RESUMO
Performance monitoring is an important executive function that allows us to gain insight into our own behaviour. This remarkable ability relies on the frontal cortex, and its impairment is an aspect of many psychiatric diseases. In recent years, recordings from the macaque and human medial frontal cortex have offered a detailed understanding of the neurophysiological substrate that underlies performance monitoring. Here we review the discovery of single-neuron correlates of error monitoring, a key aspect of performance monitoring, in both species. These neurons are the generators of the error-related negativity, which is a non-invasive biomarker that indexes error detection. We evaluate a set of tasks that allows the synergistic elucidation of the mechanisms of cognitive control across the two species, consider differences in brain anatomy and testing conditions across species, and describe the clinical relevance of these findings for understanding psychopathology. Last, we integrate the body of experimental facts into a theoretical framework that offers a new perspective on how error signals are computed in both species and makes novel, testable predictions.
Assuntos
Transtornos Mentais , Primatas , Animais , Humanos , Encéfalo/fisiologia , Função Executiva , Eletroencefalografia/métodos , Potenciais Evocados/fisiologiaRESUMO
Alpha oscillations play a vital role in managing the brain's resources, inhibiting neural activity as a function of their phase and amplitude, and are changed in many brain disorders. Developing minimally invasive tools to modulate alpha activity and identifying the parameters that determine its response to exogenous modulators is essential for the implementation of focussed interventions. We introduce Alpha Closed-Loop Auditory Stimulation (αCLAS) as an EEG-based method to modulate and investigate these brain rhythms in humans with specificity and selectivity, using targeted auditory stimulation. Across a series of independent experiments, we demonstrate that αCLAS alters alpha power, frequency, and connectivity in a phase, amplitude, and topography-dependent manner. Using single-pulse-αCLAS, we show that the effects of auditory stimuli on alpha oscillations can be explained within the theoretical framework of oscillator theory and a phase-reset mechanism. Finally, we demonstrate the functional relevance of our approach by showing that αCLAS can interfere with sleep onset dynamics in a phase-dependent manner.
Assuntos
Estimulação Acústica , Ritmo alfa , Eletroencefalografia , Humanos , Estimulação Acústica/métodos , Masculino , Adulto , Ritmo alfa/fisiologia , Eletroencefalografia/métodos , Feminino , Adulto Jovem , Sono/fisiologia , Encéfalo/fisiologiaRESUMO
Selective attention-related top-down modulation plays a significant role in separating relevant speech from irrelevant background speech when vocal attributes separating concurrent speakers are small and continuously evolving. Electrophysiological studies have shown that such top-down modulation enhances neural tracking of attended speech. Yet, the specific cortical regions involved remain unclear due to the limited spatial resolution of most electrophysiological techniques. To overcome such limitations, we collected both electroencephalography (EEG) (high temporal resolution) and functional magnetic resonance imaging (fMRI) (high spatial resolution), while human participants selectively attended to speakers in audiovisual scenes containing overlapping cocktail party speech. To utilise the advantages of the respective techniques, we analysed neural tracking of speech using the EEG data and performed representational dissimilarity-based EEG-fMRI fusion. We observed that attention enhanced neural tracking and modulated EEG correlates throughout the latencies studied. Further, attention-related enhancement of neural tracking fluctuated in predictable temporal profiles. We discuss how such temporal dynamics could arise from a combination of interactions between attention and prediction as well as plastic properties of the auditory cortex. EEG-fMRI fusion revealed attention-related iterative feedforward-feedback loops between hierarchically organised nodes of the ventral auditory object related processing stream. Our findings support models where attention facilitates dynamic neural changes in the auditory cortex, ultimately aiding discrimination of relevant sounds from irrelevant ones while conserving neural resources.
Assuntos
Córtex Auditivo , Percepção da Fala , Humanos , Percepção da Fala/fisiologia , Fala , Retroalimentação , Eletroencefalografia/métodos , Córtex Auditivo/fisiologia , Estimulação Acústica/métodosRESUMO
Hallucinations and perceptual abnormalities in psychosis are thought to arise from imbalanced integration of prior information and sensory inputs. We combined psychophysics, Bayesian modeling, and electroencephalography (EEG) to investigate potential changes in perceptual and causal inference in response to audiovisual flash-beep sequences in medicated individuals with schizophrenia who exhibited limited psychotic symptoms. Seventeen participants with schizophrenia and 23 healthy controls reported either the number of flashes or the number of beeps of audiovisual sequences that varied in their audiovisual numeric disparity across trials. Both groups balanced sensory integration and segregation in line with Bayesian causal inference rather than resorting to simpler heuristics. Both also showed comparable weighting of prior information regarding the signals' causal structure, although the schizophrenia group slightly overweighted prior information about the number of flashes or beeps. At the neural level, both groups computed Bayesian causal inference through dynamic encoding of independent estimates of the flash and beep counts, followed by estimates that flexibly combine audiovisual inputs. Our results demonstrate that the core neurocomputational mechanisms for audiovisual perceptual and causal inference in number estimation tasks are largely preserved in our limited sample of medicated post-acute individuals with schizophrenia. Future research should explore whether these findings generalize to unmedicated patients with acute psychotic symptoms.
Assuntos
Teorema de Bayes , Eletroencefalografia , Esquizofrenia , Percepção Visual , Humanos , Esquizofrenia/tratamento farmacológico , Esquizofrenia/fisiopatologia , Masculino , Feminino , Adulto , Eletroencefalografia/métodos , Percepção Visual/fisiologia , Percepção Auditiva/fisiologia , Alucinações/fisiopatologia , Alucinações/tratamento farmacológico , Pessoa de Meia-Idade , Estimulação Luminosa/métodos , Estimulação Acústica/métodosRESUMO
Unconsciousness maintained by GABAergic anesthetics, such as propofol and sevoflurane, is characterized by slow-delta oscillations (0.3 to 4 Hz) and alpha oscillations (8 to 14 Hz) that are readily visible in the electroencephalogram. At higher doses, these slow-delta-alpha (SDA) oscillations transition into burst suppression. This is a marker of a state of profound brain inactivation during which isoelectric (flatline) periods alternate with periods of the SDA patterns present at lower doses. While the SDA and burst suppression patterns have been analyzed separately, the transition from one to the other has not. Using state-space methods, we characterize the dynamic evolution of brain activity from SDA to burst suppression and back during unconsciousness maintained with propofol or sevoflurane in volunteer subjects and surgical patients. We uncover two dynamical processes that continuously modulate the SDA oscillations: alpha-wave amplitude and slow-wave frequency modulation. We present an alpha modulation index and a slow modulation index which characterize how these processes track the transition from SDA oscillations to burst suppression and back to SDA oscillations as a function of increasing and decreasing anesthetic doses, respectively. Our biophysical model reveals that these dynamics track the combined evolution of the neurophysiological and metabolic effects of a GABAergic anesthetic on brain circuits. Our characterization of the modulatory dynamics mediated by GABAergic anesthetics offers insights into the mechanisms of these agents and strategies for monitoring and precisely controlling the level of unconsciousness in patients under general anesthesia.
Assuntos
Anestésicos , Propofol , Humanos , Propofol/farmacologia , Sevoflurano/farmacologia , Inconsciência/induzido quimicamente , Anestésicos/farmacologia , Encéfalo/fisiologia , Eletroencefalografia/métodosRESUMO
Sudden and surprising sensory events trigger neural processes that swiftly adjust behavior. To study the phylogenesis and the mechanism of this phenomenon, we trained two male rhesus monkeys to keep a cursor inside a visual target by exerting force on an isometric joystick. We examined the effect of surprising auditory stimuli on exerted force, scalp electroencephalographic (EEG) activity, and local field potentials (LFPs) recorded from the dorsolateral prefrontal cortex. Auditory stimuli elicited (1) a biphasic modulation of isometric force, a transient decrease followed by a corrective tonic increase, and (2) EEG and LFP deflections dominated by two large negative-positive waves (N70 and P130). The EEG potential was symmetrical and maximal at the scalp vertex, highly reminiscent of the human "vertex potential." Electrocortical potentials and force were tightly coupled: the P130 amplitude predicted the magnitude of the corrective force increase, particularly in the LFPs recorded from deep rather than superficial cortical layers. These results disclose a phylogenetically preserved corticomotor mechanism supporting adaptive behavior in response to salient sensory events.Significance Statement Survival in the natural world depends on an animal's capacity to adapt ongoing behavior to abrupt unexpected events. To study the neural mechanisms underlying this capacity, we trained monkeys to apply constant force on a joystick while we recorded their brain activity from the scalp and the prefrontal cortex contralateral to the hand holding the joystick. Unexpected auditory stimuli elicited a biphasic force modulation: a transient reduction followed by a corrective adjustment. The same stimuli also elicited EEG and LFP responses, dominated by a biphasic wave that predicted the magnitude of the behavioral adjustment. These results disclose a phylogenetically preserved corticomotor mechanism supporting adaptive behavior in response to unexpected events.
Assuntos
Eletroencefalografia , Humanos , Animais , Masculino , Macaca mulatta , Eletroencefalografia/métodosRESUMO
As an intrinsic component of sleep architecture, sleep arousals represent an intermediate state between sleep and wakefulness and are important for sleep-wake regulation. They are defined in an all-or-none manner, whereas they actually present a wide range of scalp-electroencephalography (EEG) activity patterns. It is poorly understood how these arousals differ in their mechanisms. Stereo-EEG (SEEG) provides the unique opportunity to record intracranial activities in superficial and deep structures in humans. Using combined polysomnography and SEEG, we quantitatively categorized arousals during nonrapid eye movement sleep into slow wave (SW) and non-SW arousals based on whether they co-occurred with a scalp-EEG SW event. We then investigated their intracranial correlates in up to 26 brain regions from 26 patients (12 females). Across both arousal types, intracranial theta, alpha, sigma, and beta activities increased in up to 25 regions (p < 0.05; d = 0.06-0.63), while gamma and high-frequency (HF) activities decreased in up to 18 regions across the five brain lobes (p < 0.05; d = 0.06-0.44). Intracranial delta power widely increased across five lobes during SW arousals (p < 0.05 in 22 regions; d = 0.10-0.39), while it widely decreased during non-SW arousals (pâ <â 0.05 in 19 regions; d = 0.10-0.30). Despite these main patterns, unique activities were observed locally in some regions such as the hippocampus and middle cingulate cortex, indicating spatial heterogeneity of arousal responses. Our results suggest that non-SW arousals correspond to a higher level of brain activation than SW arousals. The decrease in HF activities could potentially explain the absence of awareness and recollection during arousals.
Assuntos
Eletrocorticografia , Couro Cabeludo , Feminino , Humanos , Sono/fisiologia , Nível de Alerta/fisiologia , Vigília/fisiologia , Eletroencefalografia/métodosRESUMO
Identifying neural correlates of conscious perception is a fundamental endeavor of cognitive neuroscience. Most studies so far have focused on visual awareness along with trial-by-trial reports of task-relevant stimuli, which can confound neural measures of perceptual awareness with postperceptual processing. Here, we used a three-phase sine-wave speech paradigm that dissociated between conscious speech perception and task relevance while recording EEG in humans of both sexes. Compared with tokens perceived as noise, physically identical sine-wave speech tokens that were perceived as speech elicited a left-lateralized, near-vertex negativity, which we interpret as a phonological version of a perceptual awareness negativity. This response appeared between 200 and 300â ms after token onset and was not present for frequency-flipped control tokens that were never perceived as speech. In contrast, the P3b elicited by task-irrelevant tokens did not significantly differ when the tokens were perceived as speech versus noise and was only enhanced for tokens that were both perceived as speech and relevant to the task. Our results extend the findings from previous studies on visual awareness and speech perception and suggest that correlates of conscious perception, across types of conscious content, are most likely to be found in midlatency negative-going brain responses in content-specific sensory areas.
Assuntos
Conscientização , Percepção da Fala , Masculino , Feminino , Humanos , Conscientização/fisiologia , Percepção Visual/fisiologia , Eletroencefalografia/métodos , Fala , Estado de Consciência/fisiologiaRESUMO
The human brain exhibits both oscillatory and aperiodic, or 1/f, activity. Although a large body of research has focused on the relationship between brain rhythms and sensory processes, aperiodic activity has often been overlooked as functionally irrelevant. Prompted by recent findings linking aperiodic activity to the balance between neural excitation and inhibition, we investigated its effects on the temporal resolution of perception. We recorded electroencephalography (EEG) from participants (both sexes) during the resting state and a task in which they detected the presence of two flashes separated by variable interstimulus intervals. Two-flash discrimination accuracy typically follows a sigmoid function whose steepness reflects perceptual variability or inconsistent integration/segregation of the stimuli. We found that individual differences in the steepness of the psychometric function correlated with EEG aperiodic exponents over posterior scalp sites. In other words, participants with flatter EEG spectra (i.e., greater neural excitation) exhibited increased sensory noise, resulting in shallower psychometric curves. Our finding suggests that aperiodic EEG is linked to sensory integration processes usually attributed to the rhythmic inhibition of neural oscillations. Overall, this correspondence between aperiodic neural excitation and behavioral measures of sensory noise provides a more comprehensive explanation of the relationship between brain activity and sensory integration and represents an important extension to theories of how the brain samples sensory input over time.
Assuntos
Eletroencefalografia , Estimulação Luminosa , Percepção Visual , Humanos , Masculino , Feminino , Eletroencefalografia/métodos , Adulto , Adulto Jovem , Percepção Visual/fisiologia , Estimulação Luminosa/métodos , Encéfalo/fisiologiaRESUMO
Memory reactivation during sleep is thought to facilitate memory consolidation. Most sleep reactivation research has examined how reactivation of specific facts, objects, and associations benefits their overall retention. However, our memories are not unitary, and not all features of a memory persist in tandem over time. Instead, our memories are transformed, with some features strengthened and others weakened. Does sleep reactivation drive memory transformation? We leveraged the Targeted Memory Reactivation technique in an object category learning paradigm to examine this question. Participants (20 female, 14 male) learned three categories of novel objects, where each object had unique, distinguishing features as well as features shared with other members of its category. We used a real-time EEG protocol to cue the reactivation of these objects during sleep at moments optimized to generate reactivation events. We found that reactivation improved memory for distinguishing features while worsening memory for shared features, suggesting a differentiation process. The results indicate that sleep reactivation does not act holistically on object memories, instead supporting a transformation where some features are enhanced over others.
Assuntos
Eletroencefalografia , Consolidação da Memória , Sono , Humanos , Feminino , Masculino , Sono/fisiologia , Adulto Jovem , Adulto , Consolidação da Memória/fisiologia , Eletroencefalografia/métodos , Memória/fisiologia , AdolescenteRESUMO
Despite the known behavioral benefits of rapid eye movement (REM) sleep, discrete neural oscillatory events in human scalp electroencephalography (EEG) linked with behavior have not been discovered. This knowledge gap hinders mechanistic understanding of the function of sleep, as well as the development of biophysical models and REM-based causal interventions. We designed a detection algorithm to identify bursts of activity in high-density, scalp EEG within theta (4-8â Hz) and alpha (8-13â Hz) bands during REM sleep. Across 38 nights of sleep, we characterized the burst events (i.e., count, duration, density, peak frequency, amplitude) in healthy, young male and female human participants (38; 21F) and investigated burst activity in relation to sleep-dependent memory tasks: hippocampal-dependent episodic verbal memory and nonhippocampal visual perceptual learning. We found greater burst count during the more REM-intensive second half of the night (p < 0.05), longer burst duration during the first half of the night (p < 0.05), but no differences across the night in density or power (p > 0.05). Moreover, increased alpha burst power was associated with increased overnight forgetting for episodic memory (p < 0.05). Furthermore, we show that increased REM theta burst activity in retinotopically specific regions was associated with better visual perceptual performance. Our work provides a critical bridge between discrete REM sleep events in human scalp EEG that support cognitive processes and the identification of similar activity patterns in animal models that allow for further mechanistic characterization.
Assuntos
Eletroencefalografia , Sono REM , Humanos , Masculino , Feminino , Sono REM/fisiologia , Adulto , Eletroencefalografia/métodos , Adulto Jovem , Aprendizagem/fisiologia , Ritmo Teta/fisiologia , Memória EpisódicaRESUMO
Music, like spoken language, is often characterized by hierarchically organized structure. Previous experiments have shown neural tracking of notes and beats, but little work touches on the more abstract question: how does the brain establish high-level musical structures in real time? We presented Bach chorales to participants (20 females and 9 males) undergoing electroencephalogram (EEG) recording to investigate how the brain tracks musical phrases. We removed the main temporal cues to phrasal structures, so that listeners could only rely on harmonic information to parse a continuous musical stream. Phrasal structures were disrupted by locally or globally reversing the harmonic progression, so that our observations on the original music could be controlled and compared. We first replicated the findings on neural tracking of musical notes and beats, substantiating the positive correlation between musical training and neural tracking. Critically, we discovered a neural signature in the frequency range â¼0.1â Hz (modulations of EEG power) that reliably tracks musical phrasal structure. Next, we developed an approach to quantify the phrasal phase precession of the EEG power, revealing that phrase tracking is indeed an operation of active segmentation involving predictive processes. We demonstrate that the brain establishes complex musical structures online over long timescales (>5â s) and actively segments continuous music streams in a manner comparable to language processing. These two neural signatures, phrase tracking and phrasal phase precession, provide new conceptual and technical tools to study the processes underpinning high-level structure building using noninvasive recording techniques.
Assuntos
Percepção Auditiva , Eletroencefalografia , Música , Humanos , Feminino , Masculino , Eletroencefalografia/métodos , Adulto , Percepção Auditiva/fisiologia , Adulto Jovem , Estimulação Acústica/métodos , Encéfalo/fisiologiaRESUMO
The ability to make accurate and timely decisions, such as judging when it is safe to cross the road, is the foundation of adaptive behavior. While the computational and neural processes supporting simple decisions on isolated stimuli have been well characterized, decision-making in the real world often requires integration of discrete sensory events over time and space. Most previous experimental work on perceptual decision-making has focused on tasks that involve only a single, task-relevant source of sensory input. It remains unclear, therefore, how such integrative decisions are regulated computationally. Here we used psychophysics, electroencephalography, and computational modeling to understand how the human brain combines visual motion signals across space in the service of a single, integrated decision. To that purpose, we presented two random-dot kinematograms in the left and the right visual hemifields. Coherent motion signals were shown briefly and concurrently in each location, and healthy adult human participants of both sexes reported the average of the two motion signals. We directly tested competing predictions arising from influential serial and parallel accounts of visual processing. Using a biologically plausible model of motion filtering, we found evidence in favor of parallel integration as the fundamental computational mechanism regulating integrated perceptual decisions.
Assuntos
Tomada de Decisões , Eletroencefalografia , Percepção de Movimento , Humanos , Masculino , Feminino , Tomada de Decisões/fisiologia , Percepção de Movimento/fisiologia , Adulto , Eletroencefalografia/métodos , Adulto Jovem , Estimulação Luminosa/métodos , Psicofísica , Modelos NeurológicosRESUMO
How humans transform sensory information into decisions that steer purposeful behavior is a central question in psychology and neuroscience that is traditionally investigated during the sampling of external environmental signals. The decision-making framework of gradual information sampling toward a decision has also been proposed to apply when sampling internal sensory evidence from working memory. However, neural evidence for this proposal remains scarce. Here we show (using scalp EEG in male and female human volunteers) that sampling internal visual representations from working memory elicits a scalp EEG potential associated with gradual evidence accumulation-the central parietal positivity. Consistent with an evolving decision process, we show how this signal (1) scales with the time participants require to reach a decision about the cued memory content and (2) is amplified when having to decide among multiple contents in working memory. These results bring the electrophysiology of decision-making into the domain of working memory and suggest that variability in memory-guided behavior may be driven (at least in part) by variations in the sampling of our inner mental contents.
Assuntos
Tomada de Decisões , Eletroencefalografia , Memória de Curto Prazo , Humanos , Masculino , Memória de Curto Prazo/fisiologia , Feminino , Tomada de Decisões/fisiologia , Adulto , Eletroencefalografia/métodos , Adulto Jovem , Estimulação Luminosa/métodos , Sinais (Psicologia) , Tempo de Reação/fisiologiaRESUMO
Humans make decisions about food every day. The visual system provides important information that forms a basis for these food decisions. Although previous research has focused on visual object and category representations in the brain, it is still unclear how visually presented food is encoded by the brain. Here, we investigate the time-course of food representations in the brain. We used time-resolved multivariate analyses of electroencephalography (EEG) data, obtained from human participants (both sexes), to determine which food features are represented in the brain and whether focused attention is needed for this. We recorded EEG while participants engaged in two different tasks. In one task, the stimuli were task relevant, whereas in the other task, the stimuli were not task relevant. Our findings indicate that the brain can differentiate between food and nonfood items from â¼112â ms after the stimulus onset. The neural signal at later latencies contained information about food naturalness, how much the food was transformed, as well as the perceived caloric content. This information was present regardless of the task. Information about whether food is immediately ready to eat, however, was only present when the food was task relevant and presented at a slow presentation rate. Furthermore, the recorded brain activity correlated with the behavioral responses in an odd-item-out task. The fast representation of these food features, along with the finding that this information is used to guide food categorization decision-making, suggests that these features are important dimensions along which the representation of foods is organized.
Assuntos
Encéfalo , Eletroencefalografia , Alimentos , Estimulação Luminosa , Humanos , Masculino , Feminino , Encéfalo/fisiologia , Adulto , Eletroencefalografia/métodos , Adulto Jovem , Estimulação Luminosa/métodos , Tempo de Reação/fisiologia , Fatores de Tempo , Atenção/fisiologia , Tomada de Decisões/fisiologiaRESUMO
The intricate relationship between prestimulus alpha oscillations and visual contrast detection variability has been the focus of numerous studies. However, the causal impact of prestimulus alpha traveling waves on visual contrast detection remains largely unexplored. In our research, we sought to discern the causal link between prestimulus alpha traveling waves and visual contrast detection across different levels of mental fatigue. Using electroencephalography alongside a visual detection task with 30 healthy adults (13 females; 17 males), we identified a robust negative correlation between prestimulus alpha forward traveling waves (FTWs) and visual contrast threshold (VCT). Inspired by this correlation, we utilized 45/-45° phase-shifted transcranial alternating current stimulation (tACS) in a sham-controlled, double-blind, within-subject experiment with 33 healthy adults (23 females; 10 males) to directly modulate these alpha traveling waves. After the application of 45° phase-shifted tACS, we observed a substantial decrease in FTW and an increase in backward traveling waves, along with a concurrent increase in VCT, compared with the sham condition. These changes were particularly pronounced under a low fatigue state. The findings of state-dependent tACS effects reveal the potential causal role of prestimulus alpha traveling waves in visual contrast detection. Moreover, our study highlights the potential of 45/-45° phase-shifted tACS in cognitive modulation and therapeutic applications.
Assuntos
Ritmo alfa , Sensibilidades de Contraste , Estimulação Transcraniana por Corrente Contínua , Humanos , Feminino , Masculino , Adulto , Ritmo alfa/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Sensibilidades de Contraste/fisiologia , Adulto Jovem , Método Duplo-Cego , Eletroencefalografia/métodos , Estimulação Luminosa/métodos , Percepção Visual/fisiologia , Fadiga Mental/fisiopatologiaRESUMO
Neuroimaging studies suggest cross-sensory visual influences in human auditory cortices (ACs). Whether these influences reflect active visual processing in human ACs, which drives neuronal firing and concurrent broadband high-frequency activity (BHFA; >70â Hz), or whether they merely modulate sound processing is still debatable. Here, we presented auditory, visual, and audiovisual stimuli to 16 participants (7 women, 9 men) with stereo-EEG depth electrodes implanted near ACs for presurgical monitoring. Anatomically normalized group analyses were facilitated by inverse modeling of intracranial source currents. Analyses of intracranial event-related potentials (iERPs) suggested cross-sensory responses to visual stimuli in ACs, which lagged the earliest auditory responses by several tens of milliseconds. Visual stimuli also modulated the phase of intrinsic low-frequency oscillations and triggered 15-30â Hz event-related desynchronization in ACs. However, BHFA, a putative correlate of neuronal firing, was not significantly increased in ACs after visual stimuli, not even when they coincided with auditory stimuli. Intracranial recordings demonstrate cross-sensory modulations, but no indication of active visual processing in human ACs.
Assuntos
Córtex Auditivo , Masculino , Humanos , Feminino , Córtex Auditivo/fisiologia , Estimulação Acústica/métodos , Potenciais Evocados/fisiologia , Eletroencefalografia/métodos , Percepção Visual/fisiologia , Percepção Auditiva/fisiologia , Estimulação LuminosaRESUMO
Understanding how spontaneous brain activity influences the response to neurostimulation is crucial for the development of neurotherapeutics and brain-computer interfaces. Localized brain activity is suggested to influence the response to neurostimulation, but whether fast-fluctuating (i.e., tens of milliseconds) large-scale brain dynamics also have any such influence is unknown. By stimulating the prefrontal cortex using combined transcranial magnetic stimulation (TMS) and electroencephalography, we examined how dynamic global brain state patterns, as defined by microstates, influence the magnitude of the evoked brain response. TMS applied during what resembled the canonical Microstate C was found to induce a greater evoked response for up to 80â ms compared with other microstates. This effect was found in a repeated experimental session, was absent during sham stimulation, and was replicated in an independent dataset. Ultimately, ongoing and fast-fluctuating global brain states, as probed by microstates, may be associated with intrinsic fluctuations in connectivity and excitation-inhibition balance and influence the neurostimulation outcome. We suggest that the fast-fluctuating global brain states be considered when developing any related paradigms.
Assuntos
Encéfalo , Eletroencefalografia , Córtex Pré-Frontal , Estimulação Magnética Transcraniana , Humanos , Masculino , Estimulação Magnética Transcraniana/métodos , Feminino , Adulto , Eletroencefalografia/métodos , Adulto Jovem , Córtex Pré-Frontal/fisiologia , Encéfalo/fisiologia , Potenciais Evocados/fisiologiaRESUMO
The third trimester is a critical period for the development of functional networks that support the lifelong neurocognitive performance, yet the emergence of neuronal coupling in these networks is poorly understood. Here, we used longitudinal high-density electroencephalographic recordings from preterm infants during the period from 33 to 45â weeks of conceptional age (CA) to characterize early spatiotemporal patterns in the development of local cortical function and the intrinsic coupling modes [ICMs; phase-phase (PPCs), amplitude-amplitude (AACs), and phase-amplitude correlations (PACs)]. Absolute local power showed a robust increase with CA across the full frequency spectrum, while local PACs showed sleep state-specific, biphasic development that peaked a few weeks before normal birth. AACs and distant PACs decreased globally at nearly all frequencies. In contrast, the PPCs showed frequency- and region-selective development, with an increase of coupling strength with CA between frontal, central, and occipital regions at low-delta and alpha frequencies together with a wider-spread decrease at other frequencies. Our findings together present the spectrally and spatially differential development of the distinct ICMs during the neonatal period and provide their developmental templates for future basic and clinical research.
Assuntos
Córtex Cerebral , Eletroencefalografia , Rede Nervosa , Humanos , Recém-Nascido , Eletroencefalografia/métodos , Feminino , Córtex Cerebral/fisiologia , Córtex Cerebral/crescimento & desenvolvimento , Masculino , Rede Nervosa/fisiologia , Rede Nervosa/crescimento & desenvolvimento , Recém-Nascido Prematuro/fisiologia , Neurônios/fisiologiaRESUMO
The N2pc and P3 event-related potentials (ERPs), used to index selective attention and access to working memory and conscious awareness, respectively, have been important tools in cognitive sciences. Although it is likely that these two components and the underlying cognitive processes are temporally and functionally linked, such links have not yet been convincingly demonstrated. Adopting a novel methodological approach based on dynamic time warping (DTW), we provide evidence that the N2pc and P3 ERP components are temporally linked. We analyzed data from an experiment where 23 participants (16 women) monitored bilateral rapid serial streams of letters and digits in order to report a target digit indicated by a shape cue, separately for trials with correct responses and trials where a temporally proximal distractor was reported instead (distractor intrusion). DTW analyses revealed that N2pc and P3 latencies were correlated in time, both when the target or a distractor was reported. Notably, this link was weaker on distractor intrusion trials. This N2pc-P3 association is discussed with respect to the relationship between attention and access consciousness. Our results demonstrate that our novel method provides a valuable approach for assessing temporal links between two cognitive processes and their underlying modulating factors. This method allows to establish links and their modulator for any two time-series across all domains of the field (general-purpose MATLAB functions and a Python module are provided alongside this paper).