused by impaired posttranslational activation of sulfatases through the formylglycine generating enzyme (FGE) encoded by the sulfatase modifying factor 1 (SUMF1) gene, which is mutated in MSD. FGE is a highly conserved, non-redundant ER protein that activates all cellular sulfatases by oxidizing a conserved cysteine in the active site of sulfatases that is necessary for full catalytic activity. SUMF1 mutations result in unstable, degradation-prone FGE that demonstrates reduced or absent catalytic activity, leading to decreased activity of all sulfatases. As the majority of sulfatases are localized to the lysosome, loss of sulfatase activity induces lysosomal storage of glycosaminoglycans and sulfatides and subsequent cellular pathology. MSD patients combine clinical features of all single sulfatase deficiencies in a systemic disease. Disease severity classifications distinguish cases based on age of onset and disease progression. A genotype- phenotype correlation has been proposed, biomarkers like excreted storage material and residual sulfatase activities do not correlate well with disease severity. The diagnosis of MSD is based on reduced sulfatase activities and detection of mutations in SUMF1. No therapy exists for MSD yet. This review summarizes the unique FGE/ sulfatase physiology, pathophysiology and clinical aspects in patients and their care and outlines future perspectives in MSD.


Assuntos
Mucopolissacaridoses/genética , Doença da Deficiência de Múltiplas Sulfatases/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Esfingolipidoses/genética , Glicina/análogos & derivados , Glicina/genética , Glicina/metabolismo , Humanos , Mucopolissacaridoses/patologia , Doença da Deficiência de Múltiplas Sulfatases/patologia , Mutação/genética , Processamento de Proteína Pós-Traducional/genética , Esfingolipidoses/patologia , Sulfatases/deficiência , Sulfatases/genética
13.
Mol Genet Metab ; 123(3): 337-346, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29397290

RESUMO

Multiple sulfatase deficiency (MSD) is an ultra-rare neurodegenerative disorder that results in defective sulfatase post-translational modification. Sulfatases in the body are activated by a unique protein, formylglycine-generating enzyme (FGE) that is encoded by SUMF1. When FGE is absent or insufficient, all 17 known human sulfatases are affected, including the enzymes associated with metachromatic leukodystrophy (MLD), several mucopolysaccharidoses (MPS II, IIIA, IIID, IVA, VI), chondrodysplasia punctata, and X-linked ichthyosis. As such, individuals demonstrate a complex and severe clinical phenotype that has not been fully characterized to date. In this report, we describe two individuals with distinct clinical presentations of MSD. Also, we detail a comprehensive systems-based approach to the management of individuals with MSD, from the initial diagnostic evaluation to unique multisystem issues and potential management options. As there have been no natural history studies to date, the recommendations within this report are based on published studies and consensus opinion and underscore the need for future research on evidence-based outcomes to improve management of children with MSD.


Assuntos
Consenso , Doença da Deficiência de Múltiplas Sulfatases/terapia , Doenças Raras/terapia , Sulfatases/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/patologia , Pré-Escolar , Feminino , Humanos , Masculino , Doença da Deficiência de Múltiplas Sulfatases/diagnóstico , Doença da Deficiência de Múltiplas Sulfatases/etiologia , Doença da Deficiência de Múltiplas Sulfatases/patologia , Mutação , Oxirredutases atuantes sobre Doadores de Grupo Enxofre , Processamento de Proteína Pós-Traducional/genética , Doenças Raras/diagnóstico , Doenças Raras/etiologia , Sulfatases/deficiência
14.
Mol Genet Metab ; 121(3): 252-258, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28566233

RESUMO

Multiple sulfatase deficiency (MSD) is a rare inherited metabolic disease caused by defective cellular sulfatases. Activity of sulfatases depends on post-translational modification catalyzed by formylglycine-generating enzyme (FGE), encoded by the SUMF1 gene. SUMF1 pathologic variants cause MSD, a syndrome presenting with a complex phenotype. We describe the first Polish patient with MSD caused by a yet undescribed pathologic variant c.337G>A [p.Glu113Lys] (i.e. p.E113K) in heterozygous combination with the known deletion allele c.519+5_519+8del [p.Ala149_Ala173del]. The clinical picture of the patient initially suggested late infantile metachromatic leukodystrophy, with developmental delay followed by regression of visual, hearing and motor abilities as the most apparent clinical symptoms. Transient signs of ichthyosis and minor dysmorphic features guided the laboratory workup towards MSD. Since MSD is a rare disease and there is a variable clinical spectrum, we thoroughly describe the clinical outcome of our patient. The FGE-E113K variant, expressed in cell culture, correctly localized to the endoplasmic reticulum but was retained intracellularly in contrast to the wild type FGE. Analysis of FGE-mediated activation of steroid sulfatase in immortalized MSD cells revealed that FGE-E113K exhibited only approx. 15% of the activity of wild type FGE. Based on the crystal structure we predict that the exchange of glutamate-113 against lysine should induce a strong destabilization of the secondary structure, possibly affecting the folding for correct disulfide bridging between C235-C346 as well as distortion of the active site groove that could affect both the intracellular stability as well as the activity of FGE. Thus, the novel variant of the SUMF1 gene obviously results in functionally impaired FGE protein leading to a severe late infantile type of MSD.


Assuntos
Doença da Deficiência de Múltiplas Sulfatases/genética , Doença da Deficiência de Múltiplas Sulfatases/fisiopatologia , Sulfatases/genética , Células Cultivadas , Pré-Escolar , Simulação por Computador , Enzimas/química , Enzimas/genética , Glicina/análogos & derivados , Humanos , Ictiose , Masculino , Doença da Deficiência de Múltiplas Sulfatases/etnologia , Mutação de Sentido Incorreto , Oxirredutases atuantes sobre Doadores de Grupo Enxofre , Fenótipo , Polônia , Processamento de Proteína Pós-Traducional , Sulfatases/química , Sulfatases/metabolismo
16.
Proc Natl Acad Sci U S A ; 109(35): E2334-42, 2012 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-22826245

RESUMO

The role of astrocytes in neurodegenerative processes is increasingly appreciated. Here we investigated the contribution of astrocytes to neurodegeneration in multiple sulfatase deficiency (MSD), a severe lysosomal storage disorder caused by mutations in the sulfatase modifying factor 1 (SUMF1) gene. Using Cre/Lox mouse models, we found that astrocyte-specific deletion of Sumf1 in vivo induced severe lysosomal storage and autophagy dysfunction with consequential cytoplasmic accumulation of autophagic substrates. Lysosomal storage in astrocytes was sufficient to induce degeneration of cortical neurons in vivo. Furthermore, in an ex vivo coculture assay, we observed that Sumf1(-/-) astrocytes failed to support the survival and function of wild-type cortical neurons, suggesting a non-cell autonomous mechanism for neurodegeneration. Compared with the astrocyte-specific deletion of Sumf1, the concomitant removal of Sumf1 in both neurons and glia in vivo induced a widespread neuronal loss and robust neuroinflammation. Finally, behavioral analysis of mice with astrocyte-specific deletion of Sumf1 compared with mice with Sumf1 deletion in both astrocytes and neurons allowed us to link a subset of neurological manifestations of MSD to astrocyte dysfunction. This study indicates that astrocytes are integral components of the neuropathology in MSD and that modulation of astrocyte function may impact disease course.


Assuntos
Astrócitos/patologia , Doença da Deficiência de Múltiplas Sulfatases/patologia , Degeneração Neural/patologia , Neurônios/patologia , Sulfatases/genética , Animais , Comunicação Celular/fisiologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Cerebelo/patologia , Córtex Cerebral/patologia , Doenças por Armazenamento dos Lisossomos do Sistema Nervoso/genética , Doenças por Armazenamento dos Lisossomos do Sistema Nervoso/patologia , Lisossomos/patologia , Lisossomos/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Microscopia Eletrônica , Doença da Deficiência de Múltiplas Sulfatases/genética , Neurônios/ultraestrutura , Oxirredutases atuantes sobre Doadores de Grupo Enxofre , Células de Purkinje/patologia , Células de Purkinje/ultraestrutura
17.
Hum Mol Genet ; 21(8): 1770-81, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22215441

RESUMO

Dysfunctional mitochondria are a well-known disease hallmark. The accumulation of aberrant mitochondria can alter cell homeostasis, thus resulting in tissue degeneration. Lysosomal storage disorders (LSDs) are a group of inherited diseases characterized by the buildup of undegraded material inside the lysosomes that leads to autophagic-lysosomal dysfunction. In LSDs, autophagic stress has been associated to mitochondrial accumulation and dysfunction. However, the mechanisms underlying mitochondrial aberrations and how these are involved in tissue pathogenesis remain largely unexplored. In normal conditions, mitochondrial clearance occurs by mitophagy, a selective form of autophagy, which relies on a parkin-mediated mitochondrial priming and subsequent sequestration by autophagosomes. Here, we performed a detailed analysis of key steps of mitophagy in a mouse model of multiple sulfatase deficiency (MSD), a severe type of LSD characterized by both neurological and systemic involvement. We demonstrated that in MSD liver reduced parkin levels resulted in inefficient mitochondrial priming, thus contributing to the accumulation of giant mitochondria that are located outside autophagic vesicles ultimately leading to cytochrome c release and apoptotic cell death. Morphological and functional changes were also observed in mitochondria from MSD brain but these were not directly associated with neuronal cell loss, suggesting a secondary contribution of mitochondria to neurodegeneration. Together, these data shed new light on the mechanisms underlying mitochondrial dysfunction in LSDs and on their tissue-specific differential contribution to the pathogenesis of this group of metabolic disorders.


Assuntos
Autofagia , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Hepáticas/ultraestrutura , Doença da Deficiência de Múltiplas Sulfatases/metabolismo , Doença da Deficiência de Múltiplas Sulfatases/patologia , Fagossomos/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Apoptose , Encéfalo/patologia , Citocromos c/metabolismo , Modelos Animais de Doenças , Fígado/patologia , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Doença da Deficiência de Múltiplas Sulfatases/genética , Ubiquitinação
18.
Can J Neurol Sci ; 41(5): 626-31, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25373814

RESUMO

BACKGROUND: Multiple sulfatase deficiency (MSD) is a rare autosomal recessive inborn error of lysosomal metabolism. The clinical phenotypic spectrum encompasses overlapping features of variable severity and is suggestive of individual single sulfatase deficiencies (i.e., metachromatic leukodystrophy, mucopolysaccharidosis, and X-linked ichthyosis). CASE REPORT: We describe a 3-year-old male with severe hypotonia, developmental regression and progressive neurodegeneration, coarse facial features, nystagmus (from ocular albinism), and dysmyelinating motor sensory neuropathy. Ethics approval was obtained from the Western University Ontario. RESULTS: Extensive investigative work-up identified deficiencies of multiple sulfatases: heparan sulfate sulfamidase: 6.5 nmoles/mg/protein/17 hour (reference 25.0-75.0), iduronate-2-sulfate sulfatase: 9 nmol/mg/protein/4 hour (reference 31-110), and arylsulfatase A: 3.8 nmoles/hr/mg protein (reference 22-50). The identification of compound heterozygous pathogenic mutations in the SUMF1 gene c.836 C>T (p.A279V) and c.1045C>T (p.R349W) confirmed the diagnosis of MSD. CONCLUSION: The complex clinical manifestations of MSD and the unrelated coexistence of ocular albinism as in our case can delay diagnosis. Genetic counselling should be provided to all affected families.


Assuntos
Albinismo Ocular/complicações , Albinismo Ocular/diagnóstico , Doença da Deficiência de Múltiplas Sulfatases/complicações , Doença da Deficiência de Múltiplas Sulfatases/diagnóstico , Albinismo Ocular/genética , Pré-Escolar , Diagnóstico Diferencial , Humanos , Masculino , Doença da Deficiência de Múltiplas Sulfatases/genética
19.
Indian J Med Res ; 140(1): 55-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25222778

RESUMO

BACKGROUND & OBJECTIVES: Multiple suphphatase deficiency (MSD) is an autosomal recessive disorder affecting the post translational activation of all enzymes of the sulphatase family. To date, approximately 30 different mutations have been identified in the causative gene, sulfatase modifying factor 1 (SUMF1). We describe here the mutation analysis of a case of MSD. METHODS: The proband was a four year old boy with developmental delay followed by neuroregression. He had coarse facies, appendicular hypertonia, truncal ataxia and ichthyosis limited to both lower limbs. Radiographs showed dysostosis multiplex. Clinical suspicion of MSD was confirmed by enzyme analysis of four enzymes of the sulphatase group. RESULTS: The patient was compound heterozygote for a c.451A>G (p.K151E) substitution in exon 3 and a single base insertion mutation (c.690_691 InsT) in exon 5 in the SUMF1 gene. The bioinformatic analysis of the missense mutation revealed no apparent effect on the overall structure. However, the mutated 151-amino acid residue was found to be adjacent to the substrate binding and the active site residues, thereby affecting the substrate binding and/or catalytic activity, resulting in almost complete loss of enzyme function. CONCLUSIONS: The two mutations identified in the present case were novel. This is perhaps the first report of an insertion mutation in SUMF1 causing premature truncation of the protein.


Assuntos
Deficiências do Desenvolvimento/genética , Disostoses/genética , Doença da Deficiência de Múltiplas Sulfatases/genética , Mutagênese Insercional/genética , Mutação de Sentido Incorreto/genética , Sulfatases/genética , Pré-Escolar , Biologia Computacional , Disostoses/diagnóstico por imagem , Humanos , Masculino , Oxirredutases atuantes sobre Doadores de Grupo Enxofre , Radiografia , Sulfatases/metabolismo
20.
J Inherit Metab Dis ; 36(2): 293-307, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23371450

RESUMO

Mucopolysaccharidosis IVA (MPS IVA; Morquio A syndrome) is an autosomal recessive lysosomal storage disorder resulting from a deficiency of N-acetylgalactosamine-6-sulfate sulfatase (GALNS) activity. Diagnosis can be challenging and requires agreement of clinical, radiographic, and laboratory findings. A group of biochemical genetics laboratory directors and clinicians involved in the diagnosis of MPS IVA, convened by BioMarin Pharmaceutical Inc., met to develop recommendations for diagnosis. The following conclusions were reached. Due to the wide variation and subtleties of radiographic findings, imaging of multiple body regions is recommended. Urinary glycosaminoglycan analysis is particularly problematic for MPS IVA and it is strongly recommended to proceed to enzyme activity testing even if urine appears normal when there is clinical suspicion of MPS IVA. Enzyme activity testing of GALNS is essential in diagnosing MPS IVA. Additional analyses to confirm sample integrity and rule out MPS IVB, multiple sulfatase deficiency, and mucolipidoses types II/III are critical as part of enzyme activity testing. Leukocytes or cultured dermal fibroblasts are strongly recommended for enzyme activity testing to confirm screening results. Molecular testing may also be used to confirm the diagnosis in many patients. However, two known or probable causative mutations may not be identified in all cases of MPS IVA. A diagnostic testing algorithm is presented which attempts to streamline this complex testing process.


Assuntos
Glicosaminoglicanos/urina , Mucopolissacaridose IV/diagnóstico , Mucopolissacaridose IV/enzimologia , Algoritmos , Fibroblastos/enzimologia , Humanos , Leucócitos/enzimologia , Mucolipidoses/diagnóstico , Mucopolissacaridose IV/genética , Mucopolissacaridose IV/urina , Doença da Deficiência de Múltiplas Sulfatases/diagnóstico , Mutação , Patologia Molecular/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA