RESUMO
The death of photoreceptor cells is induced by continuous light exposure. However, it is unclear whether light damage was induced in retinal ganglion cells with photosensitivity by transduction of optogenetic genes. In this study, we evaluated the phototoxicities of continuous light exposure on retinal ganglion cells after transduction of the optogenetic gene mVChR1 using an adeno-associated virus vector. Rats were exposed to continuous light for a week, and visually evoked potentials (VEPs) were recorded. The intensities of continuous light (500, 1000, 3000, and 5000 lx) increased substantially after VEP recordings. After the final recording of VEPs, retinal ganglion cells (RGCs) were retrogradely labeled with a fluorescein tracer, FluoroGold, and the number of retinal ganglion cells was counted under a fluorescent microscope. There was no significant reduction in the amplitudes of VEPs and the number of RGCs after exposure to any light intensity. These results indicated that RGCs were photosensitive after the transduction of optogenetic genes and did not induce any phototoxicity by continuous light exposure.
Assuntos
Optogenética/métodos , Células Ganglionares da Retina/fisiologia , Rodopsina/genética , Animais , Dependovirus/genética , Potenciais Evocados Visuais , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Células HEK293 , Humanos , Luz/efeitos adversos , Técnicas de Patch-Clamp , Estimulação Luminosa , Ratos , Células Ganglionares da Retina/patologia , Rodopsina/metabolismo , Estilbamidinas/química , Estilbamidinas/metabolismo , Transdução Genética , Volvox/genéticaRESUMO
BACKGROUND: Patients diagnosed with chronic fatigue syndrome (CFS) or fibromyalgia experience chronic pain. Concomitantly, the rat model of CFS exhibits microglial activation in the lumbar spinal cord and pain behavior without peripheral tissue damage and/or inflammation. The present study addressed the mechanism underlying the association between pain and chronic stress using this rat model. METHODS: Chronic or continuous stress-loading (CS) model rats, housed in a cage with a thin level of water (1.5 cm in depth), were used. The von Frey test and pressure pain test were employed to measure pain behavior. The neuronal and microglial activations were immunohistochemically demonstrated with antibodies against ATF3 and Iba1. Electromyography was used to evaluate muscle activity. RESULTS: The expression of ATF3, a marker of neuronal hyperactivity or injury, was first observed in the lumbar dorsal root ganglion (DRG) neurons 2 days after CS initiation. More than 50% of ATF3-positive neurons simultaneously expressed the proprioceptor markers TrkC or VGluT1, whereas the co-expression rates for TrkA, TrkB, IB4, and CGRP were lower than 20%. Retrograde labeling using fluorogold showed that ATF3-positive proprioceptive DRG neurons mainly projected to the soleus. Substantial microglial accumulation was observed in the medial part of the dorsal horn on the fifth CS day. Microglial accumulation was observed around a subset of motor neurons in the dorsal part of the ventral horn on the sixth CS day. The motor neurons surrounded by microglia were ATF3-positive and mainly projected to the soleus. Electromyographic activity in the soleus was two to three times higher in the CS group than in the control group. These results suggest that chronic proprioceptor activation induces the sequential activation of neurons along the spinal reflex arc, and the neuronal activation further activates microglia along the arc. Proprioceptor suppression by ankle joint immobilization significantly suppressed the accumulation of microglia in the spinal cord, as well as the pain behavior. CONCLUSION: Our results indicate that proprioceptor-induced microglial activation may be a key player in the initiation and maintenance of abnormal pain in patients with CFS.
Assuntos
Citocinas/metabolismo , Síndrome de Fadiga Crônica/complicações , Microglia/patologia , Dor/etiologia , Dor/patologia , Distúrbios Somatossensoriais/etiologia , Fator 3 Ativador da Transcrição/genética , Fator 3 Ativador da Transcrição/metabolismo , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Gânglios Espinais/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Proteínas dos Microfilamentos/metabolismo , Microglia/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Medição da Dor , Ratos , Ratos Sprague-Dawley , Receptores de Fator de Crescimento Neural/genética , Receptores de Fator de Crescimento Neural/metabolismo , Distúrbios Somatossensoriais/patologia , Estilbamidinas/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/metabolismoRESUMO
The degree of behavioural control that an organism has over a stressor is a potent modulator of the stressor's impact; controllable stressors produce none of the neurochemical and behavioural sequelae that occur if the stressor is uncontrollable. Research demonstrating the importance of control and the neural mechanisms responsible has been conducted almost entirely with male rats. It is unknown if behavioural control is stress blunting in females, and whether or not a similar resilience circuitry is engaged. Female rats were exposed to controllable, yoked uncontrollable or no tailshock. In separate experiments, behavioural (juvenile social exploration, fear and shuttle box escape) and neurochemical (activation of dorsal raphe serotonin and dorsal raphe-projecting prelimbic neurons) outcomes, which are sensitive to the dimension of control in males, were assessed. Despite successful acquisition of the controlling response, behavioural control did not mitigate dorsal raphe serotonergic activation and behavioural outcomes induced by tailshock, as it does in males. Moreover, behavioural control failed to selectively engage prelimbic cells that project to the dorsal raphe as in males. Pharmacological activation of the prelimbic cortex restored the stress-buffering effects of control. Collectively, the data demonstrate stressor controllability phenomena are absent in females and that the protective prelimbic circuitry is present but not engaged. Reduced benefit from coping responses may represent a novel approach for understanding differential sex prevalence in stress-related psychiatric disorders.
Assuntos
Aprendizagem da Esquiva/fisiologia , Núcleo Dorsal da Rafe/metabolismo , Núcleo Dorsal da Rafe/fisiologia , Comportamento Exploratório/fisiologia , Medo/fisiologia , Serotonina/metabolismo , Estresse Psicológico/metabolismo , Animais , Eletrochoque , Feminino , Lobo Límbico/efeitos dos fármacos , Microinjeções , Técnicas de Rastreamento Neuroanatômico , Neurônios/metabolismo , Picrotoxina/farmacologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Estilbamidinas/metabolismoRESUMO
The connections between the cerebellum and the hypothalamus have been well documented. However, the specific cerebellar peduncle through which the hypothalamo-cerebellar and cerebello-hypothalamic connections pass has not been demonstrated. The present study aims to define the specific cerebellar peduncle through which connects the cerebellum to specific hypothalamic nuclei. Seventeen male albino rats received 20-50-nl pressure injections of either Fluoro-Gold (FG) or biotinylated dextran amine (BDA) tracer into the superior (SCP), middle (MCP), and inferior (ICP) cerebellar peduncle. Following 7-10 days of survival period, the animals were processed according to the appropriate protocol for the two tracers used. Labeled cells and axons were documented using light or fluorescence microscopy. The present study showed connections between the hypothalamus and the cerebellum via both the SCP and the MCP but not the ICP. The hypothalamo-cerebellar connections via the SCP were from the lateral, dorsomedial, paraventricular, and posterior hypothalamic nuclei, and cerebello-hypothalamic connections were to the preoptic and lateral hypothalamic nuclei. The hypothalamo-cerebellar connections via the MCP were from the lateral, dorsomedial, ventromedial, and mammillary hypothalamic nuclei; and cerebello-hypothalamic connections were to the posterior, arcuate, and ventromedial hypothalamic nuclei. The hypothlamo-cerebellar connections were denser compared to the cerebello-hypothlamic connections via both the SCP and the MCP. The connection between the cerebellum and the hypothalamus was more prominent via the SCP than MCP. Both the hypothlamo-cerebellar and cerebello-hypothalamic connections were bilateral, with ipsilateral preponderance. Reciprocal connections were with the lateral hypothalamic nucleus via the SCP and the ventromedial nucleus via the MCP were observed. Cerebellum takes part in the higher order brain functions via its extensive connections. The knowledge of hypothalamo-cerebellar and cerebello-hypothalamic connections conveyed within the SCP and MCP can be important for the lesions involving the MCP and SCP. These connections can also change the conceptual architecture of the cerebellar circuitry and deepen current understanding.
Assuntos
Cerebelo/anatomia & histologia , Hipotálamo/anatomia & histologia , Pedúnculo Cerebelar Médio/anatomia & histologia , Animais , Biotina/análogos & derivados , Contagem de Células , Dextranos , Masculino , Microscopia de Fluorescência , Vias Neurais/anatomia & histologia , Técnicas de Rastreamento Neuroanatômico , Neurônios/citologia , Ratos Wistar , EstilbamidinasRESUMO
OBJECTIVE: To determine when spontaneous granule cell epileptiform discharges first occur after hippocampal injury, and to identify the postinjury "latent" period as either a "silent" gestational state of epileptogenesis or a subtle epileptic state in gradual transition to a more obvious epileptic state. METHODS: Nonconvulsive status epilepticus evoked by perforant path stimulation in urethane-sedated rats produced selective and extensive hippocampal injury and a "latent" period that preceded the onset of the first clinically obvious epileptic seizures. Continuous granule cell layer depth recording and video monitoring assessed the time course of granule cell hyperexcitability and the onset/offset times of spontaneous epileptiform discharges and behavioral seizures. RESULTS: One day postinjury, granule cells in awake rats were hyperexcitable to afferent input, and continuously generated spontaneous population spikes. During the ~2-4 week "latent" period, granule cell epileptiform discharges lasting ~30 seconds caused subtle focal seizures characterized by immobilization and facial automatisms that were undetected by behavioral assessment alone but identified post hoc. Granule cell layer epileptiform discharge duration eventually tripled, which caused the first clinically obvious seizure, ending the "latent" period. Behavioral seizure duration was linked tightly to spontaneous granule cell layer events. Granule cell epileptiform discharges preceded all behavioral seizure onsets, and clonic behaviors ended abruptly within seconds of the termination of each granule cell epileptiform discharge. Noninjurious hippocampal excitation produced no evidence of granule cell hyperexcitability or epileptogenesis. SIGNIFICANCE: The latent period in this model is a subtle epileptic state in transition to a more clinically obvious epileptic state, not a seizure-free "gestational" state when an unidentified epileptogenic mechanism gradually develops. Based on the onset/offset times of electrographic and behavioral events, granule cell behavior may be the prime determinant of seizure onset, phenotype, duration, and offset in this model of hippocampal-onset epilepsy. Extensive hippocampal neuron loss could be the primary epileptogenic mechanism.
Assuntos
Epilepsia do Lobo Temporal/complicações , Hipocampo/patologia , Neurônios/fisiologia , Tempo de Reação/fisiologia , Potenciais de Ação/fisiologia , Animais , Modelos Animais de Doenças , Estimulação Elétrica/efeitos adversos , Hipocampo/lesões , Masculino , Via Perfurante/fisiopatologia , Ratos , Ratos Sprague-Dawley , Esclerose/complicações , Estilbamidinas/metabolismo , Fatores de TempoRESUMO
OBJECTIVE: To quantify the abundance of dural afferent neurons expressing transient receptor potential channel melastatin 8 (TRPM8), vesicular glutamate transporter 3 (VGLUT3), and neurofilament 200 (NF200) in adult mice. BACKGROUND: With the increasing use of mice as a model system to study headache mechanisms, it is important to understand the composition of dural afferent neurons in mice. In a previous study, we have measured the abundance of mouse dural afferent neurons that express neuropeptide calcitonin gene-related peptide as well as two TRP channels TRPV1 and TRPA1, respectively. Here, we conducted quantitative analysis of three other dural afferent subpopulations in adult mice. METHODS: We used the fluorescent tracer Fluoro-Gold to retrogradely label dural afferent neurons in adult mice expressing enhanced green fluorescent protein in discrete subpopulations of trigeminal ganglion (TG) neurons. Mechanoreceptors with myelinated fibers were identified by NF200 immunoreactivity. We also conducted Ca2+ -imaging experiments to test the overlap between TRPM8 and VGLUT3 expression in mouse primary afferent neurons (PANs). RESULTS: The abundance of TRPM8-expressing neurons in dural afferent neurons was significantly lower than that in total TG neurons. The percentages of dural afferent neurons expressing VGLUT3 and NF200 were comparable to those of total TG neurons, respectively. TRPM8 agonist menthol evoked Ca2+ influx in less than 7% VGLUT3-expressing PANs in adult mice. CONCLUSIONS: TG neurons expressing TRPM8, VGLUT3, and NF200 all innervate adult mouse dura. TRPM8 and VGLUT3 are expressed in distinct subpopulations of PANs in adult mice. These results provide an anatomical basis to investigate headache mechanisms in mouse models.
Assuntos
Vias Aferentes/fisiologia , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Proteínas de Neurofilamentos/metabolismo , Neurônios/metabolismo , Canais de Cátion TRPM/metabolismo , Vias Aferentes/efeitos dos fármacos , Sistemas de Transporte de Aminoácidos Acídicos/genética , Aminoácidos/metabolismo , Análise de Variância , Animais , Cálcio/metabolismo , Feminino , Gânglios Espinais/citologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Masculino , Mentol/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas de Neurofilamentos/genética , Neurônios/efeitos dos fármacos , RNA Mensageiro/metabolismo , Estilbamidinas/metabolismo , Canais de Cátion TRPM/genética , Gânglio Trigeminal/citologiaRESUMO
SEE SCHENCK AND MAHOWALD DOI101093/AWW329 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Idiopathic REM sleep behaviour disorder is characterized by the enactment of violent dreams during paradoxical (REM) sleep in the absence of normal muscle atonia. Accumulating clinical and experimental data suggest that REM sleep behaviour disorder might be due to the neurodegeneration of glutamate neurons involved in paradoxical sleep and located within the pontine sublaterodorsal tegmental nucleus. The purpose of the present work was thus to functionally determine first, the role of glutamate sublaterodorsal tegmental nucleus neurons in paradoxical sleep and second, whether their genetic inactivation is sufficient for recapitulating REM sleep behaviour disorder in rats. For this goal, we first injected two retrograde tracers in the intralaminar thalamus and ventral medulla to disentangle neuronal circuits in which sublaterodorsal tegmental nucleus is involved; second we infused bilaterally in sublaterodorsal tegmental nucleus adeno-associated viruses carrying short hairpin RNAs targeting Slc17a6 mRNA [which encodes vesicular glutamate transporter 2 (vGluT2)] to chronically impair glutamate synaptic transmission in sublaterodorsal tegmental nucleus neurons. At the neuroanatomical level, sublaterodorsal tegmental nucleus neurons specifically activated during paradoxical sleep hypersomnia send descending efferents to glycine/GABA neurons within the ventral medulla, but not ascending projections to the intralaminar thalamus. These data suggest a crucial role of sublaterodorsal tegmental nucleus neurons rather in muscle atonia than in paradoxical sleep generation. In line with this hypothesis, 30 days after adeno-associated virus injections into sublaterodorsal tegmental nucleus rats display a decrease of 30% of paradoxical sleep daily quantities, and a significant increase of muscle tone during paradoxical sleep concomitant to a tremendous increase of abnormal motor dream-enacting behaviours. These animals display symptoms and behaviours during paradoxical sleep that closely mimic human REM sleep behaviour disorder. Altogether, our data demonstrate that glutamate sublaterodorsal tegmental nucleus neurons generate muscle atonia during paradoxical sleep likely through descending projections to glycine/GABA premotor neurons in the ventral medulla. Although playing a role in paradoxical sleep regulation, they are, however, not necessary for inducing the state itself. The present work further validates a potent new preclinical REM sleep behaviour disorder model that opens avenues for studying and treating this disabling sleep disorder, and advances potential regions implicated in prodromal stages of synucleinopathies such as Parkinson's disease.
Assuntos
Ácido Glutâmico/metabolismo , Neurônios/fisiologia , Área Pré-Tectal/patologia , Transtorno do Comportamento do Sono REM/patologia , Animais , Contagem de Células , Toxina da Cólera/farmacocinética , Dependovirus/genética , Modelos Animais de Doenças , Transportador 5 de Aminoácido Excitatório/genética , Transportador 5 de Aminoácido Excitatório/metabolismo , Regulação da Expressão Gênica/genética , Proteínas da Membrana Plasmática de Transporte de Glicina/genética , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Masculino , Área Pré-Tectal/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Transtorno do Comportamento do Sono REM/etiologia , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Privação do Sono/complicações , Análise Espectral , Estilbamidinas/farmacocinéticaRESUMO
The role of cerebellum in coordination of somatic motor activity has been studied in detailed in various species. However, experimental and clinical studies have shown the involvement of the cerebellum with various visceral and cognitive functions via its vast connections with the central nervous system. The present study aims to define the cortical and subcortical and brain stem connections of the cerebellum via the superior (SCP) and middle (MCP) cerebellar peduncle using biotinylated dextran amine (BDA) and Fluoro-Gold (FG) tracer in Wistar albino rats. 14 male albino rats received 20-50-nl pressure injections of either FG or BDA tracer into the SCP and MCP. Following 7-10 days of survival period, the animals were processed according to the related protocol for two tracers. Labelled cells and axons were documented using light and fluorescence microscope. The SCP connects cerebellum to the insular and infralimbic cortices whereas, MCP addition to the insular cortex, it also connects cerebellum to the rhinal, primary sensory, piriform and auditory cortices. Both SCP and MCP connected the cerebellum to the ventral, lateral, posterior and central, thalamic nuclei. Additionally, SCP also connects parafasicular thalamic nucleus to the cerebellum. The SCP connects cerebellum to basal ganglia (ventral pallidum and clastrum) and limbic structures (amygdaloidal nuclei and bed nucleus of stria terminalis), however, the MCP have no connections with basal ganglia or limbic structures. Both the SCP and MCP densely connects cerebellum to various brainstem structures. Attaining the knowledge of the connections of the SCP and MCP is important for the diagnosis of lesions in the MCP and SCP and would deepen current understanding of the neuronal circuit of various diseases or lesions involving the SCP and MCP.
Assuntos
Tronco Encefálico/anatomia & histologia , Cerebelo/anatomia & histologia , Córtex Cerebral/anatomia & histologia , Animais , Biotina/análogos & derivados , Dextranos , Corantes Fluorescentes , Masculino , Vias Neurais/anatomia & histologia , Técnicas de Rastreamento Neuroanatômico , Ratos Wistar , EstilbamidinasRESUMO
Precise information flow during mnemonic and executive tasks requires the coactivation of adult prefrontal and hippocampal networks in oscillatory rhythms. This interplay emerges early in life, most likely as an anticipatory template of later cognitive performance. At neonatal age, hippocampal theta bursts drive the generation of prefrontal theta-gamma oscillations. In the absence of direct reciprocal interactions, the question arises of which feedback mechanisms control the early entrainment of prefrontal-hippocampal networks. Here, we demonstrate that prefrontal-hippocampal activity couples with discontinuous theta oscillations and neuronal firing in both lateral entorhinal cortex and ventral midline thalamic nuclei of neonatal rats. However, these two brain areas have different contributions to the neonatal long-range communication. The entorhinal cortex mainly modulates the hippocampal activity via direct axonal projections. In contrast, thalamic theta bursts are controlled by the prefrontal cortex via mutual projections and contribute to hippocampal activity. Thus, the neonatal prefrontal cortex modulates the level of hippocampal activation by directed interactions with the ventral midline thalamus. Similar to the adult task-related communication, theta-band activity ensures the feedback control of long-range coupling in the developing brain. SIGNIFICANCE STATEMENT: Memories are encoded by finely tuned interactions within large-scale neuronal networks. This cognitive performance is not inherited, but progressively matures in relationship with the establishment of long-range coupling in the immature brain. The hippocampus initiates and unidirectionally drives the oscillatory entrainment of neonatal prefrontal cortex, yet feedback interactions that precisely control this early communication are still unresolved. Here, we identified distinct roles of entorhinal cortex and ventral midline thalamus for the functional development of prefrontal-hippocampal interactions. While entorhinal oscillations modulate the hippocampal activity by timing the neuronal firing via monosynaptic afferents, thalamic nuclei act as a relay station routing prefrontal activation back to hippocampus. Understanding the mechanisms of network maturation represents the prerequisite for assessing circuit dysfunction in neurodevelopmental disorders.
Assuntos
Mapeamento Encefálico , Córtex Entorrinal/fisiologia , Hipocampo/fisiologia , Vias Neurais/fisiologia , Córtex Pré-Frontal/fisiologia , Tálamo/fisiologia , Potenciais de Ação , Análise de Variância , Animais , Animais Recém-Nascidos , Masculino , Neurônios/fisiologia , Córtex Pré-Frontal/lesões , Ratos , Ratos Wistar , Estilbamidinas/metabolismo , Tálamo/lesões , Fatores de TempoRESUMO
The majority of spinal cord injuries (SCI) occur at the cervical level, which results in significant impairment. Neurologic level and severity of injury are primary endpoints in clinical trials; however, how level-specific damages relate to behavioural performance in cervical injury is incompletely understood. We hypothesized that ascending level of injury leads to worsening forelimb performance, and correlates with loss of neural tissue and muscle-specific neuron pools. A direct comparison of multiple models was made with injury realized at the C5, C6, C7 and T7 vertebral levels using clip compression with sham-operated controls. Animals were assessed for 10weeks post-injury with numerous (40) outcome measures, including: classic behavioural tests, CatWalk, non-invasive MRI, electrophysiology, histologic lesion morphometry, neuron counts, and motor compartment quantification, and multivariate statistics on the total dataset. Histologic staining and T1-weighted MR imaging revealed similar structural changes and distinct tissue loss with cystic cavitation across all injuries. Forelimb tests, including grip strength, F-WARP motor scale, Inclined Plane, and forelimb ladder walk, exhibited stratification between all groups and marked impairment with C5 and C6 injuries. Classic hindlimb tests including BBB, hindlimb ladder walk, bladder recovery, and mortality were not different between cervical and thoracic injuries. CatWalk multivariate gait analysis showed reciprocal and progressive changes forelimb and hindlimb function with ascending level of injury. Electrophysiology revealed poor forelimb axonal conduction in cervical C5 and C6 groups alone. The cervical enlargement (C5-T2) showed progressive ventral horn atrophy and loss of specific motor neuron populations with ascending injury. Multivariate statistics revealed a robust dataset, rank-order contribution of outcomes, and allowed prediction of injury level with single-level discrimination using forelimb performance and neuron counts. Level-dependent models were generated using clip-compression SCI, with marked and reliable differences in forelimb performance and specific neuron pool loss.
Assuntos
Vértebras Cervicais/patologia , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , Vértebras Torácicas/patologia , Animais , Caspase 3/metabolismo , Modelos Animais de Doenças , Potenciais Somatossensoriais Evocados/fisiologia , Comportamento Exploratório/fisiologia , Feminino , Membro Anterior/fisiopatologia , Membro Posterior/fisiopatologia , Imageamento por Ressonância Magnética , Atividade Motora/fisiologia , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Proteínas do Tecido Nervoso/metabolismo , Desempenho Psicomotor , Ratos , Ratos Wistar , Traumatismos da Medula Espinal/diagnóstico por imagem , Traumatismos da Medula Espinal/metabolismo , Estilbamidinas/metabolismo , Fatores de TempoRESUMO
Activation of taste buds triggers the release of several neurotransmitters, including ATP and serotonin (5-hydroxytryptamine; 5-HT). Type III taste cells release 5-HT directly in response to acidic (sour) stimuli and indirectly in response to bitter and sweet tasting stimuli. Although ATP is necessary for activation of nerve fibers for all taste stimuli, the role of 5-HT is unclear. We investigated whether gustatory afferents express functional 5-HT3 receptors and, if so, whether these receptors play a role in transmission of taste information from taste buds to nerves. In mice expressing GFP under the control of the 5-HT(3A) promoter, a subset of cells in the geniculate ganglion and nerve fibers in taste buds are GFP-positive. RT-PCR and in situ hybridization confirmed the presence of 5-HT(3A) mRNA in the geniculate ganglion. Functional studies show that only those geniculate ganglion cells expressing 5-HT3A-driven GFP respond to 10 µM 5-HT and this response is blocked by 1 µM ondansetron, a 5-HT3 antagonist, and mimicked by application of 10 µM m-chlorophenylbiguanide, a 5-HT3 agonist. Pharmacological blockade of 5-HT3 receptors in vivo or genetic deletion of the 5-HT3 receptors reduces taste nerve responses to acids and other taste stimuli compared with controls, but only when urethane was used as the anesthetic. We find that anesthetic levels of pentobarbital reduce taste nerve responses apparently by blocking the 5-HT3 receptors. Our results suggest that 5-HT released from type III cells activates gustatory nerve fibers via 5-HT3 receptors, accounting for a significant proportion of the neural taste response.
Assuntos
Receptores 5-HT3 de Serotonina/metabolismo , Células Receptoras Sensoriais/fisiologia , Transdução de Sinais/fisiologia , Papilas Gustativas/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Trifosfato de Adenosina/farmacologia , Adjuvantes Anestésicos/farmacologia , Animais , Feminino , Gânglio Geniculado/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Pentobarbital/farmacologia , Receptores Purinérgicos P2X3/metabolismo , Receptores 5-HT3 de Serotonina/genética , Células Receptoras Sensoriais/efeitos dos fármacos , Serotonina/metabolismo , Serotonina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Estilbamidinas/metabolismo , Paladar/genética , Paladar/fisiologia , Papilas Gustativas/efeitos dos fármacos , Transducina/metabolismoRESUMO
In mammals with good low-frequency hearing, the medial superior olive (MSO) computes sound location by comparing differences in the arrival time of a sound at each ear, called interaural time disparities (ITDs). Low-frequency sounds are not reflected by the head, and therefore level differences and spectral cues are minimal or absent, leaving ITDs as the only cue for sound localization. Although mammals with high-frequency hearing and small heads (e.g., bats, mice) barely experience ITDs, the MSO is still present in these animals. Yet, aside from studies in specialized bats, in which the MSO appears to serve functions other than ITD processing, it has not been studied in small mammals that do not hear low frequencies. Here we describe neurons in the mouse brain stem that share prominent anatomical, morphological, and physiological properties with the MSO in species known to use ITDs for sound localization. However, these neurons also deviate in some important aspects from the typical MSO, including a less refined arrangement of cell bodies, dendrites, and synaptic inputs. In vitro, the vast majority of neurons exhibited a single, onset action potential in response to suprathreshold depolarization. This spiking pattern is typical of MSO neurons in other species and is generated from a complement of Kv1, Kv3, and IH currents. In vivo, mouse MSO neurons show bilateral excitatory and inhibitory tuning as well as an improvement in temporal acuity of spiking during bilateral acoustic stimulation. The combination of classical MSO features like those observed in gerbils with more unique features similar to those observed in bats and opossums make the mouse MSO an interesting model for exploiting genetic tools to test hypotheses about the molecular mechanisms and evolution of ITD processing.
Assuntos
Potenciais de Ação/fisiologia , Neurônios/fisiologia , Complexo Olivar Superior/citologia , Complexo Olivar Superior/metabolismo , Estimulação Acústica , Animais , Animais Recém-Nascidos , Vias Auditivas/fisiologia , Colina O-Acetiltransferase/metabolismo , Estimulação Elétrica , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Neurológicos , Neurônios/metabolismo , Técnicas de Patch-Clamp , Fosfopiruvato Hidratase/metabolismo , Psicoacústica , Estilbamidinas/farmacocinética , Proteína Vesicular 1 de Transporte de Glutamato/metabolismoRESUMO
Norepinephrine (NE) is a potent modulator of breathing that can increase/decrease respiratory activity by α1-/α2-adrenergic receptor (AR) activation, respectively. The retrotrapezoid nucleus (RTN) is known to contribute to central chemoreception, inspiration, and active expiration. Here we investigate the sources of catecholaminergic inputs to the RTN and identify respiratory effects produced by activation of ARs in this region. By injecting the retrograde tracer Fluoro-Gold into the RTN, we identified back-labeled catecholaminergic neurons in the A7 region. In urethane-anesthetized, vagotomized, and artificially ventilated male Wistar rats unilateral injection of NE or moxonidine (α2-AR agonist) blunted diaphragm muscle activity (DiaEMG) frequency and amplitude, without changing abdominal muscle activity. Those inhibitory effects were reduced by preapplication of yohimbine (α2-AR antagonist) into the RTN. Conversely, unilateral RTN injection of phenylephrine (α1-AR agonist) increased DiaEMG amplitude and frequency and facilitated active expiration. This response was blocked by prior RTN injection of prazosin (α1-AR antagonist). Interestingly, RTN injection of propranolol (ß-AR antagonist) had no effect on respiratory inhibition elicited by applications of NE into the RTN; however, the combined blockade of α2- and ß-ARs (coapplication of propranolol and yohimbine) revealed an α1-AR-dependent excitatory response to NE that resulted in increase in DiaEMG frequency and facilitation of active expiration. However, blockade of α1-, α2-, or ß-ARs in the RTN had minimal effect on baseline respiratory activity, on central or peripheral chemoreflexes. These results suggest that NE signaling can modulate RTN chemoreceptor function; however, endogenous NE signaling does not contribute to baseline breathing or the ventilatory response to central or peripheral chemoreceptor activity in urethane-anesthetized rats.
Assuntos
Anestesia , Células Quimiorreceptoras/fisiologia , Receptores Adrenérgicos alfa 1/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Respiração , Centro Respiratório/citologia , Potenciais de Ação/efeitos dos fármacos , Adrenérgicos/farmacologia , Animais , Células Quimiorreceptoras/efeitos dos fármacos , Diafragma/fisiologia , Inibidores Enzimáticos , Masculino , Norepinefrina/farmacologia , Cianeto de Potássio/farmacologia , Ratos , Ratos Wistar , Respiração/efeitos dos fármacos , Centro Respiratório/diagnóstico por imagem , Estilbamidinas/metabolismo , VagotomiaRESUMO
Hypothalamic arcuate nucleus (ARCN) stimulation elicited increases in sympathetic nerve activity (IBATSNA) and temperature (TBAT) of interscapular brown adipose tissue (IBAT). The role of hypothalamic dorsomedial (DMN) and paraventricular (PVN) nuclei in mediating these responses was studied in urethane-anesthetized, artificially ventilated, male Wistar rats. In different groups of rats, inhibition of neurons in the DMN and PVN by microinjections of muscimol attenuated the increases in IBATSNA and TBAT elicited by microinjections of N-methyl-d-aspartic acid into the ipsilateral ARCN. In other groups of rats, blockade of ionotropic glutamate receptors by combined microinjections of D(-)-2-amino-7-phosphono-heptanoic acid (D-AP7) and NBQX into the DMN and PVN attenuated increases in IBATSNA and TBAT elicited by ARCN stimulation. Blockade of melanocortin 3/4 receptors in the DMN and PVN in other groups of rats resulted in attenuation of increases in IBATSNA and TBAT elicited by ipsilateral ARCN stimulation. Microinjections of Fluoro-Gold into the DMN resulted in retrograde labeling of cells in the ipsilateral ARCN, and some of these cells contained proopiomelanocortin (POMC), α-melanocyte-stimulating hormone (α-MSH), or vesicular glutamate transporter-3. Since similar projections from ARCN to the PVN have been reported by us and others, these results indicate that neurons containing POMC, α-MSH, and glutamate project from the ARCN to the DMN and PVN. Stimulation of ARCN results in the release of α-MSH and glutamate in the DMN and PVN which, in turn, cause increases in IBATSNA and TBAT.
Assuntos
Tecido Adiposo Marrom/efeitos dos fármacos , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Núcleo Hipotalâmico Dorsomedial/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Sistema Nervoso Simpático/efeitos dos fármacos , Termogênese/efeitos dos fármacos , 2-Amino-5-fosfonovalerato/análogos & derivados , 2-Amino-5-fosfonovalerato/farmacologia , Tecido Adiposo Marrom/inervação , Animais , Núcleo Arqueado do Hipotálamo/fisiologia , Núcleo Hipotalâmico Dorsomedial/fisiologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Corantes Fluorescentes , Agonistas de Receptores de GABA-A/farmacologia , Ácido Glutâmico/metabolismo , Imuno-Histoquímica , Masculino , Microinjeções , Muscimol/farmacologia , N-Metilaspartato/farmacologia , Inibição Neural , Núcleo Hipotalâmico Paraventricular/fisiologia , Pró-Opiomelanocortina/metabolismo , Quinoxalinas/farmacologia , Ratos , Ratos Wistar , Receptor Tipo 3 de Melanocortina/antagonistas & inibidores , Receptor Tipo 4 de Melanocortina/antagonistas & inibidores , Estilbamidinas , Sistema Nervoso Simpático/fisiologia , Temperatura , Termogênese/fisiologia , Proteínas Vesiculares de Transporte de Glutamato/metabolismo , alfa-MSH/metabolismoRESUMO
The retinal ganglion cells (RGCs) are the main source of therapeutic targets for neuroprotective glaucoma treatment, and evaluating RGCs is key for effective glaucoma care. Thus, we developed a minimally invasive, quick, real-time method to evaluate RGC death in mice. In this article we describe the details of our method, report new results obtained from C57BL/6J mice, and report that our method was usable in wild type (WT) and knockout (KO) mice lacking an RGC-death-suppressing gene. It used a non-invasive confocal scanning laser ophthalmoscope (cSLO) and a low molecular weight, photo-switching, cell-impermeant, fluorescent nucleic acid dyeing compound, SYTOX orange (SO). The RGCs were retrogradely labeled with Fluorogold (FG), the optic nerve was crushed (ONC), and SO was injected into the vitreous. After ten minutes, RGC death was visualized with cSLO in vivo. The retinas were then extracted and flat mounted for histological observation. SO-labeled RGCs were counted in vivo and FG-labeled RGCs were counted in retinal flat mounts. The time course of RGC death was examined in Calpastatin KO mice and wild type (WT) mice. Our in vivo imaging method revealed that SO-positive dead RGCs were mainly present from 4 to 6 days after ONC, and the peak of RGC death was after 5 days. Moreover, the number of SO-positive dead RGCs after 5 days differed significantly in the Calpastatin KO mice and the WT mice. Counting FG-labeled RGCs in isolated retinas confirmed these results. Thus, real-time imaging with SO was able to quickly quantify ONC-induced RGC death. This technique may aid research into RGC death and the development of new neuroprotective therapies for glaucoma.
Assuntos
Compressão Nervosa , Traumatismos do Nervo Óptico/patologia , Células Ganglionares da Retina/patologia , Animais , Proteínas de Ligação ao Cálcio/deficiência , Proteínas de Ligação ao Cálcio/fisiologia , Morte Celular/fisiologia , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal/métodos , Traumatismos do Nervo Óptico/fisiopatologia , Compostos Orgânicos , EstilbamidinasRESUMO
Estradiol rapidly regulates the activity of arcuate nucleus (ARH) proopiomelanocortin (POMC) neurons that project to the medial preoptic nucleus (MPN) to regulate lordosis. Orphanin FQ/nociceptin (OFQ/N) acts via opioid receptor-like (ORL)-1 receptors to inhibit these POMC neurons. Therefore, we tested the hypothesis that estradiol excites POMC neurons by rapidly attenuating inhibitory ORL-1 signaling in these cells. Hypothalamic slices through the ARH were prepared from ovariectomized rats injected with Fluorogold into the MPN. Electrophysiological recordings were generated in ARH neurons held at or near -60 mV, and neuronal phenotype was determined post hoc by immunohistofluorescence. OFQ/N application induced robust outward currents and hyperpolarizations via G protein-gated, inwardly rectifying K+ (GIRK) channels that were attenuated by pretreatment with either 17-ß estradiol (E2) or E2 conjugated to bovine serum albumin. This was blocked by the estrogen receptor (ER) antagonist ICI 182,780 and mimicked by the Gq-coupled membrane ER (Gq-mER) ligand STX and the ERα agonist PPT. Inhibiting phosphatidylinositol-3-kinase (PI3K) blocked the estrogenic attenuation of ORL-1/GIRK currents. Antagonizing either phospholipase C (PLC), protein kinase C (PKC), protein kinase A (PKA) or neuronal nitric oxide synthase (nNOS) also abrogated E2 inhibition of ORL-1/GIRK currents, whereas activation of PKC, PKA, protein kinase B (Akt) and nNOS substrate L-arginine all attenuated the OFQ/N response. This was observed in 92 MPN-projecting, POMC-positive ARH neurons. Thus, ORL-1 receptor-mediated inhibition of POMC neurons is rapidly and negatively modulated by E2, an effect which is stereoselective and membrane initiated via Gq-mER and ERα activation that signals through PLC, PKC, PKA, PI3K and nNOS.
Assuntos
Estradiol/farmacologia , Estrogênios/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Pró-Opiomelanocortina/metabolismo , Receptores Opioides/metabolismo , Animais , Interações Medicamentosas , Inibidores Enzimáticos/farmacologia , Estrenos/farmacologia , Feminino , Hipotálamo/citologia , Técnicas In Vitro , Potenciais da Membrana/efeitos dos fármacos , Peptídeos Opioides/farmacologia , Ovariectomia , Piperidinas/farmacologia , Pirrolidinonas/farmacologia , Ratos , Ratos Long-Evans , Transdução de Sinais/efeitos dos fármacos , Bloqueadores dos Canais de Sódio/farmacologia , Estilbamidinas/farmacocinética , Tetrodotoxina/farmacologia , Receptor de Nociceptina , NociceptinaRESUMO
Imidazole-4-acetic acid-ribotide (IAARP) is a putative neurotransmitter/modulator and an endogenous regulator of sympathetic drive, notably systemic blood pressure, through binding to imidazoline receptors. IAARP is present in neurons and processes throughout the CNS, but is particularly prevalent in regions that are involved in blood pressure control. The goal of this study was to determine whether IAARP is present in neurons in the caudal vestibular nuclei that participate in the vestibulo-sympathetic reflex (VSR) pathway. This pathway is important in modulating blood pressure upon changes in head position with regard to gravity, as occurs when humans rise from a supine position and when quadrupeds climb or rear. Sinusoidal galvanic vestibular stimulation was used to activate the VSR and cfos gene expression in VSR pathway neurons of rats. These subjects had previously received a unilateral FluoroGold tracer injection in the rostral or caudal ventrolateral medullary region. The tracer was transported retrogradely and filled vestibular neuronal somata with direct projections to the injected region. Brainstem sections through the caudal vestibular nuclei were immunostained to visualize FluoroGold, cFos protein, IAARP and glutamate immunofluorescence. The results demonstrate that IAARP is present in vestibular neurons of the VSR pathway, where it often co-localizes with intense glutamate immunofluorescence. The co-localization of IAARP and intense glutamate immunofluorescence in VSR neurons may represent an efficient chemoanatomical configuration, allowing the vestibular system to rapidly up- and down-modulate the activity of presympathetic neurons in the ventrolateral medulla, thereby altering blood pressure.
Assuntos
Imidazóis/metabolismo , Bulbo/citologia , Neurônios/metabolismo , Ribosemonofosfatos/metabolismo , Sistema Nervoso Simpático/metabolismo , Núcleos Vestibulares/citologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Lateralidade Funcional , Ácido Glutâmico/metabolismo , Masculino , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Long-Evans , Reflexo/fisiologia , Estilbamidinas/metabolismoRESUMO
Mutations in the gene for LRRK2 are the most common cause of familial Parkinson's disease (PD) and patients with these mutations manifest clinical features that are indistinguishable from those of the more common sporadic form. Thus, investigations of disease mechanisms based on disease-causing LRRK2 mutations can be expected to shed light on the more common sporadic form as well as the inherited form. We have shown that as human BAC transgenic hLRRK2(R1441G) mice age, they exhibit two abnormalities in the nigrostriatal dopaminergic system: an axonopathy and a diminished number of dendrites in the substantia nigra (SN). To better understand disease mechanisms it is useful to determine where in the affected neural system the pathology first begins. We therefore examined the nigrostriatal dopaminergic system in young mice to determine the initial site of pathology. Brains from hLRRK2(R1441G) and littermate control mice at 2-4months of age were examined by immunohistochemistry, anterograde fluorescent axon labeling and ultrastructural analysis. SN neurons, their projecting axons and the striatal terminal fields were assessed. The first identifiable abnormality in this system is an axonopathy characterized by giant polymorphic axon spheroids, the presence of intra-axonal autophagic vacuoles and intra-axonal myelin invagination. An initial involvement of axons has also been reported for other genetic models of PD. These observations support the concept that axons are involved early in the course of the disease. We suggest that effective neuroprotective approaches will be aimed at preventing axonal degeneration.
Assuntos
Axônios/patologia , Encéfalo/patologia , Transtornos Parkinsonianos/patologia , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Axônios/metabolismo , Encéfalo/metabolismo , Dermoscopia , Progressão da Doença , Humanos , Imuno-Histoquímica , Hibridização In Situ , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Técnicas de Rastreamento Neuroanatômico , Transtornos Parkinsonianos/genética , Transtornos Parkinsonianos/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/metabolismo , EstilbamidinasRESUMO
PURPOSE: Nuclear factor-κB (NF-κB), receptor activator of NF-κB (RANK), and RANK ligand (RANKL) are transcriptional regulators of inflammatory cytokines. RANKL expression in dorsal root ganglion (DRG) neurons is elevated in animal models of pain or intervertebral disc herniation. We sought to evaluate the effect of anti-RANKL antibodies on sensory nerves innervating injured intervertebral discs. METHOD: We labeled DRG neurons innervating L5-6 discs with FluoroGold (FG). The L5-6 discs of 36 rats were punctured using a 23-gage needle and 18 rats underwent sham surgery without disc puncture. The puncture group was evenly subdivided into a group in which 10 µl saline was administered to the injured disc and a group in which 10 µl of anti-RANKL antibody was administered. Seven and 14 days postsurgery, DRGs at L2 level were harvested, sectioned, and immunostained for calcitonin gene-related peptide (CGRP). The proportion of CGRP-immunoreactive (IR) DRG neurons of all FG-positive neurons was determined. Amount of tumor necrosis factor (TNF)-α and interleukin(IL)-6 was measured within the intervertebral discs in each group at 7 and 14 days after surgery using an enzyme-linked immunosorbent assay (ELISA). RESULTS: The proportion of CGRP-IR DRG neurons to total FG-labeled neurons innervating injured intervertebral discs and amount of TNF-α and IL-6 in the injured discs in the saline control group was significantly increased compared with that found in rats from the sham surgery group (P < 0.05). However, application of anti-RANKL antibody to the injured discs significantly decreased the proportion of CGRP-IR DRG neurons to total FG-labeled neurons and amount of TNF-α and IL-6 in the injured discs (P < 0.05). CONCLUSIONS: TNF-α and IL-6 in the injured discs increased and CGRP expression increased in DRG neurons innervating injured discs, and antibodies to RANKL could suppress this increased TNF-α, IL-6, and CGRP expression. RANKL may be a therapeutic target for pain control in patients with lumbar disc degeneration.
Assuntos
Anticorpos/farmacologia , Peptídeo Relacionado com Gene de Calcitonina/efeitos dos fármacos , Gânglios Espinais/efeitos dos fármacos , Disco Intervertebral/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Ligante RANK/imunologia , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Ensaio de Imunoadsorção Enzimática , Corantes Fluorescentes , Gânglios Espinais/metabolismo , Interleucina-6/metabolismo , Disco Intervertebral/inervação , Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/metabolismo , Vértebras Lombares , Masculino , Neurônios/metabolismo , Dor/metabolismo , Ratos , Ratos Sprague-Dawley , Estilbamidinas , Fator de Necrose Tumoral alfa/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismoRESUMO
BACKGROUND: To examine interactions between optic nerves. METHODS: A total of 24 Sprague-Dawley rats received unilateral intravitreal injections. The rats were equally divided into four groups: group A was administered an adeno-associated virus (AAV) carrying an exogenous gene (ND4; rAAV-ND4); group B, AAV carrying a green fluorescent protein (GFP; rAAV-GFP); group C, fluorogold (FG) nerve tracer dye; and group D, phosphate-buffered saline (PBS) as a control. Two weeks later, GFP expression was evaluated in both retinas and optic nerves of group B rats after frozen sectioning. The presence of FG was also evaluated in group C optic nerves by fluorescent microscopy after frozen sectioning. Four weeks after injection, ND4 expression was evaluated in both eyes of groups A and D using western blotting and immunofluorescence. RESULTS: FG was observed in the optic chiasm posterior segment along the optic nerve of injected eyes. Some FG reached the anterior optic nerve of the non-injected eye. GFP fluorescence was observed only in the retina of the injected eye but not in the contralateral retina or either optic nerve. ND4 expression was significantly different between injected and non-injected eyes but not between the non-injected eyes in groups A and D. CONCLUSION: Unilaterally injected material can reach the contralateral optic nerve through axoplasmic transport. It is possible that this the only mechanism by which the optic nerves directly communicate.