Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 549
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 36(8)2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35781326

RESUMO

Regulation of innate inflammation is critical for maintaining tissue homeostasis and barrier function, especially in those interfacing the external environments such as the skin and cornea. Expression of pro-inflammatory cytokines by injured tissues has been shown to exacerbate the inflammatory cascade, causing tissue damage. Interleukin 36, a subfamily of the IL-1 superfamily, consists of three pro-inflammatory agonists-IL36α, IL36ß, and IL36γ and an IL36 receptor antagonist (IL36Ra). The current investigation, for the first time, reports that IL36γ is the primary agonist expressed by the corneal epithelium, which is significantly upregulated following corneal injury. The function of IL36γ on non-immune cells, in addition to innate inflammatory cells, in regulating tissue homeostasis has not been well investigated. Using a loss-of-function approach via neutralizing antibody treatment, our data demonstrate that blocking endogenously expressed IL36γ in epithelial cells promotes rapid re-epithelialization in in vitro wound closure assay. Finally, by utilizing a naturally occurring antagonist IL36Ra in a well-established murine model of ocular injury, our study demonstrates that inhibition of IL36γ accelerates epithelial regeneration and suppresses tissue inflammation. Given rapid wound healing is critical for re-establishing normal tissue structure and function, our investigation on the function of IL36γ provides evidence for the development of novel IL36γ-targeting strategies to promote tissue repair.


Assuntos
Córnea/fisiologia , Interleucina-1/metabolismo , Animais , Epitélio Corneano/fisiologia , Inflamação/imunologia , Interleucina-1/imunologia , Camundongos , Cicatrização
2.
Int J Mol Sci ; 24(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36834749

RESUMO

Recent evidence shows that epithelial stem/progenitor cells in barrier tissues such as the skin, airways and intestines retain a memory of previous injuries, which enables tissues to accelerate barrier restoration after subsequent injuries. The corneal epithelium, the outermost layer of the cornea, is the frontline barrier for the eye and is maintained by epithelial stem/progenitor cells in the limbus. Herein, we provide evidence that inflammatory memory also exists in the cornea. In mice, eyes that had been exposed to corneal epithelial injury exhibited faster re-epithelialization of the cornea and lower levels of inflammatory cytokines following subsequent injury (either the same or a different type of injury) relative to naïve eyes without previous injury. In ocular Sjögren's syndrome patients, corneal punctate epithelial erosions were significantly reduced after experiencing infectious injury compared with before. These results demonstrate that previous exposure of the corneal epithelium to inflammatory stimuli enhances corneal wound healing in response to a secondary assault, a phenomenon which points to the presence of nonspecific inflammatory memory in the cornea.


Assuntos
Lesões da Córnea , Epitélio Corneano , Relesões , Camundongos , Animais , Epitélio Corneano/fisiologia , Córnea , Cicatrização/fisiologia , Inflamação
3.
Exp Eye Res ; 219: 109065, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35421396

RESUMO

Mast cells (MCs) regulate wound healing and are influenced by the autonomic nervous system (ANS). However, the underlying mechanisms affecting wound healing outcomes remain elusive. Here, we explored the specific role of the ANS by regulating MC degranulation following corneal epithelium abrasion. A mouse model of corneal abrasion was established by mechanically removing a 2-mm central epithelium. Wound closure, neutrophil infiltration, and transcription of injured corneas were investigated using whole-mount immunostaining, flow cytometry, and RNA-sequencing analysis, respectively. Inhibition of MC degranulation by the MC stabilizers cromolyn sodium and lodoxamide tromethamine increased the infiltration of neutrophils and delayed healing of abraded corneas. Moreover, transcriptomic profiling analysis showed that purified MCs from the limbus expressed adrenergic and cholinergic receptors. Pharmacological manipulation and sympathectomy with 6-hydroxydopamine confirmed that sympathetic nervous system signaling inhibited MC degranulation after corneal abrasion, whereas parasympathetic nervous system signaling enhanced MC degranulation. We conclude that normal degranulation of MCs in the corneal limbus and crosstalk between the ANS and MCs are crucial for the appropriate control of inflammation and the repair progress of wounded corneas. This suggests a potential approach for improving defective corneal wound healing by the administration of clinically available autonomic activity-modulating agents.


Assuntos
Lesões da Córnea , Epitélio Corneano , Animais , Sistema Nervoso Autônomo , Degranulação Celular , Epitélio Corneano/fisiologia , Inflamação , Mastócitos , Camundongos , Camundongos Endogâmicos C57BL , Cicatrização/fisiologia
4.
Exp Eye Res ; 216: 108931, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35063476

RESUMO

The purpose of the study was to establish a simple ex vivo corneal re-epithelization model and study the labial mucosal epithelium grafting as a potential approach for ocular surface reconstruction. Four human donor corneal buttons were overstored in a corneal cold storage solution at 4 °C for 32-52 days. Four labial oral mucosa strips were dissected from four patients during fornix reconstruction after they signed informed consent. The substantia propria was trimmed off, and the resulting graft was sutured near the corneal limbus with running sutures (thus forming the tissue construct). Constructs were cultured under the standard conditions with the anterior corneal side outwards. After 3 weeks of culture, constructs were removed, washed, and fixed. Sections were stained with hematoxylin and eosin (HE), anti-keratins 4, 13, 19, and p63. Nuclei were counterstained with Hoechst. After the cultivation, all constructs were integral with the attached graft and non-loosened sutures. The native cells were absent in all donor corneas. Histological evaluation demonstrated that the labial mucosal grafts were attached to the Bowman's membrane (BM), and its cellular outgrowths were found to be transit from the graft to the BM over the anterior surface in all constructs. Cells expressed mucosal epithelial keratins 4, 13, and 19, and several were p63-positive in nuclei. In the study, a simple ex vivo corneal re-epithelization model was successfully established. The model was potent in studying the labial mucosal epithelium grafting as an option for autologous ocular surface reconstruction in patients with bilateral limbal stem cell deficiency.


Assuntos
Células Epiteliais/transplante , Epitélio Corneano/fisiologia , Limbo da Córnea/cirurgia , Mucosa Bucal/citologia , Reepitelização/fisiologia , Adulto , Idoso , Células Cultivadas , Doenças da Córnea/fisiopatologia , Doenças da Córnea/cirurgia , Humanos , Queratinas/metabolismo , Pessoa de Meia-Idade , Modelos Biológicos , Transplante de Células-Tronco , Células-Tronco/patologia , Técnicas de Sutura
5.
Exp Eye Res ; 202: 108325, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33263285

RESUMO

The purpose of this study was to investigate the expression and localization of transforming growth factor (TGF) ß1 and TGFß2 in rabbit corneas that healed with and without stromal fibrosis, and to further study defective perlecan incorporation in the epithelial basement membrane (EBM) in corneas with scarring fibrosis. A total of 120 female rabbits had no surgery, -4.5D PRK, or -9D PRK. Immunohistochemistry (IHC) was performed at time points from unwounded to eight weeks after surgery, with four corneas at each time point in each group. Multiplex IHC was performed for TGFß1 or TGFß2, with Image-J quantitation, and keratocan, vimentin, alpha-smooth muscle actin (SMA), perlecan, laminin-alpha 5, nidogen-1 or CD11b. Corneas at the four-week peak for myofibroblast and fibrosis development were evaluated using Imaris 3D analysis. Delayed regeneration of both an apical epithelial growth factor barrier and EBM barrier function, including defective EBM perlecan incorporation, was greater in high injury -9D PRK corneas compared to -4.5D PRK corneas without fibrosis. Defective apical epithelial growth factor barrier and EBM allowed epithelial and tear TGFß1 and tear TGFß2 to enter the corneal stroma to drive myofibroblast generation in the anterior stroma from vimentin-positive corneal fibroblasts, and likely fibrocytes. Vimentin-positive cells and unidentified vimentin-negative, CD11b-negative cells also produce TGFß1 and/or TGFß2 in the stroma in some corneas. TGFß1 and TGFß2 were at higher levels in the anterior stroma in the weeks preceding myofibroblast development in the -9D group. All -9D corneas (beginning two to three weeks after surgery), and four -4.5D PRK corneas developed significant SMA + myofibroblasts and stromal fibrosis. Both the apical epithelial growth factor barrier and/or EBM barrier functions tended to regenerate weeks earlier in -4.5D PRK corneas without fibrosis, compared to -4.5D or -9D PRK corneas with fibrosis. SMA-positive myofibroblasts were markedly reduced in most corneas by eight weeks after surgery. The apical epithelial growth factor barrier and EBM barrier limit TGFß1 and TGFß2 entry into the corneal stroma to modulate corneal fibroblast and myofibroblast development associated with scarring stromal fibrosis. Delayed regeneration of these barriers in corneas with more severe injuries promotes myofibroblast development, prolongs myofibroblast viability and triggers stromal scarring fibrosis.


Assuntos
Membrana Basal/fisiologia , Córnea/metabolismo , Substância Própria/patologia , Epitélio Corneano/fisiologia , Regeneração/fisiologia , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta2/metabolismo , Animais , Opacidade da Córnea/metabolismo , Opacidade da Córnea/patologia , Substância Própria/metabolismo , Feminino , Fibrose/metabolismo , Fibrose/patologia , Proteínas de Membrana/metabolismo , Microscopia Confocal , Coelhos
6.
Int J Mol Sci ; 22(9)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925443

RESUMO

The cornea, while appearing to be simple tissue, is actually an extremely complex structure. In order for it to retain its biomechanical and optical properties, perfect organization of its cells is essential. Proper regeneration is especially important after injuries and in the course of various diseases. Eph receptors and ephrin are mainly responsible for the proper organization of tissues as well as cell migration and communication. In this review, we present the current state of knowledge on the role of Eph and ephrins in corneal physiology and diseases, in particular, we focused on the functions of the epithelium and endothelium. Since the role of Eph and ephrins in the angiogenesis process has been well established, we also analyzed their influence on conditions with corneal neovascularization.


Assuntos
Córnea/fisiologia , Doenças da Córnea/etiologia , Efrinas/fisiologia , Receptores da Família Eph/fisiologia , Animais , Doenças da Córnea/tratamento farmacológico , Neovascularização da Córnea/etiologia , Endotélio Corneano/patologia , Endotélio Corneano/fisiologia , Epitélio Corneano/patologia , Epitélio Corneano/fisiologia , Humanos , Terapia de Alvo Molecular
7.
Int J Mol Sci ; 22(14)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34298979

RESUMO

Platelet extravasation during inflammation is under-appreciated. In wild-type (WT) mice, a central corneal epithelial abrasion initiates neutrophil (PMN) and platelet extravasation from peripheral limbal venules. The same injury in mice expressing low levels of the ß2-integrin, CD18 (CD18hypo mice) shows reduced platelet extravasation with PMN extravasation apparently unaffected. To better define the role of CD18 on platelet extravasation, we focused on two relevant cell types expressing CD18: PMNs and mast cells. Following corneal abrasion in WT mice, we observed not only extravasated PMNs and platelets but also extravasated erythrocytes (RBCs). Ultrastructural observations of engorged limbal venules showed platelets and RBCs passing through endothelial pores. In contrast, injured CD18hypo mice showed significantly less venule engorgement and markedly reduced platelet and RBC extravasation; mast cell degranulation was also reduced compared to WT mice. Corneal abrasion in mast cell-deficient (KitW-sh/W-sh) mice showed less venule engorgement, delayed PMN extravasation, reduced platelet and RBC extravasation and delayed wound healing compared to WT mice. Finally, antibody-induced depletion of circulating PMNs prior to corneal abrasion reduced mast cell degranulation, venule engorgement, and extravasation of PMNs, platelets, and RBCs. In summary, in the injured cornea, platelet and RBC extravasation depends on CD18, PMNs, and mast cell degranulation.


Assuntos
Plaquetas/fisiologia , Antígenos CD18/fisiologia , Degranulação Celular , Córnea/irrigação sanguínea , Eritrócitos/fisiologia , Hiperemia/fisiopatologia , Mastócitos/fisiologia , Neutrófilos/fisiologia , Migração Transendotelial e Transepitelial/fisiologia , Vasculite/imunologia , Vênulas/metabolismo , Animais , Antígenos CD18/deficiência , Movimento Celular , Quimiotaxia de Leucócito , Lesões da Córnea/metabolismo , Lesões da Córnea/patologia , Epitélio Corneano/fisiologia , Feminino , Hiperemia/sangue , Macrófagos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microcirculação , Microscopia Eletrônica , Modelos Animais , Fagocitose , Regeneração/fisiologia , Vasculite/sangue , Vênulas/patologia , Cicatrização/fisiologia
8.
Exp Eye Res ; 195: 108033, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32339517

RESUMO

Bowman's layer lies immediately posterior to the epithelial basement membrane (EBM) and anterior to the stroma proper in humans, chickens, quail, zebra fish, deer, giraffe, antelope, California sea lions, guinea pig and several other species. It is not found in dog, wolf, cat, tiger, lions, rabbit, pigs, cows, goats, or horses. Developmental anomalies of Bowman's layer are rare, but acquired damage to Bowman's layer, or even complete destruction, is frequently seen in advanced bullous keratopathy or Fuchs' endothelial dystrophy. No detrimental effects of removal of Bowman's layer over the central 6-7 mm of central cornea have been noted in millions of patients who've had photorefractive keratectomy (PRK). Recent studies have suggested the randomly-oriented collagen fibrils that make up Bowman's layer do not have a significant barrier function in modulating the passage of moderate- to large-sized proteins. It is hypothesized that Bowman's layer develops in the corneas of those species that have one because of cytokine-mediated interactions occurring between corneal epithelial cells and underlying keratocytes, including negative chemotactic and apoptotic effects on the keratocytes by low levels of cytokines such as interleukin-1α that are gradually released as epithelial cells die and slough during their normal development. A "Bowman's like layer" can generate around stromal epithelial plugs after radial keratotomy, and possibly beneath the central corneal epithelial basement membrane many years after PRK.


Assuntos
Membrana Basal/metabolismo , Epitélio Corneano/fisiologia , Regeneração , Animais , Membrana Basal/citologia , Epitélio Corneano/citologia , Humanos
9.
Exp Eye Res ; 196: 108060, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32387619

RESUMO

Leucine-rich α-2-glycoprotein-1 (LRG1) is involved in several pathophysiological processes, including angiogenesis, cutaneous wound repair and cancer metastasis. In this study, we investigated the potential role and mechanism of LRG1 in corneal re-epithelialisation and nerve regeneration in streptozotocin-induced diabetic mice. We found decreased levels of LRG1 in the corneal epithelium after wounding in diabetic mice compared to normal controls. Hyperglycaemia downregulated the LRG1 expression in the corneal epithelium in vivo, as well as in vitro in a cultured mouse corneal epithelial stem/progenitor cell line (TKE2 cells) exposed to high glucose (HG; 30 mM) in the culture medium. Exogenous application of LRG1 accelerated corneal re-epithelialisation and nerve regeneration in normal mice and diabetic mice. LRG1 also overcame the suppression of wound healing in TKE2 cells by HG conditions, and it activated repair-related signalling by JAK2/STAT3, AKT, epidermal growth factor receptor (EGFR) and transforming growth factor (TGF)-ß3. We also found that LRG1 treatment overcame the hyperglycaemia-suppressed expression of matrix metalloproteinase 3 (MMP3) and metalloproteinase 13 (MMP13) in the regenerated corneal epithelium. The promoted effects of LRG1 on corneal re-epithelialisation and nerve regeneration were blocked by inhibitors of MMP3 and MMP13. Subconjunctival injection of 0.5 µg MMP inhibitors did not cause any obvious toxic damage in corneal epithelial cells. Immunoprecipitation and proximity ligation assay experiments confirmed that endogenous LRG1 coprecipitated with MMP3 and MMP13 in TKE2 cells. These results indicate that LRG1 promoted wound repair and nerve regeneration in the diabetic corneal epithelium by regulation of MMPs. Our findings reveal a new function and mechanism for LRG1 in the cornea, and they provide new insights for a better understanding of diabetic keratopathy.


Assuntos
Doenças da Córnea/metabolismo , Epitélio Corneano/fisiologia , Glicoproteínas/fisiologia , Metaloproteinases da Matriz/metabolismo , Regeneração Nervosa/fisiologia , Nervo Trigêmeo/fisiologia , Cicatrização/fisiologia , Animais , Células Cultivadas , Córnea/inervação , Córnea/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Receptores ErbB/metabolismo , Glucose/farmacologia , Hiperglicemia/metabolismo , Janus Quinase 2/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Oncogênica v-akt/metabolismo , Reepitelização , Fator de Transcrição STAT3/metabolismo , Fator de Crescimento Transformador beta3/metabolismo
10.
Optom Vis Sci ; 97(9): 676-682, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32932396

RESUMO

SIGNIFICANCE: This study evaluated the effects scleral lens wear has on corneal health using fluorometry and in vivo confocal microscopy. No subclinical changes on healthy corneas of young subjects were observed during 3 months of scleral lens wear. PURPOSE: This study aimed to evaluate the effects 3 months of scleral lens wear has on the corneal epithelial barrier function, dendritic cell density, and nerve fiber morphology. METHODS: Twenty-seven neophytes (mean [standard deviation] age, 21.4 [3.9] years) wore scleral lenses of a fluorosilicone acrylate material bilaterally (97 Dk, 15.6 to 16.0-mm diameter) for 3 months without overnight wear. Subjects were randomized to use either Addipak (n = 12) or PuriLens Plus (n = 15) during lens insertion. Measurements of corneal epithelial permeability to fluorescein were performed with automated scanning fluorophotometer (Fluorotron Master; Ocumetrics, Mountain View, CA) on the central cornea of the right eye and the temporal corneal periphery of the left eye. Images of the distributions of corneal nerve fibers and dendritic cells and nerve fibers were captured in vivo with a confocal laser scanning microscope (Heidelberg Retina Tomograph, Rostock Cornea Module; Heidelberg Engineering, Heidelberg, Germany) on the central and inferior peripheral cornea of the left eye. Corneal measurements and imaging were performed at baseline and after 1 and 3 months of lens wear. RESULTS: The corneal permeability values in natural log, dendritic cell densities, and nerve fiber morphology did not significantly change from baseline to 1 and 3 months of lens wear, for both central and peripheral corneal regions (P > .05). Dendritic cell density at the inferior cornea was higher than the central cornea throughout the study (P < .001). No relationships were observed between each outcome measurements and the saline solution groups (P > .05). CONCLUSIONS: Scleral lens wear for 3 months on healthy cornea of young subjects did not affect corneal epithelial barrier function, nerve fiber, and dendritic cell densities. Buffered and nonbuffered saline solutions impacted the corneal health in similar ways.


Assuntos
Lentes de Contato , Córnea/fisiologia , Esclera , Contagem de Células , Córnea/inervação , Células Dendríticas/citologia , Método Duplo-Cego , Epitélio Corneano/fisiologia , Feminino , Fluorofotometria , Humanos , Masculino , Microscopia Confocal , Nervo Oftálmico/anatomia & histologia , Estudos Prospectivos , Fatores de Tempo , Adulto Jovem
11.
Optom Vis Sci ; 97(4): 300-304, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32304540

RESUMO

SIGNIFICANCE: After epithelium-off crosslinking (CXL), epithelial closure time and post-operative pain are an important issue in terms of possible complications and patient comfort. We report a prospective randomized study about the use of autologous serum eye drops after CXL. PURPOSE: This study aims to evaluate the effect of autologous serum eye drops on epithelial healing and post-operative pain after CXL. METHODS: Sixty patients diagnosed as having progressive keratoconus and treated with accelerated CXL (9 mW/cm for 10 minutes) randomly received 20% autologous serum eye drops (autologous serum group, n = 30) or artificial tears (control group, n = 30). Patients were evaluated every day after the surgery, and the day of epithelial closure was recorded. All patients were asked to report the maximum pain level using the Wong-Baker FACES Pain Rating Scale at the end of each day until the epithelial closure was completed. The change in topographic parameters and haze were recorded at 6 months. RESULTS: The mean epithelial closure time was significantly lower in the autologous serum group than in the control group (2.37 ± 0.49 and 2.67 ± 0.47 days, respectively; P = .02). There was a statistically significant difference between the pain scores in the first and second days of surgery between the two groups (first-day autologous serum autologous serum group: 2.80 ± 0.66 and control group: 3.50 ± 0.82, P = .01; second-day autologous serum group: 1.73 ± 0.69 and control group: 2.20 ± 0.76, P = .02). Pre-operative and post-operative topographic parameters and haze at 6 months were similar between the two groups (P > .05 for all). CONCLUSIONS: Use of autologous serum eye drops after CXL accelerates epithelial healing and reduces post-operative pain. Shortening the duration of epithelial closure would be beneficial in reducing possible complications and increasing patient comfort.


Assuntos
Reagentes de Ligações Cruzadas , Ceratocone/tratamento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/uso terapêutico , Riboflavina/uso terapêutico , Soro/fisiologia , Cicatrização/fisiologia , Adolescente , Adulto , Colágeno/metabolismo , Substância Própria/efeitos dos fármacos , Substância Própria/metabolismo , Desbridamento , Epitélio Corneano/fisiologia , Feminino , Humanos , Ceratocone/metabolismo , Masculino , Estudos Prospectivos , Raios Ultravioleta , Adulto Jovem
12.
Int J Mol Sci ; 21(21)2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105778

RESUMO

Deficiency of corneal epithelium causes vision impairment or blindness in severe cases. Transplantation of corneal epithelial cells is an effective treatment but the availability of the tissue source for those cells is inadequate. Stem cells can be induced to differentiate to corneal epithelial cells and used in the treatment. Multipotent stem cells (mesenchymal stem cells) and pluripotent stem cells (embryonic stem cells and induced pluripotent stem cells) are promising cells to address the problem. Various protocols have been developed to induce differentiation of the stem cells into corneal epithelial cells. The feasibility and efficacy of both human stem cells and animal stem cells have been investigated for corneal epithelium regeneration. However, some physiological aspects of animal stem cells are different from those of human stem cells, the protocols suited for animal stem cells might not be suitable for human stem cells. Therefore, in this review, only the investigations of corneal epithelial differentiation of human stem cells are taken into account. The available protocols for inducing the differentiation of human stem cells into corneal epithelial cells are gathered and compared. Also, the pathways involving in the differentiation are provided to elucidate the relevant mechanisms.


Assuntos
Epitélio Corneano/citologia , Epitélio Corneano/fisiologia , Células-Tronco/citologia , Diferenciação Celular , Técnicas de Cocultura , Células-Tronco Embrionárias/citologia , Células Epiteliais/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Regeneração/fisiologia , Transdução de Sinais/fisiologia , Células-Tronco/fisiologia
13.
J Cell Physiol ; 234(5): 7459-7466, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30417371

RESUMO

The corneal sub-basal nerve (SBN) plexus is destroyed during photorefractive keratectomy (PRK) and its recovery is still a matter of debate. In vivo confocal microscopy (IVCM) was used to evaluate SBN plexus in 23 patients at a distance of 10-25 years (mean 15.6 years) from myopic PRK. Because 8 out of the 23 PRK patients underwent pars plana vitrectomy (PPV) for rhegmatogenous retinal detachment, IVCM was also performed on those patients 6 months after PPV. Thirteen patients matched for age and myopia served as controls (non-PRK). SBN plexus was markedly reduced after PRK compared with non-PRK eyes and showed a slow, continuous but incomplete recovery up to the end of our follow-up (range 10-25 years). PRK and non-PRK eyes showed a marked reduction in SBN density 6 months after PPV, thus demonstrating a detrimental effect exerted by PPV on SBN plexus.


Assuntos
Córnea/fisiologia , Córnea/cirurgia , Miopia/fisiopatologia , Miopia/cirurgia , Epitélio Corneano/fisiologia , Epitélio Corneano/cirurgia , Feminino , Humanos , Masculino , Microscopia Confocal/métodos , Pessoa de Meia-Idade , Ceratectomia Fotorrefrativa/métodos , Vitrectomia/métodos , Cicatrização/fisiologia
14.
Exp Eye Res ; 180: 110-121, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30557571

RESUMO

The aim of the present study was to evaluate the effect and the mechanism of action of the conditioned medium from human uterine cervical stem cells (CM-hUCESC) on corneal wound healing in a rabbit dry eye model. To do this, dry eye and corneal epithelial injuries were induced in rabbits by topical administration of atropine sulfate and NaOH. Hematoxylin-Eosin (H&E) and Ki-67 immunostaining were carried out to evaluate corneal damage and cell proliferation, and real-time PCR was used to evaluate proinflammatory cytokines in the cornea. In addition, in order to investigate possible factors involved in corneal regeneration, primary cultures of rat corneal epithelial cells (rCECs) were used to evaluate cell migration, proliferation, and apoptosis before and after immunoprecipitation of specific factors from the CM-hUCESC. Results showed that CM-hUCESC treatment significantly improved epithelial regeneration in rabbits with dry eye induced by atropine and reduced corneal pro-inflammatory TNF-α, MCP-1, MIP-1α and IL-6 cytokines. In addition, metalloproteinase inhibitors TIMP-1 and TIMP-2, which are present at high levels in CM-hUCESC, mediated corneal regenerative effects by both inducing corneal epithelial cell proliferation and inhibiting apoptosis. In summary, CM-hUCESC induces faster corneal regeneration in a rabbit model of dry eye induced by atropine than conventional treatments, being TIMP-1 and TIMP-2 mediators in this process. The results indicate that an alternative CM-based treatment for some corneal conditions is achievable, although future studies would be necessary to investigate other factors involved in the multiple observed effects of CM-hUCESC.


Assuntos
Colo do Útero/citologia , Meios de Cultivo Condicionados/farmacologia , Síndromes do Olho Seco/tratamento farmacológico , Epitélio Corneano/fisiologia , Regeneração/fisiologia , Células-Tronco/citologia , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Animais , Apoptose , Atropina/toxicidade , Western Blotting , Movimento Celular , Proliferação de Células , Citocinas/genética , Modelos Animais de Doenças , Síndromes do Olho Seco/induzido quimicamente , Síndromes do Olho Seco/metabolismo , Feminino , Antígeno Ki-67/metabolismo , Masculino , Coelhos , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Hidróxido de Sódio/toxicidade , Espectrometria de Massas em Tandem , Cicatrização/efeitos dos fármacos
15.
J Math Biol ; 78(5): 1245-1276, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30478759

RESUMO

Various biological studies suggest that the corneal epithelium is maintained by active stem cells located in the limbus, the so-called limbal epithelial stem cell hypothesis. While numerous mathematical models have been developed to describe corneal epithelium wound healing, only a few have explored the process of corneal epithelium homeostasis. In this paper we present a purposefully simple stochastic mathematical model based on a chemical master equation approach, with the aim of clarifying the main factors involved in the maintenance process. Model analysis provides a set of constraints on the numbers of stem cells, division rates, and the number of division cycles required to maintain a healthy corneal epithelium. In addition, our stochastic analysis reveals noise reduction as the epithelium approaches its homeostatic state, indicating robustness to noise. Finally, recovery is analysed in the context of perturbation scenarios.


Assuntos
Epitélio Corneano/citologia , Epitélio Corneano/fisiologia , Modelos Biológicos , Animais , Contagem de Células , Movimento Celular , Proliferação de Células , Lesões da Córnea/patologia , Lesões da Córnea/fisiopatologia , Epitélio Corneano/lesões , Homeostase , Humanos , Conceitos Matemáticos , Camundongos , Coelhos , Ratos , Células-Tronco/citologia , Células-Tronco/fisiologia , Processos Estocásticos , Cicatrização/fisiologia
16.
Klin Monbl Augenheilkd ; 236(6): 777-783, 2019 Jun.
Artigo em Alemão | MEDLINE | ID: mdl-28575918

RESUMO

In humans, regeneration of the corneal epithelium is regulated by the stem cell reservoir of the limbus. After extensive limbal damage, e.g., by inflammation, thermal burn or chemical injury, limbal stem cell deficiency leading to vascularization and opacification of the cornea and resulting in vision loss, may develop. Several techniques of autologous and allogenic stem cell transplantation have been established. The limbus can be restored by transplantation of whole limbal grafts, small limbal biopsies or by ex vivo-expanded limbal cells. In this review, the physiology of corneal epithelium, the pathophysiology of limbal stem cell deficiency and the therapeutic procedures will be presented.


Assuntos
Doenças da Córnea , Transplante de Córnea , Epitélio Corneano , Limbo da Córnea , Córnea/fisiologia , Doenças da Córnea/patologia , Doenças da Córnea/terapia , Epitélio Corneano/citologia , Epitélio Corneano/fisiologia , Humanos , Limbo da Córnea/citologia , Limbo da Córnea/patologia , Regeneração , Transplante de Células-Tronco
17.
Lab Invest ; 98(11): 1375-1383, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29802338

RESUMO

We generated cornea-specific plakoglobin (Jup; junctional plakoglobin) knockout mice in order to investigate the function of plakoglobin on the maintenance of the homeostasis of corneal epithelium in mice. Cornea epithelium-specific conditional knockouts (JupCEΔ/CEΔ) (cKO) were obtained by breeding keratin12-Cre (Krt12-Cre) mice to Jup-floxed (Jupf/f) mice. Light and transmission electron microscopic and immunohistochemical analyses were carried out to determine consequence of the loss of plakoglobin on maintaining corneal epithelium integrity under mechanical stress, e.g., brushing and wound healing. Immunohistochemistry analysis demonstrated that, although Jup ablation did not affect BrdU incorporation, basal cell-like cells labeled for keratin 14 were ectopically present in the supra-basal layer in mutant corneal epithelium, suggestive of altered cell differentiation. Plakoglobin-deficient epithelium exhibits increased fragility against mechanical intervention when compared to wild-type controls under identical treatment. Closure of an epithelial defect was significantly delayed in JupCEΔ/CEΔ epithelium. Our findings indicate that the lack of plakoglobin significantly affects corneal epithelium differentiation, as well as its structural integrity. Plakoglobin is essential to the maintenance of the structure of the corneal epithelium and its wound healing.


Assuntos
Epitélio Corneano/fisiologia , Cicatrização , gama Catenina/fisiologia , Animais , Lesões da Córnea , Epitélio Corneano/ultraestrutura , Camundongos Transgênicos
18.
Am J Pathol ; 187(6): 1313-1326, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28419818

RESUMO

Corneal injuries and infections are the leading cause of blindness worldwide. Thus, understanding the mechanisms that control healing of the damaged cornea is critical for the development of new therapies to promptly restore vision. Innate lymphoid cells (ILCs) are a recently identified heterogeneous cell population that has been reported to orchestrate immunity and promote tissue repair in the lungs and skin after injury. However, whether ILCs can modulate the repair process in the cornea remains poorly understood. We identified a population of cornea-resident group 2 ILCs (ILC2s) in mice that express CD127, T1/ST2, CD90, and cKit. This cell population was relatively rare in corneas at a steady state but increased after corneal epithelial abrasion. Moreover, ILC2s were maintained and expanded locally at a steady state and after wounding. Depletion of this cell population caused a delay in corneal wound healing, whereas supplementation of ILC2s through adoptive transfer partially restored the healing process. Further investigation revealed that IL-25, IL-33, and thymic stromal lymphopoietin had critical roles in corneal ILC2 responses and that CCR2- corneal macrophages were an important producer of IL-33 in the cornea. Together, these results reveal the critical role of cornea-resident ILC2s in the restoration of corneal epithelial integrity after acute injury and suggest that ILC2 responses depend on local induction of IL-25, IL-33, and thymic stromal lymphopoietin.


Assuntos
Lesões da Córnea/imunologia , Epitélio Corneano/lesões , Subpopulações de Linfócitos/fisiologia , Regeneração/imunologia , Transferência Adotiva/métodos , Animais , Transplante de Medula Óssea/métodos , Proliferação de Células/fisiologia , Lesões da Córnea/fisiopatologia , Citocinas/biossíntese , Modelos Animais de Doenças , Epitélio Corneano/fisiologia , Feminino , Imunidade Inata , Interleucina-33/biossíntese , Interleucinas/biossíntese , Limbo da Córnea/imunologia , Camundongos Endogâmicos C57BL , Cicatrização/imunologia , Linfopoietina do Estroma do Timo
19.
Exp Eye Res ; 177: 122-129, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30086260

RESUMO

There has been a drive to develop new cell based therapies to treat corneal blindness, one of the most common causes of blindness worldwide. Mechanical and physical cues are known to regulate the behavior of many cell types, however studies examining these effects on corneal epithelial cells have been limited in number and their findings have not previously been amalgamated and contrasted. Here, we provide an overview of the different types of mechanical stimuli to which the corneal epithelium is exposed and the influence that these have on the cells. Shear stress from the tear film motion and blinking, extracellular matrix stiffness and external physical forces such as eye rubbing and contact lens wear are among some of the forms of mechanical stimuli that the epithelium experiences. In vivo and in vitro studies examining the mechanobiology on corneal epithelial cells under differing mechanical environments are explored. A greater understanding of the mechanobiology of the corneal epithelium has the potential to lead to improved tissue engineering and cell based therapies to repair and regenerate damaged cornea.


Assuntos
Epitélio Corneano/fisiologia , Estresse Mecânico , Doenças da Córnea/fisiopatologia , Doenças da Córnea/terapia , Matriz Extracelular/fisiologia , Pálpebras/fisiologia , Humanos , Medicina Regenerativa/métodos , Lágrimas/fisiologia
20.
Exp Eye Res ; 172: 152-158, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29660329

RESUMO

Aquaporins (AQPs), ordinarily regarded as water channels, have recently been shown to participate in other cellular functions such as cell-to-cell adhesion, cell migration, cell proliferation etc. The current investigation was undertaken to find out whether AQP5 water channel plays a role in corneal epithelial wound healing. Expression of AQP5 in mouse cornea and transfected Madin-Darby canine kidney (MDCK) cells was detected using immunofluorescence or EGFP tag. Cell migration and proliferation, the two major events in wound healing, were studied in vitro using cell culture scratch-wound healing model and cell proliferation assay, in vivo by conducting wound healing experiments on corneas of wild-type and AQP5 knockout mouse model and ex vivo on corneal epithelial cells isolated from wild type and AQP5 knockout mice. MDCK cells stably expressing AQP5 showed significantly higher levels of cell migration and proliferation compared to control cells. Likewise, corneal epithelial cells of wild type mouse with innate AQP5 exhibited faster wound healing than those of AQP5 knockout in vivo and under ex vivo culture conditions. In vitro, in vivo and ex vivo studies showed that presence of AQP5 improved cell migration, proliferation and wound healing. The data collected suggest that AQP5 plays a significant role in corneal epithelial wound healing.


Assuntos
Aquaporina 5/fisiologia , Movimento Celular/fisiologia , Reepitelização/fisiologia , Cicatrização/fisiologia , Animais , Western Blotting , Técnicas de Cultura de Células , Proliferação de Células/fisiologia , Córnea/metabolismo , Cães , Epitélio Corneano/fisiologia , Técnica Indireta de Fluorescência para Anticorpo , Proteínas de Fluorescência Verde/metabolismo , Células Madin Darby de Rim Canino/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA