Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 33(2): 103-109, 2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-37721535

RESUMO

Erythromelalgia (EM), is a familial pain syndrome characterized by episodic 'burning' pain, warmth, and erythema. EM is caused by monoallelic variants in SCN9A, which encodes the voltage-gated sodium channel (NaV) NaV1.7. Over 25 different SCN9A mutations attributed to EM have been described to date, all identified in the SCN9A transcript utilizing exon 6N. Here we report a novel SCN9A missense variant identified in seven related individuals with stereotypic episodes of bilateral lower limb pain presenting in childhood. The variant, XM_011511617.3:c.659G>C;p.(Arg220Pro), resides in the exon 6A of SCN9A, an exon previously shown to be selectively incorporated by developmentally regulated alternative splicing. The mutation is located in the voltage-sensing S4 segment of domain I, which is important for regulating channel activation. Functional analysis showed the p.Arg220Pro mutation altered voltage-dependent activation and delayed channel inactivation, consistent with a NaV1.7 gain-of-function molecular phenotype. These results demonstrate that alternatively spliced isoforms of SCN9A should be included in all genomic testing of EM.


Assuntos
Eritromelalgia , Humanos , Eritromelalgia/genética , Mutação de Sentido Incorreto/genética , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Dor/genética , Mutação , Éxons/genética
2.
Proc Natl Acad Sci U S A ; 120(14): e2219624120, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36996107

RESUMO

Gain-of-function mutations in voltage-gated sodium channel NaV1.7 cause severe inherited pain syndromes, including inherited erythromelalgia (IEM). The structural basis of these disease mutations, however, remains elusive. Here, we focused on three mutations that all substitute threonine residues in the alpha-helical S4-S5 intracellular linker that connects the voltage sensor to the pore: NaV1.7/I234T, NaV1.7/I848T, and NaV1.7/S241T in order of their positions in the amino acid sequence within the S4-S5 linkers. Introduction of these IEM mutations into the ancestral bacterial sodium channel NaVAb recapitulated the pathogenic gain-of-function of these mutants by inducing a negative shift in the voltage dependence of activation and slowing the kinetics of inactivation. Remarkably, our structural analysis reveals a common mechanism of action among the three mutations, in which the mutant threonine residues create new hydrogen bonds between the S4-S5 linker and the pore-lining S5 or S6 segment in the pore module. Because the S4-S5 linkers couple voltage sensor movements to pore opening, these newly formed hydrogen bonds would stabilize the activated state substantially and thereby promote the 8 to 18 mV negative shift in the voltage dependence of activation that is characteristic of the NaV1.7 IEM mutants. Our results provide key structural insights into how IEM mutations in the S4-S5 linkers may cause hyperexcitability of NaV1.7 and lead to severe pain in this debilitating disease.


Assuntos
Eritromelalgia , Canais de Sódio Disparados por Voltagem , Humanos , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Dor/genética , Dor/metabolismo , Mutação , Eritromelalgia/genética , Eritromelalgia/metabolismo , Eritromelalgia/patologia , Canais de Sódio Disparados por Voltagem/genética , Treonina/genética
3.
Brain ; 146(1): 359-371, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-35088838

RESUMO

Effective treatment of pain remains an unmet healthcare need that requires new and effective therapeutic approaches. NaV1.7 has been genetically and functionally validated as a mediator of pain. Preclinical studies of NaV1.7-selective blockers have shown limited success and translation to clinical studies has been limited. The degree of NaV1.7 channel blockade necessary to attenuate neuronal excitability and ameliorate pain is an unanswered question important for drug discovery. Here, we utilize dynamic clamp electrophysiology and induced pluripotent stem cell-derived sensory neurons (iPSC-SNs) to answer this question for inherited erythromelalgia, a pain disorder caused by gain-of-function mutations in Nav1.7. We show that dynamic clamp can produce hyperexcitability in iPSC-SNs associated with two different inherited erythromelalgia mutations, NaV1.7-S241T and NaV1.7-I848T. We further show that blockade of approximately 50% of NaV1.7 currents can reverse neuronal hyperexcitability to baseline levels.


Assuntos
Eritromelalgia , Humanos , Eritromelalgia/genética , Eritromelalgia/tratamento farmacológico , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Mutação/genética , Dor , Células Receptoras Sensoriais , Gânglios Espinais
4.
J Physiol ; 601(23): 5341-5366, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37846879

RESUMO

We show here that hyperpolarization-activated current (Ih ) unexpectedly acts to inhibit the activity of dorsal root ganglion (DRG) neurons expressing WT Nav1.7, the largest inward current and primary driver of DRG neuronal firing, and hyperexcitable DRG neurons expressing a gain-of-function Nav1.7 mutation that causes inherited erythromelalgia (IEM), a human genetic model of neuropathic pain. In this study we created a kinetic model of Ih and used it, in combination with dynamic-clamp, to study Ih function in DRG neurons. We show, for the first time, that Ih increases rheobase and reduces the firing probability in small DRG neurons, and demonstrate that the amplitude of subthreshold oscillations is reduced by Ih . Our results show that Ih , due to slow gating, is not deactivated during action potentials (APs) and has a striking damping action, which reverses from depolarizing to hyperpolarizing, close to the threshold for AP generation. Moreover, we show that Ih reverses the hyperexcitability of DRG neurons expressing a gain-of-function Nav1.7 mutation that causes IEM. In the aggregate, our results show that Ih unexpectedly has strikingly different effects in DRG neurons as compared to previously- and well-studied cardiac cells. Within DRG neurons where Nav1.7 is present, Ih reduces depolarizing sodium current inflow due to enhancement of Nav1.7 channel fast inactivation and creates additional damping action by reversal of Ih direction from depolarizing to hyperpolarizing close to the threshold for AP generation. These actions of Ih limit the firing of DRG neurons expressing WT Nav1.7 and reverse the hyperexcitability of DRG neurons expressing a gain-of-function Nav1.7 mutation that causes IEM. KEY POINTS: Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, the molecular determinants of hyperpolarization-activated current (Ih ) have been characterized as a 'pain pacemaker', and thus considered to be a potential molecular target for pain therapeutics. Dorsal root ganglion (DRG) neurons express Nav1.7, a channel that is not present in central neurons or cardiac tissue. Gain-of-function mutations (GOF) of Nav1.7 identified in inherited erythromelalgia (IEM), a human genetic model of neuropathic pain, produce DRG neuron hyperexcitability, which in turn produces severe pain. We found that Ih increases rheobase and reduces firing probability in small DRG neurons expressing WT Nav1.7, and demonstrate that the amplitude of subthreshold oscillations is reduced by Ih . We also demonstrate that Ih reverses the hyperexcitability of DRG neurons expressing a GOF Nav1.7 mutation (L858H) that causes IEM. Our results show that, in contrast to cardiac cells and CNS neurons, Ih acts to stabilize DRG neuron excitability and prevents excessive firing.


Assuntos
Eritromelalgia , Neuralgia , Animais , Humanos , Eritromelalgia/genética , Nociceptores , Roedores , Gânglios Espinais/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Neuralgia/genética , Neurônios/fisiologia , Potenciais de Ação
5.
J Peripher Nerv Syst ; 28(4): 597-607, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37555797

RESUMO

BACKGROUND AND AIMS: Voltage-gated sodium channel Nav1.7, encoded by the SCN9A gene, has been linked to diverse painful peripheral neuropathies, represented by the inherited erythromelalgia (EM) and paroxysmal extreme pain disorder (PEPD). The aim of this study was to determine the genetic etiology of patients experiencing neuropathic pain, and shed light on the underlying pathogenesis. METHODS: We enrolled eight patients presenting with early-onset painful peripheral neuropathies, consisting of six cases exhibiting EM/EM-like disorders and two cases clinically diagnosed with PEPD. We conducted a gene-panel sequencing targeting 18 genes associated with hereditary sensory and/or autonomic neuropathy. We introduced novel SCN9A mutation (F1624S) into a GFP-2A-Nav1.7rNS plasmid, and the constructs were then transiently transfected into HEK293 cells. We characterized both wild-type and F1624S Nav1.7 channels using an automated high-throughput patch-clamp system. RESULTS: From two patients displaying EM-like/EM phenotypes, we identified two SCN9A mutations, I136V and P1308L. Among two patients diagnosed with PEPD, we found two additional mutations in SCN9A, F1624S (novel) and A1632E. Patch-clamp analysis of Nav1.7-F1624S revealed depolarizing shifts in both steady-state fast inactivation (17.4 mV, p < .001) and slow inactivation (5.5 mV, p < .001), but no effect on channel activation was observed. INTERPRETATION: Clinical features observed in our patients broaden the phenotypic spectrum of SCN9A-related pain disorders, and the electrophysiological analysis enriches the understanding of genotype-phenotype association caused by Nav1.7 gain-of-function mutations.


Assuntos
Eritromelalgia , Doenças do Sistema Nervoso Periférico , Humanos , Células HEK293 , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Eritromelalgia/genética , Eritromelalgia/patologia , Dor , Mutação/genética
6.
J Biol Chem ; 296: 100227, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33361158

RESUMO

Mutations in voltage-gated sodium channels (Navs) can cause alterations in pain sensation, such as chronic pain diseases like inherited erythromelalgia. The mutation causing inherited erythromelalgia, Nav1.7 p.I848T, is known to induce a hyperpolarized shift in the voltage dependence of activation in Nav1.7. So far, however, the mechanism to explain this increase in voltage sensitivity remains unknown. In the present study, we show that phosphorylation of the newly introduced Thr residue explains the functional change. We expressed wildtype human Nav1.7, the I848T mutant, or other mutations in HEK293T cells and performed whole-cell patch-clamp electrophysiology. As the insertion of a Thr residue potentially creates a novel phosphorylation site for Ser/Thr kinases and because Nav1.7 had been shown in Xenopus oocytes to be affected by protein kinases C and A, we used different nonselective and selective kinase inhibitors and activators to test the effect of phosphorylation on Nav1.7 in a human system. We identify protein kinase C, but not protein kinase A, to be responsible for the phosphorylation of T848 and thereby for the shift in voltage sensitivity. Introducing a negatively charged amino acid instead of the putative phosphorylation site mimics the effect on voltage gating to a lesser extent. 3D modeling using the published cryo-EM structure of human Nav1.7 showed that introduction of this negatively charged site seems to alter the interaction of this residue with the surrounding amino acids and thus to influence channel function. These results could provide new opportunities for the development of novel treatment options for patients with chronic pain.


Assuntos
Potenciais da Membrana/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.7/química , Proteína Quinase C/metabolismo , Processamento de Proteína Pós-Traducional , Treonina/química , Substituição de Aminoácidos , Sítios de Ligação , Dor Crônica/genética , Dor Crônica/metabolismo , Dor Crônica/fisiopatologia , Eritromelalgia/genética , Eritromelalgia/metabolismo , Eritromelalgia/fisiopatologia , Expressão Gênica , Células HEK293 , Humanos , Ativação do Canal Iônico/fisiologia , Isoleucina/química , Isoleucina/metabolismo , Modelos Moleculares , Mutação , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Técnicas de Patch-Clamp , Fosforilação/efeitos dos fármacos , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/genética , Inibidores de Proteínas Quinases/farmacologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Estaurosporina/farmacologia , Treonina/metabolismo
7.
Pediatr Dermatol ; 39(1): 135-136, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34888934

RESUMO

Primary erythromelalgia is a rare autosomal-dominant condition due to pathogenic variant in the SCN9A gene, characterized by childhood onset of excruciating pain, redness, and warmth of acral sites. Patients often resort to ice water baths and other cooling measures to manage the discomfort. Hypothermia is a rare complication, reported only twice previously. We report a child with primary erythromelalgia due to a confirmed pathogenic variant admitted with life-threatening hypothermia. Although the overuse of cooling mechanisms may have contributed, we postulate that the SCN9A mutation may lead to thermodysregulation and make patients with primary erythromelalgia particularly susceptible to this complication.


Assuntos
Eritromelalgia , Hipotermia , Criança , Eritromelalgia/diagnóstico , Eritromelalgia/genética , Eritromelalgia/terapia , Humanos , Mutação , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Dor
8.
J Neurosci ; 39(3): 382-392, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30459225

RESUMO

Pain is a complex process that involves both detection in the peripheral nervous system and perception in the CNS. Individual-to-individual differences in pain are well documented, but not well understood. Here we capitalized on inherited erythromelalgia (IEM), a well characterized human genetic model of chronic pain, and studied a unique family containing related IEM subjects with the same disease-causing NaV1.7 mutation, which is known to make dorsal root ganglion (DRG) neurons hyperexcitable, but different pain profiles (affected son with severe pain, affected mother with moderate pain, and an unaffected father). We show, first, that, at least in some cases, relative sensitivity to pain can be modeled in subject-specific induced pluripotent stem cell (iPSC)-derived sensory neurons in vitro; second, that, in some cases, mechanisms operating in peripheral sensory neurons contribute to interindividual differences in pain; and third, using whole exome sequencing (WES) and dynamic clamp, we show that it is possible to pinpoint a specific variant of another gene, KCNQ in this particular kindred, that modulates the excitability of iPSC-derived sensory neurons in this family. While different gene variants may modulate DRG neuron excitability and thereby contribute to interindividual differences in pain in other families, this study shows that subject-specific iPSCs can be used to model interindividual differences in pain. We further provide proof-of-principle that iPSCs, WES, and dynamic clamp can be used to investigate peripheral mechanisms and pinpoint specific gene variants that modulate pain signaling and contribute to interindividual differences in pain.SIGNIFICANCE STATEMENT Individual-to-individual differences in pain are well documented, but not well understood. In this study, we show, first, that, at least in some cases, relative sensitivity to pain can be modeled in subject-specific induced pluripotent stem cell-derived sensory neurons in vitro; second, that, in some cases, mechanisms operating in peripheral sensory neurons contribute to interindividual differences in pain; and third, using whole exome sequencing and dynamic clamp, we show that it is possible to pinpoint a specific gene variant that modulates pain signaling and contributes to interindividual differences in pain.


Assuntos
Dor Crônica/genética , Células-Tronco Pluripotentes Induzidas , Resiliência Psicológica , Adulto , Criança , Dor Crônica/fisiopatologia , Eritromelalgia/genética , Eritromelalgia/fisiopatologia , Potenciais Pós-Sinápticos Excitadores , Exoma/genética , Feminino , Gânglios Espinais/citologia , Gânglios Espinais/fisiopatologia , Humanos , Imuno-Histoquímica , Individualidade , Canais de Potássio KCNQ/genética , Canais de Potássio KCNQ/metabolismo , Masculino , Potenciais da Membrana , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Medição da Dor , Técnicas de Patch-Clamp , Células Receptoras Sensoriais
9.
J Pediatr ; 206: 217-224.e9, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30416015

RESUMO

OBJECTIVES: To evaluate the clinical features of erythromelalgia in childhood associated with gain-of-function SCN9A mutations that increase activity of the Nav1.7 voltage-gated sodium channel, we conducted a systematic review of pediatric presentations of erythromelalgia related to SCN9A mutations, and compared pediatric clinical presentations of symptomatic erythromelalgia, with or without SCN9A mutations. STUDY DESIGN: PubMed, Embase, and PsycINFO Databases were searched for reports of inherited erythromelalgia in childhood. Clinical features, management, and genotype were extracted. Case notes of pediatric patients with erythromelalgia from the Great Ormond Street Hospital Pain Service were reviewed for clinical features, patient-reported outcomes, and treatments. Children aged over 10 years were recruited for quantitative sensory testing. RESULTS: Twenty-eight publications described erythromelalgia associated with 15 different SCN9A gene variants in 25 children. Pain was severe and often refractory to multiple treatments, including nonspecific sodium channel blockers. Skin damage or other complications of cold immersion for symptomatic relief were common (60%). SCN9A mutations resulting in greater hyperpolarizing shifts in Nav1.7 sodium channels correlated with symptom onset at younger ages (P = .016). Variability in reporting, and potential publication bias toward severe cases, limit any estimations of overall prevalence. In our case series, symptoms were similar but comorbidities were more common in children with SCN9A mutations. Quantitative sensory testing revealed marked dynamic warm allodynia. CONCLUSIONS: Inherited erythromelalgia in children is associated with difficult-to-manage pain and significant morbidity. Standardized reporting of outcome and management in larger series will strengthen identification of genotype-phenotype relationships. More effective long-term therapies are a significant unmet clinical need.


Assuntos
Eritromelalgia/complicações , Eritromelalgia/genética , Mutação/genética , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Dor/etiologia , Adolescente , Criança , Feminino , Humanos , Masculino , Estudos Retrospectivos , Avaliação de Sintomas
10.
Clin Exp Dermatol ; 44(5): 477-482, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30609105

RESUMO

Erythromelalgia is a condition characterized by episodic pain, erythema and temperature of the extremities, which is relieved by cooling and aggravated by warming. It is useful to review this topic in light of recent discoveries of the genetic mutations that now define primary erythromelalgia, as opposed to secondary erythromelalgia, which is often associated with underlying medical disorders.


Assuntos
Eritromelalgia/diagnóstico , Capsaicina/uso terapêutico , Eritromelalgia/complicações , Eritromelalgia/genética , Eritromelalgia/terapia , Humanos , Programas de Rastreamento , Mexiletina/uso terapêutico , Transtornos Mieloproliferativos/complicações , Transtornos Mieloproliferativos/diagnóstico , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Ranolazina/uso terapêutico , Fármacos do Sistema Sensorial/uso terapêutico , Bloqueadores dos Canais de Sódio/uso terapêutico , Simpatectomia
11.
Schmerz ; 33(5): 475-490, 2019 Oct.
Artigo em Alemão | MEDLINE | ID: mdl-31485751

RESUMO

Erythromelalgia is a rare disease that is associated with hemato-oncological diseases or after taking certain drugs and toxins, but it can also occur as an independent clinical picture, for example, due to mutations in the sodium channel NaV1.7. Clinically, there is a characteristic triad of attack-like burning pain and skin redness in the area of the distal extremities, which can be alleviated by excessive cooling. The attacks are triggered by heat, exertion, and stress. The diagnosis is primarily made clinically and can be confirmed by genetic testing if a sodium channel NaV1.7 mutation is present. Important differential diagnoses are complex regional pain syndrome, the non-freezing cold injury, and small fiber neuropathies. Therapy is multidisciplinary and has to be planned individually and include physical therapy and psychotherapy as well as drug therapy as integral components.


Assuntos
Eritromelalgia , Dor , Eritromelalgia/diagnóstico , Eritromelalgia/genética , Eritromelalgia/patologia , Eritromelalgia/terapia , Humanos , Mutação , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Dor/etiologia , Pele/patologia
12.
J Biol Chem ; 292(22): 9262-9272, 2017 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-28381558

RESUMO

Dominant mutations in voltage-gated sodium channel NaV1.7 cause inherited erythromelalgia, a debilitating pain disorder characterized by severe burning pain and redness of the distal extremities. NaV1.7 is preferentially expressed within peripheral sensory and sympathetic neurons. Here, we describe a novel NaV1.7 mutation in an 11-year-old male with underdevelopment of the limbs, recurrent attacks of burning pain with erythema, and swelling in his feet and hands. Frequency and duration of the episodes gradually increased with age, and relief by cooling became less effective. The patient's sister had short stature and reported similar complaints of erythema and burning pain, but with less intensity. Genetic analysis revealed a novel missense mutation in NaV1.7 (2567G>C; p.Gly856Arg) in both siblings. The G856R mutation, located within the DII/S4-S5 linker of the channel, substitutes a highly conserved non-polar glycine by a positively charged arginine. Voltage-clamp analysis of G856R currents revealed that the mutation hyperpolarized (-11.2 mV) voltage dependence of activation and slowed deactivation but did not affect fast inactivation, compared with wild-type channels. A mutation of Gly-856 to aspartic acid was previously found in a family with limb pain and limb underdevelopment, and its functional assessment showed hyperpolarized activation, depolarized fast inactivation, and increased ramp current. Structural modeling using the Rosetta computational modeling suite provided structural clues to the divergent effects of the substitution of Gly-856 by arginine and aspartic acid. Although the proexcitatory changes in gating properties of G856R contribute to the pathophysiology of inherited erythromelalgia, the link to limb underdevelopment is not well understood.


Assuntos
Eritromelalgia , Potenciais da Membrana/genética , Modelos Moleculares , Mutação de Sentido Incorreto , Canal de Sódio Disparado por Voltagem NAV1.7 , Dor , Adolescente , Substituição de Aminoácidos , Criança , Eritromelalgia/genética , Eritromelalgia/metabolismo , Feminino , Células HEK293 , Humanos , Masculino , Canal de Sódio Disparado por Voltagem NAV1.7/química , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Dor/genética , Dor/metabolismo , Domínios Proteicos
13.
J Vasc Surg ; 68(6): 1897-1905, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30126782

RESUMO

OBJECTIVE: Erythromelalgia is highly disabling and treatment is often very challenging. There have been solitary case reports that it might benefit from sympathectomy. This study sought to evaluate the short-term and long-term efficacy of chemical lumbar sympathectomy (CLS) for treatment of recalcitrant erythromelalgia and try to identify a CLS-responsive subset. METHODS: Patients with recalcitrant erythromelalgia were recruited from a tertiary hospital over a 10-year period. L3 to L4 CLS was performed using 5% phenol. The pain intensity score (visual analog scale [VAS] 0-10) was assessed before CLS and at 1 day, 1 week, 3 months, 6 months, 1 year, and 2 years after CLS. A VAS decrease of 90%-100% is defined as complete response, 60%-89% as major partial response. Relapse was defined by a return of a VAS score of 5 or higher. SCN9A gene mutations were screened. RESULTS: Thirteen patients were enrolled, with a median age of 15 years. The mean follow-up was 6.2 ± 3.8 years. SCN9A gene mutation was identified in five patients having family histories. The VAS was 8.2 ± 2.0 at baseline; it decreased to 4.9 ± 2.7 at 1 day and 1.9 ± 3.0 at 1 week after CLS. Nine patients (69.2%) achieved complete response at 1 week after CLS, including three patients with SCN9A gene mutation. Among the three complete response patients having the gene mutation, two reverted to major partial response and one relapsed at 2 years after CLS. Among the six complete response patients without mutation, five maintained complete response and one relapsed. Among the four patients who did not achieve complete response, one patient died at 3.5 months and one patient had an amputation performed at 4 months after CLS. CONCLUSIONS: CLS provides a valid option for the treatment of recalcitrant erythromelalgia. It takes about 1 week to achieve full efficacy. Relapse may occur, especially in patients with an SCN9A gene mutation.


Assuntos
Eritromelalgia/terapia , Vértebras Lombares/inervação , Simpatectomia Química/métodos , Adolescente , Amputação Cirúrgica , Criança , Análise Mutacional de DNA , Eritromelalgia/diagnóstico , Eritromelalgia/genética , Eritromelalgia/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Medição da Dor , Estudos Prospectivos , Recidiva , Indução de Remissão , Simpatectomia Química/efeitos adversos , Fatores de Tempo , Resultado do Tratamento , Adulto Jovem
14.
Vasa ; 47(2): 91-97, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29299961

RESUMO

Erythromelalgia is a rare syndrome characterized by the intermittent or, less commonly, by the permanent occurrence of extremely painful hyperperfused skin areas mainly located in the distal extremities. Primary erythromelalgia is nowadays considered to be a genetically determined neuropathic disorder affecting SCN9A, SCN10A, and SCN11A coding for NaV1.7, NaV1.8, and NaV1.9 neuronal sodium channels. Secondary forms might be associated with myeloproliferative disorders, connective tissue disease, cancer, infections, and poisoning. Between the pain episodes, the affected skin areas are usually asymptomatic, but there are patients with typical features of acrocyanosis and/or Raynaud's phenomenon preceding or occurring in between the episodes of erythromelalgia. Diagnosis is made by ascertaining the typical clinical features. Thereafter, the differentiation between primary and secondary forms should be made. Genetic testing is recommended, especially in premature cases and in cases of family clustering in specialized genetic institutions after genetic counselling. Multimodal therapeutic intervention aims toward attenuation of pain and improvement of the patient's quality of life. For this purpose, a wide variety of nonpharmacological approaches and pharmacological substances for topical and systemic use have been proposed, which are usually applied individually in a step-by-step approach. Prognosis mainly depends on the underlying condition and the ability of the patients and their relatives to cope with the disease.


Assuntos
Eritromelalgia , Eritromelalgia/diagnóstico , Eritromelalgia/epidemiologia , Eritromelalgia/genética , Eritromelalgia/terapia , Predisposição Genética para Doença , Humanos , Técnicas de Diagnóstico Molecular , Medição da Dor , Fenótipo , Valor Preditivo dos Testes , Fatores de Risco , Resultado do Tratamento
15.
J Neurosci ; 36(28): 7511-22, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27413160

RESUMO

UNLABELLED: Voltage-gated sodium channel Nav1.7 is a central player in human pain. Mutations in Nav1.7 produce several pain syndromes, including inherited erythromelalgia (IEM), a disorder in which gain-of-function mutations render dorsal root ganglia (DRG) neurons hyperexcitable. Although patients with IEM suffer from episodes of intense burning pain triggered by warmth, the effects of increased temperature on DRG neurons expressing mutant Nav1.7 channels have not been well documented. Here, using structural modeling, voltage-clamp, current-clamp, and multielectrode array recordings, we have studied a newly identified Nav1.7 mutation, Ala1632Gly, from a multigeneration family with IEM. Structural modeling suggests that Ala1632 is a molecular hinge and that the Ala1632Gly mutation may affect channel gating. Voltage-clamp recordings revealed that the Nav1.7-A1632G mutation hyperpolarizes activation and depolarizes fast-inactivation, both gain-of-function attributes at the channel level. Whole-cell current-clamp recordings demonstrated increased spontaneous firing, lower current threshold, and enhanced evoked firing in rat DRG neurons expressing Nav1.7-A1632G mutant channels. Multielectrode array recordings further revealed that intact rat DRG neurons expressing Nav1.7-A1632G mutant channels are more active than those expressing Nav1.7 WT channels. We also showed that physiologically relevant thermal stimuli markedly increase the mean firing frequencies and the number of active rat DRG neurons expressing Nav1.7-A1632G mutant channels, whereas the same thermal stimuli only increase these parameters slightly in rat DRG neurons expressing Nav1.7 WT channels. The response of DRG neurons expressing Nav1.7-A1632G mutant channels upon increase in temperature suggests a cellular basis for warmth-triggered pain in IEM. SIGNIFICANCE STATEMENT: Inherited erythromelalgia (IEM), a severe pain syndrome characterized by episodes of intense burning pain triggered by warmth, is caused by mutations in sodium channel Nav1.7, which are preferentially expressed in sensory and sympathetic neurons. More than 20 gain-of-function Nav1.7 mutations have been identified from IEM patients, but the question of how warmth triggers episodes of pain in IEM has not been well addressed. Combining multielectrode array, voltage-clamp, and current-clamp recordings, we assessed a newly identified IEM mutation (Nav1.7-A1632G) from a multigeneration family. Our data demonstrate gain-of-function attributes at the channel level and differential effects of physiologically relevant thermal stimuli on the excitability of DRG neurons expressing mutant and WT Nav1.7 channels, suggesting a cellular mechanism for warmth-triggered pain episodes in IEM patients.


Assuntos
Eritromelalgia/genética , Eritromelalgia/patologia , Gânglios Espinais/patologia , Potenciais da Membrana/genética , Mutação/genética , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Neurônios/fisiologia , Alanina/genética , Animais , Células Cultivadas , Feminino , Gânglios Espinais/citologia , Glutamina/genética , Células HEK293 , Humanos , Masculino , Potenciais da Membrana/efeitos dos fármacos , Modelos Moleculares , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Bloqueadores dos Canais de Sódio/farmacologia , Temperatura , Tetrodotoxina/farmacologia
16.
Brain ; 139(Pt 4): 1052-65, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26920677

RESUMO

Inherited erythromelalgia, the first human pain syndrome linked to voltage-gated sodium channels, is widely regarded as a genetic model of human pain. Because inherited erythromelalgia was linked to gain-of-function changes of sodium channel Na(v)1.7 only a decade ago, the literature has mainly consisted of reports of genetic and/or clinical characterization of individual patients. This paper describes the pattern of pain, natural history, somatosensory profile, psychosocial status and olfactory testing of 13 subjects with primary inherited erythromelalgia with mutations of SCN9A, the gene encoding Na(v)1.7. Subjects were clinically profiled using questionnaires, quantitative sensory testing and olfaction testing during the in-clinic phase of the study. In addition, a detailed pain phenotype for each subject was obtained over a 3-month period at home using diaries, enabling subjects to self-report pain attacks, potential triggers, duration and severity of pain. All subjects reported pain and heat in the extremities (usually feet and/or hands), with pain attacks triggered by heat or exercise and relieved mainly by non-pharmacological manoeuvres such as cooling. A large proportion of pain attacks (355/1099; 32%) did not involve a specific trigger. There was considerable variability in the number, duration and severity of pain attacks between subjects, even those carrying the same mutation within a family, and within individuals over the 12-13 week observation period. Most subjects (11/13) had pain between attacks. For these subjects, mean pain severity between pain attacks was usually lower than that during an attack. Olfaction testing using the Sniffin'T test did not demonstrate hyperosmia. One subject had evidence of orthostatic hypotension. Overall, there was a statistically significant correlation between total Hospital Anxiety and Depression Scale scores (P= 0.005) and pain between attacks and for Hospital Anxiety and Depression Scale Depression scores and pain between attacks (P= 0.001). Hospital Anxiety and Depression Scale scores for five subjects were below the threshold for mild anxiety or depression and none of the 13 subjects were severely anxious and/or depressed. Quantitative sensory testing revealed significantly increased detection thresholds for cold and warm stimuli at affected, compared to unaffected sites. By contrast, significantly decreased cold and heat pain thresholds were found at unaffected sites. Sensory profiles varied considerably between affected and unaffected sites, suggesting the existence of small fibre neuropathy in symptomatic sites. This in-depth clinical characterization of a well-defined inherited erythromelalgia population indicates the importance of characterizing the pain phenotype in individuals before undertaking clinical trials, given the inherent variability of pain both between and within inherited erythromelalgia subjects, even those within a family who carry the same mutation.


Assuntos
Eritromelalgia/genética , Potenciais Somatossensoriais Evocados/genética , Mutação/genética , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Dor/genética , Fenótipo , Adolescente , Adulto , Idoso , Eritromelalgia/diagnóstico , Eritromelalgia/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Dor/diagnóstico , Dor/fisiopatologia , Medição da Dor/métodos , Inquéritos e Questionários , Adulto Jovem
18.
Schmerz ; 31(1): 14-22, 2017 Feb.
Artigo em Alemão | MEDLINE | ID: mdl-27402262

RESUMO

Voltage-gated sodium channels (Navs) are crucial for the generation and propagation of action potentials in all excitable cells, and therefore for the function of sensory neurons as well. Preclinical research over the past 20 years identified three Nav-isoforms in sensory neurons, namely Nav1.7, Nav1.8 and Nav1.9. A specific role for the function of nociceptive neurons was postulated for each. Whereas no selective sodium channel inhibitors have been established in the clinic so far, the relevance of all three isoforms regarding the pain sensitivity in humans is currently undergoing a remarkable verification through the translation of preclinical data into clinically manifest pictures. For the last ten years, Nav1.7 has been the main focus of clinical interest, as a large number of hereditary mutants were identified. The so-called "gain-of-function" mutations of Nav1.7 cause the pain syndromes hereditary erythromelalgia and paroxysmal extreme pain disorder. In addition, several Nav1.7 mutants were shown to be associated with small-fiber neuropathies. On the contrary, "loss-of-function" Nav1.7 mutants lead to a congenital insensitivity to pain. Recently, several gain-of-function mutations in Nav1.8 and Nav1.9 have been identified in patients suffering from painful peripheral neuropathies. However, another gain-of-function Nav1.9 mutation is associated with congenital insensitivity to pain. This review offers an overview of published work on painful Nav mutations with clinical relevance, and proposes possible consequences for the therapy of different pain symptoms resulting from these findings.


Assuntos
Analgesia , Percepção da Dor/fisiologia , Isoformas de Proteínas/genética , Canais de Sódio Disparados por Voltagem/genética , Análise Mutacional de DNA , Eritromelalgia/genética , Eritromelalgia/terapia , Mutação com Ganho de Função/genética , Humanos , Mutação com Perda de Função/genética , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Canal de Sódio Disparado por Voltagem NAV1.8/genética , Canal de Sódio Disparado por Voltagem NAV1.9/genética , Dor/genética , Insensibilidade Congênita à Dor/genética , Insensibilidade Congênita à Dor/terapia , Doenças do Sistema Nervoso Periférico/genética , Doenças do Sistema Nervoso Periférico/terapia , Reto/anormalidades , Neuropatia de Pequenas Fibras/genética , Neuropatia de Pequenas Fibras/terapia
19.
J Neurosci ; 35(20): 7674-81, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25995458

RESUMO

The importance of NaV1.7 (encoded by SCN9A) in the regulation of pain sensing is exemplified by the heterogeneity of clinical phenotypes associated with its mutation. Gain-of-function mutations are typically pain-causing and have been associated with inherited erythromelalgia (IEM) and paroxysmal extreme pain disorder (PEPD). IEM is usually caused by enhanced NaV1.7 channel activation, whereas mutations that alter steady-state fast inactivation often lead to PEPD. In contrast, nonfunctional mutations in SCN9A are known to underlie congenital insensitivity to pain (CIP). Although well documented, the correlation between SCN9A genotypes and clinical phenotypes is still unclear. Here we report three families with novel SCN9A mutations. In a multiaffected dominant family with IEM, we found the heterozygous change L245 V. Electrophysiological characterization showed that this mutation did not affect channel activation but instead resulted in incomplete fast inactivation and a small hyperpolarizing shift in steady-state slow inactivation, characteristics more commonly associated with PEPD. In two compound heterozygous CIP patients, we found mutations that still retained functionality of the channels, with two C-terminal mutations (W1775R and L1831X) exhibiting a depolarizing shift in channel activation. Two mutations (A1236E and L1831X) resulted in a hyperpolarizing shift in steady-state fast inactivation. To our knowledge, these are the first descriptions of mutations with some retained channel function causing CIP. This study emphasizes the complex genotype-phenotype correlations that exist for SCN9A and highlights the C-terminal cytoplasmic region of NaV1.7 as a critical region for channel function, potentially facilitating analgesic drug development studies.


Assuntos
Eritromelalgia/genética , Ativação do Canal Iônico , Mutação de Sentido Incorreto , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Insensibilidade Congênita à Dor/genética , Dor/genética , Reto/anormalidades , Criança , Eritromelalgia/metabolismo , Feminino , Células HEK293 , Humanos , Masculino , Canal de Sódio Disparado por Voltagem NAV1.7/química , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Dor/metabolismo , Insensibilidade Congênita à Dor/metabolismo , Linhagem , Fenótipo , Estrutura Terciária de Proteína , Reto/metabolismo
20.
J Biol Chem ; 290(10): 6316-25, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25575597

RESUMO

The human voltage-gated sodium channel Nav1.7 plays a crucial role in transmission of noxious stimuli. The inherited pain disorder erythromelalgia (IEM) has been linked to Nav1.7 gain-of-function mutations. Here we show that the IEM-associated Q875E mutation located on the pore module of Nav1.7 produces a large hyperpolarizing shift (-18 mV) in the voltage dependence of activation. Three-dimensional homology modeling indicates that the side chains of Gln-875 and the gating charge Arg-214 of the domain I voltage sensor are spatially close in the activated conformation of the channel. We verified this proximity by using an engineered disulfide bridge approach. The Q875E mutation introduces a negative charge that may modify the local electrical field experienced by the voltage sensor and, upon activation, interact directly via a salt bridge with the Arg-214 gating charge residue. Together these processes could promote transition to, and stabilization of, the domain I voltage sensor in the activated conformation and thus produce the observed gain of function. In support of this hypothesis, an increase in the extracellular concentration of Ca(2+) or Mg(2+) reverted the voltage dependence of activation of the IEM mutant to near WT values, suggesting a cation-mediated electrostatic screening of the proposed interaction between Q875E and Arg-214.


Assuntos
Eritromelalgia/genética , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Dor/genética , Canais de Sódio/metabolismo , Cálcio/metabolismo , Eritromelalgia/patologia , Células HEK293 , Humanos , Magnésio/metabolismo , Modelos Moleculares , Mutação , Canal de Sódio Disparado por Voltagem NAV1.7/química , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Dor/patologia , Técnicas de Patch-Clamp , Canais de Sódio/química , Canais de Sódio/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA