RESUMO
Tropane alkaloids from nightshade plants are neurotransmitter inhibitors that are used for treating neuromuscular disorders and are classified as essential medicines by the World Health Organization1,2. Challenges in global supplies have resulted in frequent shortages of these drugs3,4. Further vulnerabilities in supply chains have been revealed by events such as the Australian wildfires5 and the COVID-19 pandemic6. Rapidly deployable production strategies that are robust to environmental and socioeconomic upheaval7,8 are needed. Here we engineered baker's yeast to produce the medicinal alkaloids hyoscyamine and scopolamine, starting from simple sugars and amino acids. We combined functional genomics to identify a missing pathway enzyme, protein engineering to enable the functional expression of an acyltransferase via trafficking to the vacuole, heterologous transporters to facilitate intracellular routing, and strain optimization to improve titres. Our integrated system positions more than twenty proteins adapted from yeast, bacteria, plants and animals across six sub-cellular locations to recapitulate the spatial organization of tropane alkaloid biosynthesis in plants. Microbial biosynthesis platforms can facilitate the discovery of tropane alkaloid derivatives as new therapeutic agents for neurological disease and, once scaled, enable robust and agile supply of these essential medicines.
Assuntos
Alcaloides/biossíntese , Alcaloides/provisão & distribuição , Hiosciamina/biossíntese , Saccharomyces cerevisiae/metabolismo , Escopolamina/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Animais , Atropa belladonna/enzimologia , Derivados da Atropina/metabolismo , Transporte Biológico , Datura/enzimologia , Glucosídeos/biossíntese , Glucosídeos/metabolismo , Hiosciamina/provisão & distribuição , Lactatos/metabolismo , Ligases/genética , Ligases/metabolismo , Modelos Moleculares , Doenças do Sistema Nervoso/tratamento farmacológico , Oxirredutases/genética , Oxirredutases/metabolismo , Engenharia de Proteínas , Saccharomyces cerevisiae/genética , Escopolamina/provisão & distribuição , Vacúolos/metabolismoRESUMO
Olfactory oscillations may enhance cognitive processing through coupling with beta (ß, 15-30 Hz) and gamma (γ, 30-160 Hz) activity in the hippocampus (HPC). We hypothesize that coupling between olfactory bulb (OB) and HPC oscillations is increased by cholinergic activation in control rats and is reduced in kainic-acid-treated epileptic rats, a model of temporal lobe epilepsy. OB γ2 (63-100 Hz) power was higher during walking and immobility-awake (IMM) compared to sleep, while γ1 (30-57 Hz) power was higher during grooming than other behavioral states. Muscarinic cholinergic agonist pilocarpine (25 mg/kg ip) with peripheral muscarinic blockade increased OB power and OB-HPC coherence at ß and γ1 frequency bands. A similar effect was found after physostigmine (0.5 mg/kg ip) but not scopolamine (10 mg/kg ip). Pilocarpine increased bicoherence and cross-frequency coherence (CFC) between OB slow waves (SW, 1-5 Hz) and hippocampal ß, γ1 and γ2 waves, with stronger coherence at CA1 alveus and CA3c than CA1 stratum radiatum. Bicoherence further revealed a nonlinear interaction of ß waves in OB with ß waves at the CA1-alveus. Beta and γ1 waves in OB or HPC were segregated at one phase of the OB-SW, opposite to the phase of γ2 and γ3 (100-160 Hz) waves, suggesting independent temporal processing of ß/γ1 versus γ2/γ3 waves. At CA1 radiatum, kainic-acid-treated epileptic rats compared to control rats showed decreased theta power, theta-ß and theta-γ2 CFC during baseline walking, decreased CFC of HPC SW with γ2 and γ3 waves during baseline IMM, and decreased coupling of OB SW with ß and γ2 waves at CA1 alveus after pilocarpine. It is concluded that ß and γ waves in the OB and HPC are modulated by a slow respiratory rhythm, in a cholinergic and behavior-dependent manner, and OB-HPC functional connectivity at ß and γ frequencies may enhance cognitive functions.
Assuntos
Ritmo beta , Ritmo Gama , Hipocampo , Bulbo Olfatório , Pilocarpina , Animais , Ritmo Gama/efeitos dos fármacos , Ritmo Gama/fisiologia , Masculino , Bulbo Olfatório/efeitos dos fármacos , Bulbo Olfatório/fisiopatologia , Bulbo Olfatório/fisiologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Hipocampo/fisiologia , Ratos , Pilocarpina/farmacologia , Ritmo beta/efeitos dos fármacos , Ritmo beta/fisiologia , Ácido Caínico/farmacologia , Agonistas Muscarínicos/farmacologia , Modelos Animais de Doenças , Epilepsia do Lobo Temporal/fisiopatologia , Epilepsia do Lobo Temporal/induzido quimicamente , Escopolamina/farmacologia , Fisostigmina/farmacologia , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Antagonistas Muscarínicos/farmacologiaRESUMO
BACKGROUND: Prolonged labor is a common condition associated with maternal and perinatal complications. The standard treatment with oxytocin for augmentation of labor increases the risk of adverse outcomes. Hyoscine butylbromide is a spasmolytic drug with few side effects shown to shorten labor when used in a general population of laboring women. However, research on its effect on preventing prolonged labor is lacking. We aimed to assess the effect of hyoscine butylbromide on the duration of labor in nulliparous women showing early signs of slow labor. METHODS AND FINDINGS: In this double-blind randomized placebo-controlled trial, we included 249 nulliparous women at term with 1 fetus in cephalic presentation and spontaneous start of labor, showing early signs of prolonged labor by crossing the alert line of the World Health Organization (WHO) partograph. The trial was conducted at Oslo University Hospital in Norway from May 2019 to December 2021. One hundred and twenty-five participants were randomized to receive 1 ml hyoscine butylbromide (Buscopan) (20 mg/ml), while 124 received 1 ml sodium chloride intravenously. Randomization was computer-generated, with allocation concealment by opaque sequentially numbered sealed envelopes. The primary outcome was duration of labor from administration of the investigational medicinal product (IMP) to vaginal delivery, which was analyzed by Weibull regression to estimate the cause-specific hazard ratio (HR) of vaginal delivery between the 2 treatment groups, with associated 95% confidence interval (CI). A wide range of secondary maternal and perinatal outcomes were also evaluated. Time-to-event outcomes were analyzed by Weibull regression, whereas continuous and dichotomous outcomes were analyzed by median regression and logistic regression, respectively. All main analyses were based on the modified intention-to-treat (ITT) set of eligible women with signed informed consent receiving either of the 2 treatments. The follow-up period lasted during the postpartum hospital stay. All personnel, participants, and researchers were blinded to the treatment allocation. Median (mean) labor duration from IMP administration to vaginal delivery was 401 (440.8) min in the hyoscine butylbromide group versus 432.5 (453.6) min in the placebo group. We found no statistically significant association between IMP and duration of labor from IMP administration to vaginal delivery: cause-specific HR of 1.00 (95% CI [0.77, 1.29]; p = 0.993). Among 255 randomized women having received 1 dose of IMP, 169 women (66.3%) reported a mild adverse event: 75.2% in the hyoscine butylbromide group and 57.1% in the placebo group (Pearson's chi-square test: p = 0.002). More than half of eligible women were not included in the study because they did not wish to participate or were not included upon admission. The participants might have represented a selected group of women reducing the external validity of the study. CONCLUSIONS: One intravenous dose of 20 mg hyoscine butylbromide was not found to be superior to placebo in preventing slow labor progress in a population of first-time mothers at risk of prolonged labor. Further research is warranted to answer whether increased and/or repeated doses of hyoscine butylbromide might have an effect on duration of labor. TRIAL REGISTRATION: ClinicalTrials.gov (NCT03961165) EudraCT (2018-002338-19).
Assuntos
Brometo de Butilescopolamônio , Hidrocarbonetos Bromados , Trabalho de Parto , Feminino , Humanos , Gravidez , Brometo de Butilescopolamônio/efeitos adversos , Método Duplo-Cego , Parassimpatolíticos/efeitos adversos , EscopolaminaRESUMO
The cognitive impairments that are often observed in patients with alcohol use disorder (AUD) partially contribute to the extremely low rates of treatment initiation and adherence. Brain acetylcholine receptors (AChR) mediate and modulate cognitive and reward-related behavior, and their distribution can be altered by long-term heavy drinking. Therefore, AChRs are promising pharmacotherapeutic targets for treating the cognitive symptoms of AUD. In the present study, the procognitive efficacy of two AChR agonists, xanomeline and varenicline, were evaluated in group-housed monkeys who self-administered ethanol for more than 1 year. The muscarinic AChR antagonist scopolamine was used to disrupt performance of a serial stimulus discrimination and reversal (SDR) task designed to probe cognitive flexibility, defined as the ability to modify a previously learned behavior in response to a change in reinforcement contingencies. The ability of xanomeline and varenicline to remediate the disruptive effects of scopolamine was compared between socially dominant and subordinate monkeys, with lighter and heavier drinking histories, respectively. We hypothesized that subordinate monkeys would be more sensitive to all three drugs. Scopolamine dose-dependently impaired performance on the serial SDR task in all monkeys at doses lower than those that produced nonspecific impairments (e.g., sedation); its potency did not differ between dominant and subordinate monkeys. However, both AChR agonists were effective in remediating the scopolamine-induced deficit in subordinate monkeys but not in dominant monkeys. These findings suggest xanomeline and varenicline may be effective for enhancing cognitive flexibility in individuals with a history of heavy drinking. SIGNIFICANCE STATEMENT: Procognitive effects of two acetylcholine (ACh) receptor agonists were assessed in group-housed monkeys who had several years' experience drinking ethanol. The muscarinic ACh receptor agonist xanomeline and the nicotinic ACh receptor agonist varenicline reversed a cognitive deficit induced by the muscarinic ACh receptor antagonist scopolamine. However, this effect was observed only in lower-ranking (subordinate) monkeys and not higher-ranking (dominant monkeys). Results suggest that ACh agonists may effectively remediate alcohol-induced cognitive deficits in a subpopulation of those with alcohol use disorder.
Assuntos
Etanol , Macaca fascicularis , Escopolamina , Animais , Masculino , Etanol/farmacologia , Escopolamina/farmacologia , Cognição/efeitos dos fármacos , Consumo de Bebidas Alcoólicas/tratamento farmacológico , Consumo de Bebidas Alcoólicas/psicologia , Vareniclina/farmacologia , Agonistas Colinérgicos/farmacologia , Nootrópicos/farmacologiaRESUMO
RATIONALE: Perillae Fructus (PF) is a common traditional Chinese medicine (TCM) for the treatment of asthma. It has not been effectively characterized by rosmarinic acid (RosA), which is currently designed as the sole quality indicator in the Chinese Pharmacopoeia. METHODS: This study introduced a database-aided ultrahigh-performance liquid chromatography equipped with quadrupole-Exactive-Orbitrap mass spectrometry (UHPLC/Q-Exactive-Orbitrap MS/MS) technology to putatively identify the compounds in PF, followed by literature research, quantum chemical calculation, and molecular docking to screen potential quality markers (Q-markers) of PF. RESULTS: A total of 27 compounds were putatively identified, 16 of which had not been previously found from PF. In particular, matrine, scopolamine, and RosA showed relatively high levels of content, stability, and drug-likeness. They exhibited interactions with the asthma-related target and demonstrated the TCM properties of PF. CONCLUSIONS: The database-aided UHPLC/Q-Exactive-Orbitrap MS/MS can identify at least 27 compounds in PF. Of these, 16 compounds are unexpected, and three compounds (matrine, scopolamine, and RosA) should be considered anticounterfeiting pharmacopoeia Q-markers of PF.
Assuntos
Medicamentos de Ervas Chinesas , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/análise , Simulação de Acoplamento Molecular , Farmacopeias como Assunto , Frutas/química , Escopolamina/análise , Depsídeos/análise , Depsídeos/químicaRESUMO
BACKGROUND: The study investigated the effect of co-administration of curcumin and donepezil on several markers of cognitive function (such as spatial memory, astrocyte activation, cholinesterase expressions) in the brain cortex and hippocampus of scopolamine-treated rats. METHOD AND RESULTS: For seven consecutive days, a pre-treatment of curcumin (50 mg/kg) and/or donepezil (2.5 mg/kg) was administered. On the seventh day, scopolamine (1 mg/kg) was administered to elicit cognitive impairment, 30 min before memory test was conducted. This was followed by evaluating changes in spatial memory, cholinesterase, and adenosine deaminase (ADA) activities, as well as nitric oxide (NO) level were determined. Additionally, RT-qPCR for glial fibrillary acidic protein (GFAP) and cholinesterase gene expressions was performed in the brain cortex and hippocampus. Also, GFAP immunohistochemistry of the brain tissues for neuronal injury were performed in the brain cortex and hippocampus. In comparison to the control group, rats given scopolamine had impaired memory, higher levels of acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and ADA activities, as well as elevated markers of oxidative stress. In addition to enhanced GFAP immunoreactivity, there was also overexpression of the GFAP and BChE genes in the brain tissues. The combination of curcumin and donepezil was, however, observed to better ameliorate these impairments in comparison to the donepezil-administered rat group. CONCLUSION: Hence, this evidence provides more mechanisms to support the hypothesis that the concurrent administration of curcumin and donepezil mitigates markers of cognitive dysfunction in scopolamine-treated rat model.
Assuntos
Acetilcolinesterase , Astrócitos , Curcumina , Donepezila , Proteína Glial Fibrilar Ácida , Hipocampo , Escopolamina , Memória Espacial , Animais , Donepezila/farmacologia , Curcumina/farmacologia , Curcumina/administração & dosagem , Escopolamina/farmacologia , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Ratos , Masculino , Memória Espacial/efeitos dos fármacos , Acetilcolinesterase/metabolismo , Acetilcolinesterase/genética , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Proteína Glial Fibrilar Ácida/genética , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Ratos Wistar , Estresse Oxidativo/efeitos dos fármacos , Colinesterases/metabolismo , Adenosina Desaminase/metabolismo , Adenosina Desaminase/genética , Butirilcolinesterase/metabolismo , Butirilcolinesterase/genética , Óxido Nítrico/metabolismo , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/administração & dosagemRESUMO
BACKGROUND: Alzheimer's disease is a leading neurological disorder that gradually impairs memory and cognitive abilities, ultimately leading to the inability to perform even basic daily tasks. Teriflunomide is known to preserve neuronal activity and protect mitochondria in the brain slices exposed to oxidative stress. The current research was undertaken to investigate the teriflunomide's cognitive rescuing abilities against scopolamine-induced comorbid cognitive impairment and its influence on phosphatidylinositol-3-kinase (PI3K) inhibition-mediated behavior alteration in mice. METHODS: Swiss albino mice were divided into 7 groups; vehicle control, scopolamine, donepezil + scopolamine, teriflunomide (10 mg/kg) + scopolamine; teriflunomide (20 mg/kg) + scopolamine, LY294002 and LY294002 + teriflunomide (20 mg/kg). Mice underwent a nine-day protocol, receiving scopolamine injections (2 mg/kg) for the final three days to induce cognitive impairment. Donepezil, teriflunomide, and LY294002 treatments were given continuously for 9 days. MWM, Y-maze, OFT and rota-rod tests were conducted on days 7 and 9. On the last day, blood samples were collected for serum TNF-α analysis, after which the mice were sacrificed, and brain samples were harvested for oxidative stress analysis. RESULTS: Scopolamine administration for three consecutive days increased the time required to reach the platform in the MWM test, whereas, reduced the percentage of spontaneous alternations in the Y-maze, number of square crossing in OFT and retention time in the rota-rod test. In biochemical analysis, scopolamine downregulated the brain GSH level, whereas it upregulated the brain TBARS and serum TNF-α levels. Teriflunomide treatment effectively mitigated all the behavioral and biochemical alterations induced by scopolamine. Furthermore, LY294002 administration reduced the memory function and GSH level, whereas, uplifted the serum TNF-α levels. Teriflunomide abrogated the memory-impairing, GSH-lowering, and TNF-α-increasing effects of LY294002. CONCLUSION: Our results delineate that the improvement in memory, locomotion, and motor coordination might be attributed to the oxidative and inflammatory stress inhibitory potential of teriflunomide. Moreover, PI3K inhibition-induced memory impairment might be attributed to reduced GSH levels and increased TNF-α levels.
Assuntos
Disfunção Cognitiva , Crotonatos , Hidroxibutiratos , Nitrilas , Estresse Oxidativo , Toluidinas , Animais , Camundongos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Comportamento Animal/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Cromonas/farmacologia , Cognição/efeitos dos fármacos , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Crotonatos/farmacologia , Modelos Animais de Doenças , Donepezila/farmacologia , Hidroxibutiratos/farmacologia , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Morfolinas/farmacologia , Nitrilas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Escopolamina/farmacologia , Toluidinas/farmacologiaRESUMO
Alzheimer's disease (AD) is one of the major devastating neurodegenerative disorders associated with the gradual decline of an individual's memory, cognition, and ability to carry out day-to-day activities. In the present study, the neuroprotective ability of α-bisabolol ß-d-fucopyranoside (ABFP) was assessed via measurement of antioxidant parameters like lipid peroxidation, glutathione peroxidation, glutathione, protein carbonyl content assays, and caspase-3 activity estimation. Moreover, the acute toxicity of ABFP was estimated in the zebrafish larval model. The results showed that ABFP exhibits little to no toxicity at lower concentrations in the acute toxicity test. ABFP-pretreated and scopolamine-exposed fish exhibited more exploratory behavior in the behavior assay than scopolamine-only induced groups. Additionally, the results of antioxidant enzyme assays revealed reduced oxidative stress and damage in ABFP-treated fish, while enzyme activity experiments carried out with brain homogenate from ABFP-treated fish showed decreased acetylcholinesterase enzyme activity. Overall, it can be concluded that ABFP has the potential to be a promising agent for the treatment of AD in the future.
Assuntos
Doença de Alzheimer , Sesquiterpenos Monocíclicos , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Escopolamina/efeitos adversos , Antioxidantes/metabolismo , Acetilcolinesterase/metabolismo , Carbonilação Proteica , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Estresse Oxidativo , Doença de Alzheimer/induzido quimicamente , Glutationa/metabolismoRESUMO
BACKGROUND: Famotidine is a competitive histamine H-receptor antagonist that reduces the formation of stomach acid and is used to treat gastrointestinal disorders associated with acid reflux, gastroesophageal reflux disease, duodenal ulcer, gastric ulcer, and pathological hypersecretory disorders. This study is designed to investigate the possible neuroprotective effects of the ranolazine scopolamine-induced Alzheimer's disease-like feature in a mouse model. METHODS: Mice were divided equally into five groups (ten mice per group), including control group and induction group. The mice in the induction group were administered scopolamine 1 mg/kg i.p., once daily for 7 days, to induce features similar to Alzheimer's disease. The mice in the remaining three treatment groups were given tested medications prophylactically for 14 days. After that the induction was carried out with scopolamine 1 mg/kg i.p., once daily, while the tested medication dosages were continued for an additional 7 days. These treatment groups included: the donepezil group (5 mg/kg/day), the famotidine group (40 mg/kg/day) and the combined group with donepezil (5 mg/kg/day) and famotidine (40 mg/kg/day); all were administrated i.p., once daily. Behavioral parameters were assessed, among others with the Y-maze test and novel object recognition test, and the inflammatory cytokines and oxidative stress parameters were assessed as well. RESULTS: Famotidine exhibits significant improvements in behavior and memory, level of oxidative stress parame-ter, and inflammatory cytokines. CONCLUSIONS: Famotidine and its combination at prescribed doses in the current study improved learning and memory impairments in mice model of Alzheimer's disease probably via their antioxidant and anti-inflammatory properties confirmed by a significant increase in antioxidant mediator and a significant decrease in oxidative stress marker and inflammatory cytokines.
Assuntos
Doença de Alzheimer , Modelos Animais de Doenças , Famotidina , Fármacos Neuroprotetores , Escopolamina , Animais , Famotidina/farmacologia , Famotidina/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Donepezila/farmacologia , Donepezila/uso terapêuticoRESUMO
BACKGROUND: Alzheimer's disease is a progressive neurodegenerative disease that causes an irreversible decline in the functional, cognitive, and behavioral activities of affected individuals. Amifostine is a cytoprotective drug with well-documented pleiotropic effects such as anti-inflammatory, antioxidant, and anti-apoptotic effects. The study was carried out to investigate the neuroprotective effect of amifostine in a mouse model of Alzheimer's disease. METHODS: Swiss Webster albino mice were divided into four groups (n = 10): (I) control, (II) scopolamine (1 mg/kg i.p. once daily for 7 days), and two treatment groups. The treatment groups received the test drugs prophylactically for 2 weeks, followed by induction with scopolamine and the test drug at the same doses for one week, followed by (III) donepezil (5 mg/kg daily, i.p. for three weeks) or (IV) amifostine (200 mg/kg daily, i.p. for three weeks). After the treatments, behavioral tests were conducted using the spontaneous Y maze test and the novel object recognition test (NORT). The brain tissue homogenates of the experimental mice were processed for biological analysis. The levels of inflammatory (TNF-α, IL-6, and IL-1ß), and oxidative stress (SOD and MDA) markers, as well as acetyl cholinesterase, were determined. RESULTS: Scopolamine intraperitoneal administration resulted in impairment of cognitive performance and neuro-toxicity. Amifostine significantly attenuated scopolamine-induced injury, as observed in improved spatial working memory. Moreover, amifostine significantly reduced lipid peroxidation, increased SOD level, and reduced the proinflammatory markers and acetyl cholinesterase activity in brain tissue homogenates. CONCLUSION: Preconditioning with amifostine had a neuroprotective effect, maintained cognitive function, and enhanced cholinergic activity in the scopolamine-induced mouse model of Alzheimer's disease.
Assuntos
Doença de Alzheimer , Amifostina , Modelos Animais de Doenças , Fármacos Neuroprotetores , Estresse Oxidativo , Escopolamina , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/induzido quimicamente , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Camundongos , Amifostina/farmacologia , Amifostina/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Masculino , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Aprendizagem em Labirinto/efeitos dos fármacos , Donepezila/farmacologia , Donepezila/uso terapêutico , Comportamento Animal/efeitos dos fármacos , Citocinas/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêuticoRESUMO
Fish oil has been known for its antioxidant, cardioprotective, anti-inflammatory, and neuroprotective characteristics due to the presence of polyunsaturated fatty acids (PUFAs) that are essential for optimal brain function and mental health. The present study investigated the effect of Carcharhinus Bleekeri (Shark Fish) oil on learning and memory functions in scopolamine-induced amnesia in rats. Locomotor and memory-enhancing activity in scopolamine-induced amnesic rats was investigated by assessing the open field and passive avoidance paradigm. Forty male Albino mice were divided into 4 equal groups (n = 10) as bellow: 1 - control (received 0.9% saline), 2 - SCOP (received scopolamine 2 mg/kg for 21 days), 3 - SCOP + SFO (received scopolamine and fish oil 5 mg/kg/ day for 21 days), 4 - SCOP + Donepezil groups (received 3 mg/kg/day for 21 days). SFO produced significant (P < 0.01) locomotor and memory-enhancing activities in open-field and passive avoidance paradigm models. Additionally, SFO restored the Acetylcholine (ACh) concentration in the hippocampus (p < 0.05) and remarkably prevented the degradation of monoamines. Histology of brain tissue showed marked cellular distortion in the scopolamine-treated group, while the SFO treatment restored distortion in the brain's hippocampus region. These results suggest that the SFO significantly ameliorates scopolamine-induced spatial memory impairment by attenuating the ACh and monoamine concentrations in the rat's hippocampus.
Assuntos
Óleos de Peixe , Escopolamina , Animais , Masculino , Camundongos , Ratos , Acetilcolina/farmacologia , Óleos de Peixe/farmacologia , Hipocampo/metabolismo , Aprendizagem em Labirinto , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/prevenção & controle , Modelos TeóricosRESUMO
Ferulago angulata is a medicinal herb from the Apiaceae family known for its antioxidant, anti-apoptotic, and neuroprotective properties. This study aimed to assess the effects of F. angulata extract on neurobehavioral and biochemical parameters in scopolamine-induced amnesic rats. Fifty-six male Wistar rats were divided into seven groups and orally treated with F. angulata extract (100, 200, 400 mg/kg) and Rivastigmine (1.5 mg/kg) for 10 days. Starting on the sixth day of treatment, the Morris water maze behavioral study was conducted to evaluate cognitive function, with scopolamine administered 30 min before training. Biochemical assays, including monoamine oxidase and oxidative stress measures, were performed on hippocampal tissue. Results showed that extract treatment significantly attenuated scopolamine-induced memory impairment in a dose-dependent manner. Following scopolamine administration, malondialdehyde levels and monoamine oxidase A/B activity increased, while total thiol content and catalase activity decreased compared to the control group. Pretreatment with F. angulata extracts ameliorated the scopolamine-induced impairment in all factors. Toxicological evaluation of liver, lung, heart, and kidney tissues did not indicate any side effects at high doses. The total extract of F. angulata prevents scopolamine-induced learning and memory impairment through antioxidant mechanisms and inhibition of monoamine oxidase. These results suggest that F. angulata extract is effective in the scopolamine model and could be a promising agent for preventing dementia, especially Alzheimer's disease.
Assuntos
Hipocampo , Transtornos da Memória , Inibidores da Monoaminoxidase , Monoaminoxidase , Extratos Vegetais , Ratos Wistar , Escopolamina , Animais , Escopolamina/toxicidade , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Masculino , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Ratos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/farmacologia , Apiaceae/química , Estresse Oxidativo/efeitos dos fármacos , Metanol/química , Aprendizagem em Labirinto/efeitos dos fármacos , Antioxidantes/farmacologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêuticoRESUMO
This study aimed to investigate the action of two different formulations of curcumin (Cur)-loaded nanocapsules (Nc) (Eudragit [EUD] and poly (É-caprolactone) [PCL]) in an amnesia mice model. We also investigated the formulations' effects on scopolamine-induced (SCO) depressive- and anxiety-like comorbidities, the cholinergic system, oxidative parameters, and inflammatory markers. Male Swiss mice were randomly divided into five groups (n = 8): group I (control), group II (Cur PCL Nc 10 mg/kg), group III (Cur EUD Nc 10 mg/kg), group IV (free Cur 10 mg/kg), and group V (SCO). Treatments with Nc or Cur (free) were performed daily or on alternate days. After 30 min of treatment, the animals received the SCO and were subjected to behavioral tests 30 min later (Barnes maze, open-field, object recognition, elevated plus maze, tail suspension tests, and step-down inhibitory avoidance tasks). The animals were then euthanized and tissue was removed for biochemical assays. Our results demonstrated that Cur treatment (Nc or free) protected against SCO-induced amnesia and depressive-like behavior. The ex vivo assays revealed lower acetylcholinesterase (AChE) and catalase (CAT) activity, reduced thiobarbituric species (TBARS), reactive species (RS), and non-protein thiols (NSPH) levels, and reduced interleukin-6 (IL-6) and tumor necrosis factor (TNF) expression. The treatments did not change hepatic markers in the plasma of mice. After treatments on alternate days, Cur Nc had a more significant effect than the free Cur protocol, implying that Cur may have prolonged action in Nc. This finding supports the concept that it is possible to achieve beneficial effects in nanoformulations, and treatment on alternate days differs from the free Cur protocol regarding anti-amnesic effects in mice.
Assuntos
Amnésia , Curcumina , Modelos Animais de Doenças , Nanocápsulas , Animais , Curcumina/farmacologia , Curcumina/administração & dosagem , Curcumina/uso terapêutico , Camundongos , Masculino , Amnésia/tratamento farmacológico , Amnésia/induzido quimicamente , Estresse Oxidativo/efeitos dos fármacos , EscopolaminaRESUMO
Oxidative stress from generation of increased reactive oxygen species or has been reported to play an important role in dementia. Oxidative stress due to free radicals of oxygen or reactive oxygen species could be precipitating factors in the etiology of dementia. Apomorphine has been reported to have neuroprotective effects. To monitor memory enhancing and neuroprotective effects of apomorphine, we determined the antioxidant enzymes activities, lipid peroxidation, acetylcholine esterase (AChE) activity in brain and plasma, following repetitive administration of apomorphine in rat model of dementia. Biogenic amine levels were also monitored in hippocampus. Repeated administration of scopolamine was taken as an animal model of dementia. Decreased glutathione peroxidase, superoxide dismutase and catalase activities were observed in these animal models of dementia. While increased lipid peroxidation was also observed in the brain and plasma samples. The results showed significant effects of apomorphine. The activities of antioxidant enzymes displayed increased activities in both brain and plasma. Glutathione peroxidase and catalase activities were found to be significantly higher in brain and plasma of apomorphine treated rats. Superoxide dismutase (SOD) was significantly decreased in plasma of scopolamine injected rats; and a decreased tendency (non-significant) of SOD in brain was also observed. AChE activity in brain and plasma was significantly decreased in scopolamine treated rats. Learning and memory of rats in the present study was assessed by Morris Water Maze (MWM). Short-term memory and long-term memory was impaired significantly in scopolamine treated rats, which was prevented by apomorphine. Moreover, a marked decrease in biogenic amines was also found in the brain of scopolamine treated rats and was reverted in apomorphine treated rats. Results showed that scopolamine-treatment induced memory impairment and induced oxidative stress in rats as compared to saline-treated controls. These impairments were significantly restored by apomorphine administration. In conclusion, our data suggests that apomorphine at the dose of 1 mg/kg could be a potential therapeutic agent to treat dementia and related disorders.
Assuntos
Apomorfina , Demência , Modelos Animais de Doenças , Memória , Fármacos Neuroprotetores , Ratos Wistar , Escopolamina , Animais , Apomorfina/farmacologia , Ratos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Masculino , Demência/tratamento farmacológico , Demência/metabolismo , Demência/prevenção & controle , Memória/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Catalase/metabolismo , Superóxido Dismutase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Acetilcolinesterase/metabolismo , Glutationa Peroxidase/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêuticoRESUMO
OBJECTIVE: The current meta-analysis was designed to investigate the impact of Hyoscine N-butyl bromide (HBB) rectal on labour duration and the rate of cervical dilatation by consolidating the available data. METHODS: The search of Medline through the PubMed interface, Scopus, ScienceDirect, and the Cochrane Central Register of Controlled Trials (CENTRAL) was performed for original articles concerning the effects of HBB rectal on the duration of labour published prior to 26 June 2023. Search terms were based on Medical Subject Headings without time and language restrictions. They included: Hyoscine, Scopolamine, HBB, Buscopan, Buscolysin, Buscapine, rectal, suppository, childbirth, delivery, active phase, second stage, cervical dilatation, labour, labour, and duration of labour. The Comprehensive Meta-Analysis V3 software was used for all analyses. RESULTS: Five randomized control trials and 1 non-randomized study involving 1310 women were included in the systematic review. Two studies were excluded from the meta-analysis because of heterogeneous interventions and a lack of mean and SD results. The results determined that HBB rectal administration significantly decreased the duration of the active phase (pooled mean difference -193.893; 95% CI -229.173 to -158.613, P < 0.001; I2 squares = 90.097%) and second stage of labour (pooled mean difference -2.911; 95% CI -5.486 to -0.336, P = 0.027; I2 squares = 90.097%). Also, the cervical dilatation rate in the active phase of labour was 0.981 cm/h higher than in the control group (I2 = 0.0%; P < 0.001). CONCLUSION: This meta-analysis found that HBB rectal administration shortened the active labour phase and second stage and increased the rate of cervix dilatation; consequently, it can be used as a cost-effective intervention for low-risk pregnant women during labour. However, our findings also suggest that more robust clinical trials are required to generate evidence and confirm the use of HBB during labour for clinical practice guidelines.
Assuntos
Brometo de Butilescopolamônio , Hidrocarbonetos Bromados , Trabalho de Parto , Gravidez , Feminino , Humanos , Brometo de Butilescopolamônio/farmacologia , Primeira Fase do Trabalho de Parto , Escopolamina/farmacologia , Ensaios Clínicos Controlados Aleatórios como AssuntoRESUMO
In this presentation, we explored the molecular mechanisms of N. nucifera leaf water extracts (NLWEs) and polyphenol extract (NLPE) on scopolamine-induced cell apoptosis and cognition defects. The administration of NLWE and NLPE did not alter the body weight and serum biomarker rs and significantly ameliorated scopolamine-induced cognition impairment according to Y-maze test analysis. In mice, treatment with scopolamine disrupted normal histoarchitecture in the hippocampus, whereas the administration of NLWE and NLPE reversed the phenomenon. Western blot analysis revealed that scopolamine mitigated the expression of doublecortin (DCX), nestin, and NeuN, and cotreatment with NLWE or NLPE significantly recovered the expression of these proteins. NLWE and NLPE upregulated DCX and NeuN expression in the hippocampus region, as evidenced by immunohistochemical staining analysis of scopolamine-treated mice. NLWE and NLPE obviously elevated brain-derived neurotrophic factor (BDNF) and enhanced its downstream proteins activity. NLWE and NLPE attenuated scopolamine-induced apoptosis by reducing Bax and increased Bcl-2 expression. In addition, scopolamine also triggered apoptosis in human neuroblastoma SH-SY5Y cells whereas co-treatment with NLWE or quercetin-3-glucuronide (Q3G) reversed the phenomenon. NLWE or Q3G enhanced Bcl-2 and reduced Bax expression in the presence of scopolamine in SH-SY5Y cells. NLWE or Q3G recovered the inhibitory effects of scopolamine on neurogenesis and BDNF signals in SH-SY5Y cells. Overall, our results revealed that N. nucifera leaf extracts and Q3G promoted adult hippocampus neurogenesis and prevented apoptosis to mitigate scopolamine-induced cognition dysfunction through the regulation of BDNF signaling pathway.
Assuntos
Nelumbo , Neuroblastoma , Camundongos , Humanos , Animais , Escopolamina/farmacologia , Escopolamina/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Nelumbo/química , Nelumbo/metabolismo , Proteína X Associada a bcl-2/metabolismo , Neuroblastoma/metabolismo , Hipocampo/metabolismo , Neurogênese , Aprendizagem em Labirinto , Extratos Vegetais/química , CogniçãoRESUMO
The beneficial effects of increasing histamine levels on memory have acquired special interest due to their applicability to psychiatric conditions that cause memory impairments. In addition, by employing drug repurposing approaches, it was demonstrated that dihydroergotamine (DHE), an FDA drug approved to treat migraines, inhibits Histamine N Methyl Transferase (HNMT), the enzyme responsible for the inactivation of histamine in the brain. For this reason, in the present work, the effect of DHE on histamine levels in the hippocampus and its effects on memory was evaluated, employing the scopolamine-induced amnesia model, the Novel Object Recognition (NOR) paradigm, and the Morris Water Maze (MWM). Furthermore, the role of histamine 1 receptor (H1R) and histamine 2 receptor (H2R) antagonists in the improvement in memory produced by DHE in the scopolamine-induced amnesia model was evaluated. Results showed that the rats that received DHE (10 mg/kg, i.p.) showed increased histamine levels in the hippocampus after 1 h of administration but not after 5 h. In behavioral assays, it was shown that DHE (1 mg/kg, i.p.) administered 20 min before the training reversed the memory impairment produced by the administration of scopolamine (2 mg/kg, i.p.) immediately after the training in the NOR paradigm and MWM. Additionally, the effects in memory produced by DHE were blocked by pre-treatment with pyrilamine (20 mg/kg, i.p.) administered 30 min before the training in the NOR paradigm and MWM. These findings allow us to demonstrate that DHE improves memory in a scopolamine-induced amnesia model through increasing histamine levels at the hippocampus due to its activity as an HNMT inhibitor.
Assuntos
Di-Hidroergotamina , Escopolamina , Animais , Ratos , Histamina , Amnésia/induzido quimicamente , Amnésia/tratamento farmacológico , Encéfalo , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Antagonistas dos Receptores H2 da HistaminaRESUMO
Sideritis scardica Griseb. and Clinopodium vulgare L., belonging to the Lamiaceae family, are rich in terpenoids and phenolics and exhibit various pharmacological effects, including antioxidant, anti-inflammatory and anti-cancer activities. While the memory-enhancing impacts of S. scardica are well documented, the cognitive benefits of C. vulgare remain unexplored. This study assessed the potential effect of C. vulgare on learning and memory in healthy and scopolamine (Sco)-induced memory-impaired male Wistar rats, comparing it with the effects of S. scardica. Over a 21-day period, rats orally received extracts of cultivated S. scardica (200 mg/kg) and C. vulgare (100 mg/kg), either individually or in combination, with administration starting 10 days before and continuing 11 days simultaneously with Sco injection at a dose of 2 mg/kg intraperitoneally. The results showed that both extracts effectively mitigated Sco-induced memory impairment. Their combination significantly improved recognition memory and maintained monoaminergic function. S. scardica excelled in preserving spatial working memory, while C. vulgare exhibited comparable retention of recognition memory, robust antioxidant activity and acetylcholinesterase inhibitory activity. The extracts alleviated Sco-induced downregulation of p-CREB/BDNF signaling, suggesting neuroprotective mechanisms. The extract combination positively affected most of the Sco-induced impairments, underscoring the potential for further investigation of these extracts for therapeutic development.
Assuntos
Disfunção Cognitiva , Demência , Sideritis , Ratos , Masculino , Animais , Escopolamina/efeitos adversos , Ratos Wistar , Acetilcolinesterase , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Demência/induzido quimicamente , Demência/tratamento farmacológico , Aprendizagem em LabirintoRESUMO
Alzheimer's disease (AD) is the most common neurodegenerative disorder, marked by cognitive impairment. Currently, the available treatment provides only symptomatic relief and there is a great need to design and formulate new drugs to stabilize AD. In the search for a new anti-Alzheimer's drug, 3,5-bis(2-hydroxyethyl)-1,3,5-thiadiazinane-2-thione (THTT), a tetrahydro-2H-1,3,5-thiadiazine-2-thione derivative, was investigated against a scopolamine-induced Alzheimer's model. The selected test compound was administered intraperitoneally in three doses (15 mg/kg, 30 mg/kg, and 45 mg/kg). The test compound exhibited an IC50 value of 69.41 µg/mL, indicating its ability to inhibit the acetylcholinesterase enzyme. An antioxidant DPPH assay revealed that the IC50 value of the test compound was 97.75 µg/mL, which shows that the test compound possesses antioxidant activity. The results of behavior tests including the Y-maze and elevated plus maze (EPM) show that the test compound improved short-term memory and spatial memory, respectively. Furthermore, in the Morris water maze (MWM) and light/dark model, the test compound shows improvements in learning and memory. Moreover, the results of histological studies show that the test compound can protect the brain against the harmful effects of scopolamine. Overall, the findings of our investigation suggest that our chosen test compound has disease-modifying and neuroprotective activities against the scopolamine-induced Alzheimer's model. The test compound may be beneficial, subject to further elaborate investigation for anti-amyloid disease-modifying properties in AD.
Assuntos
Doença de Alzheimer , Aprendizagem em Labirinto , Escopolamina , Tiadiazinas , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/induzido quimicamente , Animais , Tiadiazinas/farmacologia , Tiadiazinas/uso terapêutico , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Modelos Animais de Doenças , Camundongos , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Acetilcolinesterase/metabolismo , Tionas/farmacologia , Tionas/química , Tionas/uso terapêutico , RatosRESUMO
The role of endothelial nitric oxide synthase (eNOS) in the regulation of a variety of biological processes is well established, and its dysfunction contributes to brain pathologies, including schizophrenia or Alzheimer's disease (AD). Positive allosteric modulators (PAMs) of metabotropic glutamate (mGlu) receptors were shown to be effective procognitive compounds, but little is known about their impact on eNOS expression and stability. Here, we investigated the influence of the acute and chronic administration of LY487379 or CDPPB (mGlu2 and mGlu5 PAMs), on eNOS expression in the mouse brain and the effect of the joint administration of the ligands with nitric oxide (NO) releasers, spermineNONOate or DETANONOate, in different combinations of doses, on MK-801- or scopolamine-induced amnesia in the novel object recognition (NOR) test. Our results indicate that both compounds provoked eNOS monomer formation, and CDPPB at a dose of 5 mg/kg exaggerated the effect of MK-801 or scopolamine. The coadministration of spermineNONOate or DETANONOate enhanced the antiamnesic effect of CDPPB or LY487379. The best activity was observed for ineffective or moderate dose combinations. The results indicate that treatment with mGluR2 and mGluR5 PAMs may be burdened with the risk of promoting eNOS uncoupling through the induction of dimer dissociation. Administration of the lowest possible doses of the compounds with NO⢠donors, which themselves have procognitive efficacy, may be proposed for the treatment of schizophrenia or AD.