Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38.105
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 187(19): 5282-5297.e20, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39168125

RESUMO

Biomolecular condensates assemble in living cells through phase separation and related phase transitions. An underappreciated feature of these dynamic molecular assemblies is that they form interfaces with other cellular structures, including membranes, cytoskeleton, DNA and RNA, and other membraneless compartments. These interfaces are expected to give rise to capillary forces, but there are few ways of quantifying and harnessing these forces in living cells. Here, we introduce viscoelastic chromatin tethering and organization (VECTOR), which uses light-inducible biomolecular condensates to generate capillary forces at targeted DNA loci. VECTOR can be utilized to programmably reposition genomic loci on a timescale of seconds to minutes, quantitatively revealing local heterogeneity in the viscoelastic material properties of chromatin. These synthetic condensates are built from components that naturally form liquid-like structures in living cells, highlighting the potential role for native condensates to generate forces and do work to reorganize the genome and impact chromatin architecture.


Assuntos
Cromatina , DNA , Elasticidade , Cromatina/metabolismo , Cromatina/química , DNA/metabolismo , DNA/química , Humanos , Viscosidade , Condensados Biomoleculares/metabolismo , Condensados Biomoleculares/química , Loci Gênicos
2.
Nature ; 630(8017): 648-653, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38811735

RESUMO

Colloidal crystals exhibit interesting properties1-4 that are in many ways analogous to their atomic counterparts. They have the same crystal structures2,5-7, undergo the same phase transitions8-10, and possess the same crystallographic defects11-14. In contrast to these structural properties, the mechanical properties of colloidal crystals are quite different from those of atomic systems. For example, unlike in atomic systems, the elasticity of hard-sphere colloidal crystals is purely entropic15; as a result, they are so soft that they can be melted just by stirring16,17. Moreover, crystalline materials deform plastically when subjected to increasing shear and become stronger because of the ubiquitous process of work hardening18; but this has so far never been observed in colloidal crystals, to our knowledge. Here we show that hard-sphere colloidal crystals exhibit work hardening. Moreover, despite their softness, the shear strength of colloidal crystals can increase and approach the theoretical limit for crystals, a value reached in very few other materials so far. We use confocal microscopy to show that the strength of colloidal crystals increases with dislocation density, and ultimately reaches the classic Taylor scaling behaviour for atomic materials19-21, although hard-sphere interactions lack the complexity of atomic interactions. We demonstrate that Taylor hardening arises through the formation of dislocation junctions22. The Taylor hardening regime, however, is established only after a transient phase, and it ceases when the colloidal crystals become so hard that the strain is localized within a thin boundary layer in which slip results from an unconventional motion of dislocations. The striking resemblance between colloidal and atomic crystals, despite the many orders of magnitude difference in particle size and shear modulus, demonstrates the universality of work hardening.


Assuntos
Coloides , Cristalização , Coloides/química , Microscopia Confocal , Resistência ao Cisalhamento , Dureza , Elasticidade
3.
Nature ; 629(8014): 1047-1054, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38778108

RESUMO

Wireless modules that provide telecommunications and power-harvesting capabilities enabled by radio-frequency (RF) electronics are vital components of skin-interfaced stretchable electronics1-7. However, recent studies on stretchable RF components have demonstrated that substantial changes in electrical properties, such as a shift in the antenna resonance frequency, occur even under relatively low elastic strains8-15. Such changes lead directly to greatly reduced wireless signal strength or power-transfer efficiency in stretchable systems, particularly in physically dynamic environments such as the surface of the skin. Here we present strain-invariant stretchable RF electronics capable of completely maintaining the original RF properties under various elastic strains using a 'dielectro-elastic' material as the substrate. Dielectro-elastic materials have physically tunable dielectric properties that effectively avert frequency shifts arising in interfacing RF electronics. Compared with conventional stretchable substrate materials, our material has superior electrical, mechanical and thermal properties that are suitable for high-performance stretchable RF electronics. In this paper, we describe the materials, fabrication and design strategies that serve as the foundation for enabling the strain-invariant behaviour of key RF components based on experimental and computational studies. Finally, we present a set of skin-interfaced wireless healthcare monitors based on strain-invariant stretchable RF electronics with a wireless operational distance of up to 30 m under strain.


Assuntos
Elasticidade , Eletrônica , Desenho de Equipamento , Ondas de Rádio , Pele , Estresse Mecânico , Dispositivos Eletrônicos Vestíveis , Tecnologia sem Fio , Humanos , Eletrônica/instrumentação , Tecnologia sem Fio/instrumentação , Monitorização Fisiológica/instrumentação
4.
Nature ; 626(7999): 635-642, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38297127

RESUMO

Type 2 diabetes mellitus is a major risk factor for hepatocellular carcinoma (HCC). Changes in extracellular matrix (ECM) mechanics contribute to cancer development1,2, and increased stiffness is known to promote HCC progression in cirrhotic conditions3,4. Type 2 diabetes mellitus is characterized by an accumulation of advanced glycation end-products (AGEs) in the ECM; however, how this affects HCC in non-cirrhotic conditions is unclear. Here we find that, in patients and animal models, AGEs promote changes in collagen architecture and enhance ECM viscoelasticity, with greater viscous dissipation and faster stress relaxation, but not changes in stiffness. High AGEs and viscoelasticity combined with oncogenic ß-catenin signalling promote HCC induction, whereas inhibiting AGE production, reconstituting the AGE clearance receptor AGER1 or breaking AGE-mediated collagen cross-links reduces viscoelasticity and HCC growth. Matrix analysis and computational modelling demonstrate that lower interconnectivity of AGE-bundled collagen matrix, marked by shorter fibre length and greater heterogeneity, enhances viscoelasticity. Mechanistically, animal studies and 3D cell cultures show that enhanced viscoelasticity promotes HCC cell proliferation and invasion through an integrin-ß1-tensin-1-YAP mechanotransductive pathway. These results reveal that AGE-mediated structural changes enhance ECM viscoelasticity, and that viscoelasticity can promote cancer progression in vivo, independent of stiffness.


Assuntos
Carcinoma Hepatocelular , Progressão da Doença , Elasticidade , Matriz Extracelular , Cirrose Hepática , Neoplasias Hepáticas , Animais , Humanos , beta Catenina/metabolismo , Carcinoma Hepatocelular/complicações , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Proliferação de Células , Colágeno/química , Colágeno/metabolismo , Simulação por Computador , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Matriz Extracelular/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Integrina beta1/metabolismo , Neoplasias Hepáticas/complicações , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Invasividade Neoplásica , Viscosidade , Proteínas de Sinalização YAP/metabolismo , Cirrose Hepática/complicações , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia
5.
Cell ; 158(2): 339-352, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-24998931

RESUMO

During B lymphocyte development, immunoglobulin heavy-chain variable (VH), diversity (DH), and joining (JH) segments assemble to generate a diverse antigen receptor repertoire. Here, we have marked the distal VH and DH-JH-Eµ regions with Tet-operator binding sites and traced their 3D trajectories in pro-B cells transduced with a retrovirus encoding Tet-repressor-EGFP. We found that these elements displayed fractional Langevin motion (fLm) due to the viscoelastic hindrance from the surrounding network of proteins and chromatin fibers. Using fractional Langevin dynamics modeling, we found that, with high probability, DHJH elements reach a VH element within minutes. Spatial confinement emerged as the dominant parameter that determined the frequency of such encounters. We propose that the viscoelastic nature of the nuclear environment causes coding elements and regulatory elements to bounce back and forth in a spring-like fashion until specific genomic interactions are established and that spatial confinement of topological domains largely controls first-passage times for genomic interactions.


Assuntos
Cadeias Pesadas de Imunoglobulinas/genética , Recombinação V(D)J , Animais , Fenômenos Biomecânicos , Elasticidade , Células-Tronco Embrionárias/metabolismo , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Vetores Genéticos , Camundongos , Células Precursoras de Linfócitos B/metabolismo , Transdução Genética , Viscosidade
6.
Cell ; 156(6): 1235-1246, 2014 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-24630725

RESUMO

The giant elastic protein titin is a determinant factor in how much blood fills the left ventricle during diastole and thus in the etiology of heart disease. Titin has been identified as a target of S-glutathionylation, an end product of the nitric-oxide-signaling cascade that increases cardiac muscle elasticity. However, it is unknown how S-glutathionylation may regulate the elasticity of titin and cardiac tissue. Here, we show that mechanical unfolding of titin immunoglobulin (Ig) domains exposes buried cysteine residues, which then can be S-glutathionylated. S-glutathionylation of cryptic cysteines greatly decreases the mechanical stability of the parent Ig domain as well as its ability to fold. Both effects favor a more extensible state of titin. Furthermore, we demonstrate that S-glutathionylation of cryptic cysteines in titin mediates mechanochemical modulation of the elasticity of human cardiomyocytes. We propose that posttranslational modification of cryptic residues is a general mechanism to regulate tissue elasticity.


Assuntos
Conectina/química , Conectina/metabolismo , Miócitos Cardíacos/metabolismo , Processamento de Proteína Pós-Traducional , Fenômenos Biomecânicos , Cisteína/metabolismo , Elasticidade , Glutarredoxinas/metabolismo , Humanos , Modelos Moleculares , Miócitos Cardíacos/citologia , Dobramento de Proteína , Estrutura Terciária de Proteína
7.
Nature ; 619(7970): 500-505, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37286609

RESUMO

Hygroscopic biological matter in plants, fungi and bacteria make up a large fraction of Earth's biomass1. Although metabolically inert, these water-responsive materials exchange water with the environment and actuate movement2-5 and have inspired technological uses6,7. Despite the variety in chemical composition, hygroscopic biological materials across multiple kingdoms of life exhibit similar mechanical behaviours including changes in size and stiffness with relative humidity8-13. Here we report atomic force microscopy measurements on the hygroscopic spores14,15 of a common soil bacterium and develop a theory that captures the observed equilibrium, non-equilibrium and water-responsive mechanical behaviours, finding that these are controlled by the hydration force16-18. Our theory based on the hydration force explains an extreme slowdown of water transport and successfully predicts a strong nonlinear elasticity and a transition in mechanical properties that differs from glassy and poroelastic behaviours. These results indicate that water not only endows biological matter with fluidity but also can-through the hydration force-control macroscopic properties and give rise to a 'hydration solid' with unusual properties. A large fraction of biological matter could belong to this distinct class of solid matter.


Assuntos
Esporos Bacterianos , Água , Molhabilidade , Transporte Biológico , Fungos/química , Fungos/metabolismo , Microscopia de Força Atômica , Água/metabolismo , Plantas/química , Plantas/metabolismo , Bactérias/química , Bactérias/citologia , Bactérias/metabolismo , Esporos Bacterianos/química , Esporos Bacterianos/metabolismo , Umidade , Elasticidade
8.
Nature ; 609(7926): 335-340, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35853476

RESUMO

Adhesive pili assembled through the chaperone-usher pathway are hair-like appendages that mediate host tissue colonization and biofilm formation of Gram-negative bacteria1-3. Archaic chaperone-usher pathway pili, the most diverse and widespread chaperone-usher pathway adhesins, are promising vaccine and drug targets owing to their prevalence in the most troublesome multidrug-resistant pathogens1,4,5. However, their architecture and assembly-secretion process remain unknown. Here, we present the cryo-electron microscopy structure of the prototypical archaic Csu pilus that mediates biofilm formation of Acinetobacter baumannii-a notorious multidrug-resistant nosocomial pathogen. In contrast to the thick helical tubes of the classical type 1 and P pili, archaic pili assemble into an ultrathin zigzag architecture secured by an elegant clinch mechanism. The molecular clinch provides the pilus with high mechanical stability as well as superelasticity, a property observed for the first time, to our knowledge, in biomolecules, while enabling a more economical and faster pilus production. Furthermore, we demonstrate that clinch formation at the cell surface drives pilus secretion through the outer membrane. These findings suggest that clinch-formation inhibitors might represent a new strategy to fight multidrug-resistant bacterial infections.


Assuntos
Acinetobacter baumannii , Microscopia Crioeletrônica , Fímbrias Bacterianas , Chaperonas Moleculares , Acinetobacter baumannii/citologia , Acinetobacter baumannii/ultraestrutura , Elasticidade , Proteínas de Fímbrias/química , Proteínas de Fímbrias/metabolismo , Proteínas de Fímbrias/ultraestrutura , Fímbrias Bacterianas/química , Fímbrias Bacterianas/metabolismo , Fímbrias Bacterianas/ultraestrutura , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/ultraestrutura
9.
Physiol Rev ; 100(2): 695-724, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31751165

RESUMO

Physical stimuli are essential for the function of eukaryotic cells, and changes in physical signals are important elements in normal tissue development as well as in disease initiation and progression. The complexity of physical stimuli and the cellular signals they initiate are as complex as those triggered by chemical signals. One of the most important, and the focus of this review, is the effect of substrate mechanical properties on cell structure and function. The past decade has produced a nearly exponentially increasing number of mechanobiological studies to define how substrate stiffness alters cell biology using both purified systems and intact tissues. Here we attempt to identify common features of mechanosensing in different systems while also highlighting the numerous informative exceptions to what in early studies appeared to be simple rules by which cells respond to mechanical stresses.


Assuntos
Microambiente Celular , Mecanotransdução Celular , Animais , Diferenciação Celular , Movimento Celular , Proliferação de Células , Forma Celular , Elasticidade , Humanos , Viscosidade
10.
Proc Natl Acad Sci U S A ; 121(12): e2316610121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38489385

RESUMO

Many biomolecular condensates, including transcriptional condensates, are formed in elastic mediums. In this work, we study the nonequilibrium condensate dynamics in a chromatin-like environment modeled as a heterogeneous elastic medium. We demonstrate that the ripening process in such an elastic medium exhibits a temporal power-law scaling of the average condensate radius, depending on the local stiffness distribution and different from Ostwald ripening. Moreover, we incorporate an active process to model the dissolution of transcriptional condensates upon RNA accumulation. Intriguingly, three types of kinetics of condensate growth emerge, corresponding to constitutively expressed, transcriptional-bursting, and silenced genes. Furthermore, the simulated burst frequency decreases exponentially with the local stiffness, through which we infer a lognormal distribution of local stiffness in living cells using the transcriptome-wide distribution of burst frequency. Under the inferred stiffness distribution, the simulated distributions of bursting kinetic parameters agree reasonably well with the experimental data. Our findings reveal the interplay between biomolecular condensates and elastic mediums, yielding far-reaching implications for gene expression.


Assuntos
Condensados Biomoleculares , Corpos Nucleares , Cromatina , Elasticidade , Cinética
11.
Proc Natl Acad Sci U S A ; 121(10): e2320763121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38416680

RESUMO

Bacterial spores have outstanding properties from the materials science perspective, which allow them to survive extreme environmental conditions. Recent work by [S. G. Harrellson et al., Nature 619, 500-505 (2023)] studied the mechanical properties of Bacillus subtilis spores and the evolution of these properties with the change of humidity. The experimental measurements were interpreted assuming that the spores behave as water-filled porous solids, subjected to hydration forces. Here, we revisit their experimental data using literature data on vapor sorption on spores and ideas from polymer physics. We demonstrate that upon the change of humidity, the spores behave like rubber with respect to their swelling, elasticity, and relaxation times. This picture is consistent with the knowledge of the materials comprising the bacterial cell walls-cross-linked peptidoglycan. Our results provide an interpretation of the mechanics of bacterial spores and can help in developing synthetic materials mimicking the mechanical properties of the spores.


Assuntos
Hidrogéis , Esporos Bacterianos , Umidade , Elasticidade , Fenômenos Químicos , Bacillus subtilis
12.
Proc Natl Acad Sci U S A ; 121(4): e2313737121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38241438

RESUMO

Nuclear import and uncoating of the viral capsid are critical steps in the HIV-1 life cycle that serve to transport and release genomic material into the nucleus. Viral core import involves translocating the HIV-1 capsid at the nuclear pore complex (NPC). Notably, the central channel of the NPC appears to often accommodate and allow passage of intact HIV-1 capsid, though mechanistic details of the process remain to be fully understood. Here, we investigate the molecular interactions that operate in concert between the HIV-1 capsid and the NPC that regulate capsid translocation through the central channel. To this end, we develop a "bottom-up" coarse-grained (CG) model of the human NPC from recently released cryo-electron tomography structure and then construct composite membrane-embedded CG NPC models. We find that successful translocation from the cytoplasmic side to the NPC central channel is contingent on the compatibility of the capsid morphology and channel dimension and the proper orientation of the capsid approach to the channel from the cytoplasmic side. The translocation dynamics is driven by maximizing the contacts between phenylalanine-glycine nucleoporins at the central channel and the capsid. For the docked intact capsids, structural analysis reveals correlated striated patterns of lattice disorder likely related to the intrinsic capsid elasticity. Uncondensed genomic material inside the docked capsid augments the overall lattice disorder of the capsid. Our results suggest that the intrinsic "elasticity" can also aid the capsid to adapt to the stress and remain structurally intact during translocation.


Assuntos
Capsídeo , HIV-1 , Humanos , Capsídeo/metabolismo , HIV-1/genética , Poro Nuclear/metabolismo , Proteínas do Capsídeo/genética , Transporte Ativo do Núcleo Celular , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Translocação Genética , Elasticidade
13.
Proc Natl Acad Sci U S A ; 121(43): e2405169121, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39401351

RESUMO

Hibernation is a widespread and highly efficient mechanism to save energy in mammals. However, one major challenge of hibernation is maintaining blood circulation at low body temperatures, which strongly depends on the viscoelastic properties of red blood cells (RBCs). Here, we examined at physiologically relevant timescales the thermomechanical properties of hundreds of thousands of individual RBCs from the hibernating common noctule bat (Nyctalus noctula), the nonhibernating Egyptian fruit bat (Rousettus aegyptiacus), and humans (Homo sapiens). We exposed RBCs to temperatures encountered during normothermia and hibernation and found a significant increase in elasticity and viscosity with decreasing temperatures. Our data demonstrate that temperature adjustment of RBCs is mainly driven by membrane properties and not the cytosol while viscous dissipation in the membrane of both bat species exceeds the one in humans by a factor of 15. Finally, our results show that RBCs from both bat species reveal a transition to a more viscous-like state when temperature decreases. This process on a minute timescale has an effect size that is comparable with fluctuations in RBC viscoelasticity over the course of the year, implying that environmental factors, such as diets, have a lower impact on the capability of RBCs to respond to different temperatures than general physical properties of the cell membrane. In summary, our findings suggest membrane viscoelasticity as a promising target for identifying mechanisms that could be manipulated to ensure blood circulation at low body temperatures in humans, which may be one first step toward safe synthetic torpor in medicine and space flight.


Assuntos
Quirópteros , Elasticidade , Eritrócitos , Hibernação , Quirópteros/fisiologia , Quirópteros/sangue , Hibernação/fisiologia , Humanos , Eritrócitos/fisiologia , Animais , Temperatura , Viscosidade , Membrana Eritrocítica/metabolismo , Viscosidade Sanguínea/fisiologia
14.
Q Rev Biophys ; 57: e3, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38501287

RESUMO

Elastin function is to endow vertebrate tissues with elasticity so that they can adapt to local mechanical constraints. The hydrophobicity and insolubility of the mature elastin polymer have hampered studies of its molecular organisation and structure-elasticity relationships. Nevertheless, a growing number of studies from a broad range of disciplines have provided invaluable insights, and several structural models of elastin have been proposed. However, many questions remain regarding how the primary sequence of elastin (and the soluble precursor tropoelastin) governs the molecular structure, its organisation into a polymeric network, and the mechanical properties of the resulting material. The elasticity of elastin is known to be largely entropic in origin, a property that is understood to arise from both its disordered molecular structure and its hydrophobic character. Despite a high degree of hydrophobicity, elastin does not form compact, water-excluding domains and remains highly disordered. However, elastin contains both stable and labile secondary structure elements. Current models of elastin structure and function are drawn from data collected on tropoelastin and on elastin-like peptides (ELPs) but at the tissue level, elasticity is only achieved after polymerisation of the mature elastin. In tissues, the reticulation of tropoelastin chains in water defines the polymer elastin that bears elasticity. Similarly, ELPs require polymerisation to become elastic. There is considerable interest in elastin especially in the biomaterials and cosmetic fields where ELPs are widely used. This review aims to provide an up-to-date survey of/perspective on current knowledge about the interplay between elastin structure, solvation, and entropic elasticity.


Assuntos
Elastina , Tropoelastina , Tropoelastina/química , Elastina/química , Elasticidade , Estrutura Secundária de Proteína , Peptídeos , Água/química
15.
PLoS Pathog ; 20(9): e1012537, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39259747

RESUMO

HIV-1 infection requires passage of the viral core through the nuclear pore of the cell, a process that depends on functions of the viral capsid. Recent studies have shown that HIV-1 cores enter the nucleus prior to capsid disassembly. Interactions of the viral capsid with the nuclear pore complex are necessary but not sufficient for nuclear entry, and the mechanism by which the viral core traverses the comparably sized nuclear pore is unknown. Here we show that the HIV-1 core is highly elastic and that this property is linked to nuclear entry and infectivity. Using atomic force microscopy-based approaches, we found that purified wild type cores rapidly returned to their normal conical morphology following a severe compression. Results from independently performed molecular dynamic simulations of the mature HIV-1 capsid also revealed its elastic property. Analysis of four HIV-1 capsid mutants that exhibit impaired nuclear entry revealed that the mutant viral cores are brittle. Adaptation of two of the mutant viruses in cell culture resulted in additional substitutions that restored elasticity and rescued infectivity and nuclear entry. We also show that capsid-targeting compound PF74 and the antiviral drug Lenacapavir reduce core elasticity and block HIV-1 nuclear entry at concentrations that preserve interactions between the viral core and the nuclear envelope. Our results indicate that elasticity is a fundamental property of the HIV-1 core that enables nuclear entry, thereby facilitating infection. These results provide new insights into the role of the capsid in HIV-1 nuclear entry and the antiviral mechanisms of HIV-1 capsid inhibitors.


Assuntos
Elasticidade , Infecções por HIV , HIV-1 , HIV-1/fisiologia , Humanos , Infecções por HIV/virologia , Infecções por HIV/metabolismo , Internalização do Vírus , Capsídeo/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Simulação de Dinâmica Molecular , Microscopia de Força Atômica , Poro Nuclear/metabolismo , Indóis , Fenilalanina/análogos & derivados
16.
Cell ; 145(7): 1062-74, 2011 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-21703450

RESUMO

The microtubule-based metaphase spindle is subjected to forces that act in diverse orientations and over a wide range of timescales. Currently, we cannot explain how this dynamic structure generates and responds to forces while maintaining overall stability, as we have a poor understanding of its micromechanical properties. Here, we combine the use of force-calibrated needles, high-resolution microscopy, and biochemical perturbations to analyze the vertebrate metaphase spindle's timescale- and orientation-dependent viscoelastic properties. We find that spindle viscosity depends on microtubule crosslinking and density. Spindle elasticity can be linked to kinetochore and nonkinetochore microtubule rigidity, and also to spindle pole organization by kinesin-5 and dynein. These data suggest a quantitative model for the micromechanics of this cytoskeletal architecture and provide insight into how structural and functional stability is maintained in the face of forces, such as those that control spindle size and position, and can result from deformations associated with chromosome movement.


Assuntos
Metáfase , Fuso Acromático/química , Fuso Acromático/fisiologia , Xenopus laevis/fisiologia , Animais , Fenômenos Biomecânicos , Extratos Celulares/química , Dineínas/fisiologia , Elasticidade , Cinesinas/fisiologia , Microtúbulos/fisiologia , Óvulo/química , Proteínas de Xenopus/fisiologia
17.
Nature ; 584(7822): 535-546, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32848221

RESUMO

Substantial research over the past two decades has established that extracellular matrix (ECM) elasticity, or stiffness, affects fundamental cellular processes, including spreading, growth, proliferation, migration, differentiation and organoid formation. Linearly elastic polyacrylamide hydrogels and polydimethylsiloxane (PDMS) elastomers coated with ECM proteins are widely used to assess the role of stiffness, and results from such experiments are often assumed to reproduce the effect of the mechanical environment experienced by cells in vivo. However, tissues and ECMs are not linearly elastic materials-they exhibit far more complex mechanical behaviours, including viscoelasticity (a time-dependent response to loading or deformation), as well as mechanical plasticity and nonlinear elasticity. Here we review the complex mechanical behaviours of tissues and ECMs, discuss the effect of ECM viscoelasticity on cells, and describe the potential use of viscoelastic biomaterials in regenerative medicine. Recent work has revealed that matrix viscoelasticity regulates these same fundamental cell processes, and can promote behaviours that are not observed with elastic hydrogels in both two- and three-dimensional culture microenvironments. These findings have provided insights into cell-matrix interactions and how these interactions differentially modulate mechano-sensitive molecular pathways in cells. Moreover, these results suggest design guidelines for the next generation of biomaterials, with the goal of matching tissue and ECM mechanics for in vitro tissue models and applications in regenerative medicine.


Assuntos
Elasticidade , Matriz Extracelular/metabolismo , Substâncias Viscoelásticas , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Técnicas de Cultura de Células , Forma Celular , Matriz Extracelular/química , Humanos , Mecanotransdução Celular , Células-Tronco Mesenquimais/citologia , Modelos Biológicos , Medicina Regenerativa
18.
Proc Natl Acad Sci U S A ; 120(23): e2304666120, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37252962

RESUMO

Nonlinear stiffening is a ubiquitous property of major types of biopolymers that make up the extracellular matrices (ECM) including collagen, fibrin, and basement membrane. Within the ECM, many types of cells such as fibroblasts and cancer cells have a spindle-like shape that acts like two equal and opposite force monopoles, which anisotropically stretch their surroundings and locally stiffen the matrix. Here, we first use optical tweezers to study the nonlinear force-displacement response to localized monopole forces. We then propose an effective-probe scaling argument that a local point force application can induce a stiffened region in the matrix, which can be characterized by a nonlinear length scale R* that increases with the increasing force magnitude; the local nonlinear force-displacement response is a result of the nonlinear growth of this effective probe that linearly deforms an increasing portion of the surrounding matrix. Furthermore, we show that this emerging nonlinear length scale R* can be observed around living cells and can be perturbed by varying matrix concentration or inhibiting cell contractility.


Assuntos
Colágeno , Matriz Extracelular , Elasticidade , Biopolímeros , Fibrina
19.
Proc Natl Acad Sci U S A ; 120(51): e2220755120, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38091296

RESUMO

Fibrous networks formed by biological polymers such as collagen or fibrin exhibit nonlinear mechanical behavior. They undergo strong stiffening in response to weak shear and elongational strains, but soften under compressional strain, in striking difference with the response to the deformation of flexible-strand networks formed by molecules. The nonlinear properties of fibrous networks are attributed to the mechanical asymmetry of the constituent filaments, for which a stretching modulus is significantly larger than the bending modulus. Studies of the nonlinear mechanical behavior are generally performed on hydrogels formed by biological polymers, which offers limited control over network architecture. Here, we report an engineered covalently cross-linked nanofibrillar hydrogel derived from cellulose nanocrystals and gelatin. The variation in hydrogel composition provided a broad-range change in its shear modulus. The hydrogel exhibited both shear-stiffening and compression-induced softening, in agreement with the predictions of the affine model. The threshold nonlinear stress and strain were universal for the hydrogels with different compositions, which suggested that nonlinear mechanical properties are general for networks formed by rigid filaments. The experimental results were in agreement with an affine model describing deformation of the network formed by rigid filaments. Our results lend insight into the structural features that govern the nonlinear biomechanics of fibrous networks and provide a platform for future studies of the biological impact of nonlinear mechanical properties.


Assuntos
Colágeno , Hidrogéis , Hidrogéis/química , Colágeno/química , Elasticidade , Polímeros , Citoesqueleto , Estresse Mecânico
20.
Proc Natl Acad Sci U S A ; 120(1): e2214757120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36574680

RESUMO

Cell membrane-coated nanoparticles are emerging as a new type of promising nanomaterials for immune evasion and targeted delivery. An underlying premise is that the unique biological functions of natural cell membranes can be conferred on the inherent physiochemical properties of nanoparticles by coating them with a cell membrane. However, the extent to which the membrane protein properties are preserved on these nanoparticles and the consequent bio-nano interactions are largely unexplored. Here, we synthesized two mesenchymal stem cell (MSC) membrane-coated silica nanoparticles (MCSNs), which have similar sizes but distinctly different stiffness values (MPa and GPa). Unexpectedly, a much lower macrophage uptake, but much higher cancer cell uptake, was found with the soft MCSNs compared with the stiff MCSNs. Intriguingly, we discovered that the soft MCSNs enabled the forming of a more protein-rich membrane coating and that coating had a high content of the MSC chemokine CXCR4 and MSC surface marker CD90. This led to the soft MCSNs enhancing cancer cell uptake mediated by the CD90/integrin receptor-mediated pathway and CXCR4/SDF-1 pathways. These findings provide a major step forward in our fundamental understanding of how the combination of nanoparticle elasticity and membrane coating may be used to facilitate bio-nano interactions and pave the way forward in the development of more effective cancer nanomedicines.


Assuntos
Nanopartículas , Neoplasias , Humanos , Membrana Celular/metabolismo , Nanopartículas/química , Proteínas/metabolismo , Neoplasias/metabolismo , Elasticidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA