Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Gen Virol ; 102(10)2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34704919

RESUMO

The endosymbiont bacteria of the genus Wolbachia are associated with multiple mutualistic effects on insect biology, including nutritional and antiviral properties. Members of the genus Wolbachia naturally occur in fly species of the genus Drosophila, providing an operational model host for studying how virome composition may be affected by its presence. Drosophila simulans populations can carry a variety of strains of members of the genus Wolbachia, with the wAu strain associated with strong antiviral protection under experimental conditions. We used D. simulans sampled from the Perth Hills, Western Australia, to investigate the potential virus protective effect of the wAu strain of Wolbachia on individual wild-caught flies. Our data revealed no appreciable variation in virus composition and abundance between individuals infected or uninfected with Wolbachia associated with the presence or absence of wAu. However, it remains unclear whether wAu might affect viral infection and host survival by increasing tolerance rather than inducing complete resistance. These data also provide new insights into the natural virome diversity of D. simulans. Despite the small number of individuals sampled, we identified a repertoire of RNA viruses, including nora virus, galbut virus, thika virus and La Jolla virus, that have been identified in other species of the genus Drosophila. Chaq virus-like sequences associated with galbut virus were also detected. In addition, we identified five novel viruses from the families Reoviridae, Tombusviridae, Mitoviridae and Bunyaviridae. Overall, this study highlights the complex interaction between Wolbachia and RNA virus infections and provides a baseline description of the natural virome of D. simulans.


Assuntos
Drosophila simulans/microbiologia , Vírus de RNA/fisiologia , Viroma/fisiologia , Wolbachia/fisiologia , Animais , Drosophila simulans/virologia , Feminino , Filogenia , Vírus de RNA/classificação , Vírus de RNA/genética , Vírus de RNA/isolamento & purificação , Simbiose , Viroma/genética , Wolbachia/isolamento & purificação
2.
PLoS Biol ; 13(7): e1002210, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26172158

RESUMO

Drosophila melanogaster is a valuable invertebrate model for viral infection and antiviral immunity, and is a focus for studies of insect-virus coevolution. Here we use a metagenomic approach to identify more than 20 previously undetected RNA viruses and a DNA virus associated with wild D. melanogaster. These viruses not only include distant relatives of known insect pathogens but also novel groups of insect-infecting viruses. By sequencing virus-derived small RNAs, we show that the viruses represent active infections of Drosophila. We find that the RNA viruses differ in the number and properties of their small RNAs, and we detect both siRNAs and a novel miRNA from the DNA virus. Analysis of small RNAs also allows us to identify putative viral sequences that lack detectable sequence similarity to known viruses. By surveying >2,000 individually collected wild adult Drosophila we show that more than 30% of D. melanogaster carry a detectable virus, and more than 6% carry multiple viruses. However, despite a high prevalence of the Wolbachia endosymbiont--which is known to be protective against virus infections in Drosophila--we were unable to detect any relationship between the presence of Wolbachia and the presence of any virus. Using publicly available RNA-seq datasets, we show that the community of viruses in Drosophila laboratories is very different from that seen in the wild, but that some of the newly discovered viruses are nevertheless widespread in laboratory lines and are ubiquitous in cell culture. By sequencing viruses from individual wild-collected flies we show that some viruses are shared between D. melanogaster and D. simulans. Our results provide an essential evolutionary and ecological context for host-virus interaction in Drosophila, and the newly reported viral sequences will help develop D. melanogaster further as a model for molecular and evolutionary virus research.


Assuntos
Evolução Biológica , Drosophila melanogaster/virologia , Sequência de Aminoácidos , Animais , Sequência Conservada , Drosophila simulans/virologia , Feminino , Masculino , Metagenômica , Dados de Sequência Molecular , RNA/análise , Interferência de RNA , Proteínas Virais/química , Wolbachia/isolamento & purificação
3.
G3 (Bethesda) ; 9(3): 855-865, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30658967

RESUMO

All genomes contain repeated sequences that are known as transposable elements (TEs). Among these are endogenous retroviruses (ERVs), which are sequences similar to retroviruses and are transmitted across generations from parent to progeny. These sequences are controlled in genomes through epigenetic mechanisms. At the center of the epigenetic control of TEs are small interfering RNAs of the piRNA class, which trigger heterochromatinization of TE sequences. The tirant ERV of Drosophila simulans displays intra-specific variability in copy numbers, insertion sites, and transcription levels, providing us with a well-suited model to study the dynamic relationship between a TE family and the host genome through epigenetic mechanisms. We show that tirant transcript amounts and piRNA amounts are positively correlated in ovaries in normal conditions, unlike what was previously described following divergent crosses. In addition, we describe tirant insertion polymorphism in the genomes of three D. simulans wild-type strains, which reveals a limited number of insertions that may be associated with gene transcript level changes through heterochromatin spreading and have phenotypic impacts. Taken together, our results participate in the understanding of the equilibrium between the host genome and its TEs.


Assuntos
Elementos de DNA Transponíveis , Drosophila simulans/genética , Retrovirus Endógenos/genética , Epigênese Genética , Genoma de Inseto , Interações Hospedeiro-Patógeno , Animais , Drosophila simulans/virologia , Retrovirus Endógenos/fisiologia , Feminino , RNA Interferente Pequeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA