RESUMO
Infection by enteroviruses can cause severe neurological complications in humans. The interactions between the enteroviral and host proteins may facilitate the virus replication and be involved in the pathogenicity of infected individuals. It has been shown that human enteroviruses possess various mechanisms to suppress host innate immune responses in infected cells. Previous studies showed that infection by enterovirus 71 (EV71) causes the degradation of MDA5, which is a critical cytoplasmic pathogen sensor in the recognition of picornaviruses for initiating transcription of type I interferons. In the present study, we demonstrated that the RNA-dependent RNA polymerase (RdRP; also denoted 3Dpol) encoded by EV71 interacts with the caspase activation and recruitment domains (CARDs) of MDA5 and plays a role in the inhibition of MDA5-mediated beta interferon (IFN-ß) promoter activation and mRNA expression. In addition, we found that the 3Dpol protein encoded by coxsackievirus B3 also interacted with MDA5 and downregulated the antiviral signaling initiated by MDA5. These findings indicate that enteroviral RdRP may function as an antagonist against the host antiviral innate immune response.IMPORTANCE Infection by enteroviruses causes severe neurological complications in humans. Human enteroviruses possess various mechanisms to suppress the host type I interferon (IFN) response in infected cells to establish viral replication. In the present study, we found that the enteroviral 3Dpol protein (or RdRP), which is a viral RNA-dependent RNA polymerase for replicating viral RNA, plays a role in the inhibition of MDA5-mediated beta interferon (IFN-ß) promoter activation. We further demonstrated that enteroviral 3Dpol protein interacts with the caspase activation and recruitment domains (CARDs) of MDA5. These findings indicate that enteroviral RdRP functions as an antagonist against the host antiviral response.
Assuntos
Enterovirus Humano A/metabolismo , Helicase IFIH1 Induzida por Interferon/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Domínio de Ativação e Recrutamento de Caspases/genética , Domínio de Ativação e Recrutamento de Caspases/fisiologia , Enterovirus/genética , Enterovirus/metabolismo , Enterovirus Humano A/genética , Enterovirus Humano B/metabolismo , Infecções por Enterovirus/virologia , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Interferon Tipo I/metabolismo , Helicase IFIH1 Induzida por Interferon/genética , Interferon beta/metabolismo , Interferons/metabolismo , Interferons/fisiologia , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética , Transdução de Sinais , Replicação ViralRESUMO
Mammalian intrinsic apoptosis requires activation of the initiator caspase-9, which then cleaves and activates the effector caspases to execute cell killing. The heptameric Apaf-1 apoptosome is indispensable for caspase-9 activation by together forming a holoenzyme. The molecular mechanism of caspase-9 activation remains largely enigmatic. Here, we report the cryoelectron microscopy (cryo-EM) structure of an apoptotic holoenzyme and structure-guided biochemical analyses. The caspase recruitment domains (CARDs) of Apaf-1 and caspase-9 assemble in two different ways: a 4:4 complex docks onto the central hub of the apoptosome, and a 2:1 complex binds the periphery of the central hub. The interface between the CARD complex and the central hub is required for caspase-9 activation within the holoenzyme. Unexpectedly, the CARD of free caspase-9 strongly inhibits its proteolytic activity. These structural and biochemical findings demonstrate that the apoptosome activates caspase-9 at least in part through sequestration of the inhibitory CARD domain.
Assuntos
Apoptossomas/metabolismo , Fator Apoptótico 1 Ativador de Proteases/metabolismo , Caspase 9/metabolismo , Holoenzimas/metabolismo , Apoptose , Apoptossomas/química , Apoptossomas/ultraestrutura , Fator Apoptótico 1 Ativador de Proteases/química , Fator Apoptótico 1 Ativador de Proteases/genética , Caspase 9/química , Caspase 9/genética , Domínio de Ativação e Recrutamento de Caspases/genética , Microscopia Crioeletrônica , Ativação Enzimática , Holoenzimas/química , Holoenzimas/ultraestrutura , Humanos , Modelos Moleculares , Mutação , Ligação Proteica , Domínios Proteicos , Multimerização ProteicaRESUMO
The retinoic acid-inducible gene-I (RIG-I) receptor recognizes short 5'-di- and triphosphate base-paired viral RNA and is a critical mediator of the innate immune response against viruses such as influenza A, Ebola, HIV and hepatitis C. This response is reported to require an orchestrated interaction with the tripartite motif 25 (TRIM25) B30.2 protein-interaction domain. Here, we present a novel second RIG-I-binding interface on the TRIM25 B30.2 domain that interacts with CARD1 and CARD2 (caspase activation and recruitment domains) of RIG-I and is revealed by the removal of an N-terminal α-helix that mimics dimerization of the full-length protein. Further characterization of the TRIM25 coiled-coil and B30.2 regions indicated that the B30.2 domains move freely on a flexible tether, facilitating RIG-I CARD recruitment. The identification of a dual binding mode for the TRIM25 B30.2 domain is a first for the SPRY/B30.2 domain family and may be a feature of other SPRY/B30.2 family members.
Assuntos
Domínio B30.2-SPRY/genética , Domínio de Ativação e Recrutamento de Caspases/genética , Proteína DEAD-box 58/química , Receptores Citoplasmáticos e Nucleares/química , Proteínas Recombinantes de Fusão/química , Deleção de Sequência , Sequência de Aminoácidos , Animais , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Células HEK293 , Histidina/genética , Histidina/metabolismo , Humanos , Camundongos , Modelos Moleculares , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Imunológicos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismoRESUMO
Host factors such as nutritional status and immune cell state are important for vaccine efficacy. Inflammasome activation may be important for triggering vaccine-induced humoral and cell-mediated immune responses. Formulations with alum as a typical adjuvant to overcome the effects of host factors have recently been shown to induce inflammasome activation, which augments vaccine efficacy. Apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) is one of the main components of inflammasomes, but it is not clear whether ASC affects the vaccine-induced immune response. Herein, we used two types of vaccines: inactivated influenza vaccine not formulated with alum, and HPV vaccine formulated with alum. We gave the vaccines to ASC knockout (ASC-/- ) mice to investigate the role of ASC in vaccine efficacy. Influenza vaccine-immunized ASC-/- mice did not show antibody titers in week 2 after the first vaccination. After boosting, the antibody titer in ASC-/- mice was about half that in wild type (WT) mice. Furthermore, a cytotoxic T-lymphocyte response against influenza vaccine was not induced in ASC-/- mice. Therefore, vaccinated ASC-/- mice did not show effective protection against viral challenge. ASC-/- mice immunized with alum-formulated HPV vaccine showed similar antibody titers and T-cell proliferation compared with immunized WT mice. However, the HPV vaccine without alum induced up to threefold lower titers of HPV-specific antibody titers in ASC-/- mice compared with those in WT mice. These findings suggest that alum in vaccine can overcome the ASC-deficient condition.
Assuntos
Adjuvantes Imunológicos/uso terapêutico , Hidróxido de Alumínio/imunologia , Apoptose/imunologia , Domínio de Ativação e Recrutamento de Caspases/imunologia , Domínio de Ativação e Recrutamento de Caspases/fisiologia , Vacinas contra Influenza/imunologia , Vacinas contra Papillomavirus/imunologia , Compostos de Alúmen , Animais , Anticorpos Antivirais , Domínio de Ativação e Recrutamento de Caspases/genética , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Imunidade Humoral , Inflamassomos , Vacinas contra Influenza/uso terapêutico , Influenza Humana/prevenção & controle , Pulmão/patologia , Pulmão/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Testes de Neutralização , Orthomyxoviridae , Vacinas contra Papillomavirus/farmacologia , Vacinas contra Papillomavirus/uso terapêutico , Linfócitos T/efeitos dos fármacos , Vacinação , Vacinas de Produtos Inativados/imunologia , Vacinas de Produtos Inativados/uso terapêuticoRESUMO
Host protective inflammatory caspase activity must be tightly regulated to prevent pathogens infection, however, the inflammatory caspase-engaged inflammasome activation in teleost fish remains largely unknown. In this study, we reveal a bifurcated evolutionary role of the inflammatory caspase in mediating both non-canonical and canonical inflammasome pathways in teleost fish. Through characterization of a unique inflammatory SmCaspase from the teleost Scophthalmus maximus (turbot), we found it can directly recognize cytosolic lipopolysaccharide (LPS) via its N-terminal CARD domain, resulting in caspase-5-like proteolytic enzyme activity-mediated pyroptosis in Turbot Muscle Fibroblasts. Interestingly, we also found that this inflammatory caspase can be recruited to SmNLRP3-SmASC to form the NLRP3 inflammasome complex, engaging the SmIL-1ß release in Head Kidney-derived Macrophages. Consequently, the SmCaspase activation can recognize and cleave the SmGSDMEb to release its N-terminal domain, mediating both pyroptosis and bactericidal activities. Furthermore, the SmCaspase-SmGSDMEb axis-gated pyroptosis governs the bacterial clearance and epithelial desquamation in fish gill filaments in vivo. To our knowledge, this study is the first to identify an inflammatory caspase acting as a central coordinator in NLRP3 inflammasome, as well as a cytosolic LPS receptor; thus uncovering a previously unrecognized function of inflammatory caspase in turbot innate immunity.
Assuntos
Caspases/metabolismo , Proteínas de Peixes/metabolismo , Linguados/imunologia , Inflamassomos/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Domínio de Ativação e Recrutamento de Caspases/genética , Caspases/genética , Biologia Computacional , Edwardsiella/imunologia , Proteínas de Peixes/genética , Linguados/genética , Linguados/metabolismo , Linguados/microbiologia , Células HEK293 , Células HeLa , Rim Cefálico/citologia , Rim Cefálico/imunologia , Humanos , Imunidade Inata , Inflamassomos/metabolismo , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Proteínas de Membrana/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Filogenia , Piroptose/imunologiaRESUMO
The apoptosis repressor with caspase-recruiting domain (ARC) is aberrantly overexpressed in various cancers. ARC contains a caspase recruitment domain (CARD) that is the main mediator of protein-protein interactions. Mutation of Leu31 within the CARD of ARC to Phe (ARC_L31F) is widely used as a functionally defective mutant of ARC despite a lack of clear experimental evidence regarding how its functionality is lost. In this study, we show that L31 in helix 2 (H2) is critical for stabilization of the helix bundle fold in the CARD domain. In addition, the L31F mutation disrupts homodimer formation that is critical to ARC functions. Our current study reveals the molecular basis for the L31F mutation disrupting the ARC CARD functions.