Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.062
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Neurosci ; 47(1): 63-83, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38424473

RESUMO

Deep brain stimulation (DBS), a method in which electrical stimulation is delivered to specific areas of the brain, is an effective treatment for managing symptoms of a number of neurological and neuropsychiatric disorders. Clinical access to neural circuits during DBS provides an opportunity to study the functional link between neural circuits and behavior. This review discusses how the use of DBS in Parkinson's disease and dystonia has provided insights into the brain networks and physiological mechanisms that underlie motor control. In parallel, insights from basic science about how patterns of electrical stimulation impact plasticity and communication within neural circuits are transforming DBS from a therapy for treating symptoms to a therapy for treating circuits, with the goal of training the brain out of its diseased state.


Assuntos
Encéfalo , Estimulação Encefálica Profunda , Doença de Parkinson , Estimulação Encefálica Profunda/métodos , Humanos , Doença de Parkinson/terapia , Doença de Parkinson/fisiopatologia , Animais , Encéfalo/fisiologia , Encéfalo/fisiopatologia , Movimento/fisiologia , Distonia/terapia , Distonia/fisiopatologia , Rede Nervosa/fisiologia , Vias Neurais/fisiologia , Plasticidade Neuronal/fisiologia
2.
Cell ; 169(6): 977-978, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28575675

RESUMO

Modulating deep regions of the brain with noninvasive technology has challenged researchers for decades. In a new study, Grossman et al. leverage the emergence of a slowly oscillating "beat" from intersecting high-frequency electric fields to stimulate deep brain regions, opening a frontier in the biophysics and technology of brain stimulation.


Assuntos
Estimulação Encefálica Profunda , Estimulação Magnética Transcraniana , Encéfalo
3.
Cell ; 169(6): 1029-1041.e16, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28575667

RESUMO

We report a noninvasive strategy for electrically stimulating neurons at depth. By delivering to the brain multiple electric fields at frequencies too high to recruit neural firing, but which differ by a frequency within the dynamic range of neural firing, we can electrically stimulate neurons throughout a region where interference between the multiple fields results in a prominent electric field envelope modulated at the difference frequency. We validated this temporal interference (TI) concept via modeling and physics experiments, and verified that neurons in the living mouse brain could follow the electric field envelope. We demonstrate the utility of TI stimulation by stimulating neurons in the hippocampus of living mice without recruiting neurons of the overlying cortex. Finally, we show that by altering the currents delivered to a set of immobile electrodes, we can steerably evoke different motor patterns in living mice.


Assuntos
Estimulação Encefálica Profunda/métodos , Estimulação Transcraniana por Corrente Contínua/métodos , Animais , Estimulação Encefálica Profunda/efeitos adversos , Estimulação Encefálica Profunda/instrumentação , Eletrodos , Hipocampo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Estimulação Transcraniana por Corrente Contínua/efeitos adversos , Estimulação Transcraniana por Corrente Contínua/instrumentação
4.
Annu Rev Neurosci ; 46: 341-358, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37018916

RESUMO

The field of stereotactic neurosurgery developed more than 70 years ago to address a therapy gap for patients with severe psychiatric disorders. In the decades since, it has matured tremendously, benefiting from advances in clinical and basic sciences. Deep brain stimulation (DBS) for severe, treatment-resistant psychiatric disorders is currently poised to transition from a stage of empiricism to one increasingly rooted in scientific discovery. Current drivers of this transition are advances in neuroimaging, but rapidly emerging ones are neurophysiological-as we understand more about the neural basis of these disorders, we will more successfully be able to use interventions such as invasive stimulation to restore dysfunctional circuits to health. Paralleling this transition is a steady increase in the consistency and quality of outcome data. Here, we focus on obsessive-compulsive disorder and depression, two topics that have received the most attention in terms of trial volume and scientific effort.


Assuntos
Estimulação Encefálica Profunda , Transtorno Obsessivo-Compulsivo , Humanos , Estimulação Encefálica Profunda/métodos , Depressão , Procedimentos Neurocirúrgicos/métodos , Transtorno Obsessivo-Compulsivo/cirurgia , Neuroimagem
5.
Cell ; 162(3): 662-74, 2015 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-26189679

RESUMO

In vivo pharmacology and optogenetics hold tremendous promise for dissection of neural circuits, cellular signaling, and manipulating neurophysiological systems in awake, behaving animals. Existing neural interface technologies, such as metal cannulas connected to external drug supplies for pharmacological infusions and tethered fiber optics for optogenetics, are not ideal for minimally invasive, untethered studies on freely behaving animals. Here, we introduce wireless optofluidic neural probes that combine ultrathin, soft microfluidic drug delivery with cellular-scale inorganic light-emitting diode (µ-ILED) arrays. These probes are orders of magnitude smaller than cannulas and allow wireless, programmed spatiotemporal control of fluid delivery and photostimulation. We demonstrate these devices in freely moving animals to modify gene expression, deliver peptide ligands, and provide concurrent photostimulation with antagonist drug delivery to manipulate mesoaccumbens reward-related behavior. The minimally invasive operation of these probes forecasts utility in other organ systems and species, with potential for broad application in biomedical science, engineering, and medicine.


Assuntos
Estimulação Encefálica Profunda/métodos , Optogenética/métodos , Animais , Encéfalo/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Camundongos , Sondas Moleculares , Tecnologia sem Fio
6.
Cell ; 158(6): 1225-1229, 2014 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-25215480

RESUMO

This year, the Lasker∼DeBakey Clinical Medical Research Award will be shared by Mahlon R. DeLong and Alim-Louis Benabid for elucidating the role of the subthalamic nucleus in mediating the motor dysfunction of Parkinson's disease and for pioneering the use of deep-brain stimulation to alleviate symptoms of the disease.


Assuntos
Distinções e Prêmios , Doença de Parkinson/fisiopatologia , Núcleo Subtalâmico/patologia , Estimulação Encefálica Profunda , Eletrofisiologia , França , História do Século XX , Humanos , Doença de Parkinson/terapia , Estados Unidos
7.
Nature ; 622(7981): 130-138, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37730990

RESUMO

Deep brain stimulation (DBS) of the subcallosal cingulate (SCC) can provide long-term symptom relief for treatment-resistant depression (TRD)1. However, achieving stable recovery is unpredictable2, typically requiring trial-and-error stimulation adjustments due to individual recovery trajectories and subjective symptom reporting3. We currently lack objective brain-based biomarkers to guide clinical decisions by distinguishing natural transient mood fluctuations from situations requiring intervention. To address this gap, we used a new device enabling electrophysiology recording to deliver SCC DBS to ten TRD participants (ClinicalTrials.gov identifier NCT01984710). At the study endpoint of 24 weeks, 90% of participants demonstrated robust clinical response, and 70% achieved remission. Using SCC local field potentials available from six participants, we deployed an explainable artificial intelligence approach to identify SCC local field potential changes indicating the patient's current clinical state. This biomarker is distinct from transient stimulation effects, sensitive to therapeutic adjustments and accurate at capturing individual recovery states. Variable recovery trajectories are predicted by the degree of preoperative damage to the structural integrity and functional connectivity within the targeted white matter treatment network, and are matched by objective facial expression changes detected using data-driven video analysis. Our results demonstrate the utility of objective biomarkers in the management of personalized SCC DBS and provide new insight into the relationship between multifaceted (functional, anatomical and behavioural) features of TRD pathology, motivating further research into causes of variability in depression treatment.


Assuntos
Estimulação Encefálica Profunda , Depressão , Transtorno Depressivo Maior , Humanos , Inteligência Artificial , Biomarcadores , Estimulação Encefálica Profunda/métodos , Depressão/fisiopatologia , Depressão/terapia , Transtorno Depressivo Maior/fisiopatologia , Transtorno Depressivo Maior/terapia , Eletrofisiologia , Resultado do Tratamento , Medida de Potenciais de Campo Local , Substância Branca , Lobo Límbico/fisiologia , Lobo Límbico/fisiopatologia , Expressão Facial
8.
PLoS Biol ; 22(7): e3002646, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39012916

RESUMO

Autism spectrum disorders (ASDs) are considered neural dysconnectivity syndromes. To better understand ASD and uncover potential treatments, it is imperative to know and dissect the connectivity deficits under conditions of autism. Here, we apply a whole-brain immunostaining and quantification platform to demonstrate impaired structural and functional connectivity and aberrant whole-brain synchronization in a Tbr1+/- autism mouse model. We express a channelrhodopsin variant oChIEF fused with Citrine at the basolateral amygdala (BLA) to outline the axonal projections of BLA neurons. By activating the BLA under blue light theta-burst stimulation (TBS), we then evaluate the effect of BLA activation on C-FOS expression at a whole brain level to represent neural activity. We show that Tbr1 haploinsufficiency almost completely disrupts contralateral BLA axonal projections and results in mistargeting in both ipsilateral and contralateral hemispheres, thereby globally altering BLA functional connectivity. Based on correlated C-FOS expression among brain regions, we further show that Tbr1 deficiency severely disrupts whole-brain synchronization in the absence of salient stimulation. Tbr1+/- and wild-type (WT) mice exhibit opposing responses to TBS-induced amygdalar activation, reducing synchronization in WT mice but enhancing it in Tbr1+/- mice. Whole-brain modular organization and intermodule connectivity are also affected by Tbr1 deficiency and amygdalar activation. Following BLA activation by TBS, the synchronizations of the whole brain and the default mode network, a specific subnetwork highly relevant to ASD, are enhanced in Tbr1+/- mice, implying a potential ameliorating effect of amygdalar stimulation on brain function. Indeed, TBS-mediated BLA activation increases nose-to-nose social interactions of Tbr1+/- mice, strengthening evidence for the role of amygdalar connectivity in social behaviors. Our high-resolution analytical platform reveals the inter- and intrahemispheric connectopathies arising from ASD. Our study emphasizes the defective synchronization at a whole-brain scale caused by Tbr1 deficiency and implies a potential beneficial effect of deep brain stimulation at the amygdala for TBR1-linked autism.


Assuntos
Transtorno do Espectro Autista , Complexo Nuclear Basolateral da Amígdala , Estimulação Encefálica Profunda , Modelos Animais de Doenças , Comportamento Social , Proteínas com Domínio T , Animais , Transtorno do Espectro Autista/fisiopatologia , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/genética , Proteínas com Domínio T/metabolismo , Proteínas com Domínio T/genética , Complexo Nuclear Basolateral da Amígdala/metabolismo , Complexo Nuclear Basolateral da Amígdala/fisiopatologia , Camundongos , Estimulação Encefálica Profunda/métodos , Masculino , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/fisiopatologia , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Camundongos Endogâmicos C57BL , Vias Neurais/fisiopatologia , Vias Neurais/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo
9.
Proc Natl Acad Sci U S A ; 121(11): e2316365121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38451949

RESUMO

Visceral signals are constantly processed by our central nervous system, enable homeostatic regulation, and influence perception, emotion, and cognition. While visceral processes at the cortical level have been extensively studied using non-invasive imaging techniques, very few studies have investigated how this information is processed at the single neuron level, both in humans and animals. Subcortical regions, relaying signals from peripheral interoceptors to cortical structures, are particularly understudied and how visceral information is processed in thalamic and subthalamic structures remains largely unknown. Here, we took advantage of intraoperative microelectrode recordings in patients undergoing surgery for deep brain stimulation (DBS) to investigate the activity of single neurons related to cardiac and respiratory functions in three subcortical regions: ventral intermedius nucleus (Vim) and ventral caudalis nucleus (Vc) of the thalamus, and subthalamic nucleus (STN). We report that the activity of a large portion of the recorded neurons (about 70%) was modulated by either the heartbeat, the cardiac inter-beat interval, or the respiration. These cardiac and respiratory response patterns varied largely across neurons both in terms of timing and their kind of modulation. A substantial proportion of these visceral neurons (30%) was responsive to more than one of the tested signals, underlining specialization and integration of cardiac and respiratory signals in STN and thalamic neurons. By extensively describing single unit activity related to cardiorespiratory function in thalamic and subthalamic neurons, our results highlight the major role of these subcortical regions in the processing of visceral signals.


Assuntos
Estimulação Encefálica Profunda , Núcleo Subtalâmico , Animais , Humanos , Tálamo/fisiologia , Neurônios/fisiologia , Microeletrodos
10.
Proc Natl Acad Sci U S A ; 121(14): e2314918121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38527192

RESUMO

Subcallosal cingulate (SCC) deep brain stimulation (DBS) is an emerging therapy for refractory depression. Good clinical outcomes are associated with the activation of white matter adjacent to the SCC. This activation produces a signature cortical evoked potential (EP), but it is unclear which of the many pathways in the vicinity of SCC is responsible for driving this response. Individualized biophysical models were built to achieve selective engagement of two target bundles: either the forceps minor (FM) or cingulum bundle (CB). Unilateral 2 Hz stimulation was performed in seven patients with treatment-resistant depression who responded to SCC DBS, and EPs were recorded using 256-sensor scalp electroencephalography. Two distinct EPs were observed: a 120 ms symmetric response spanning both hemispheres and a 60 ms asymmetrical EP. Activation of FM correlated with the symmetrical EPs, while activation of CB was correlated with the asymmetrical EPs. These results support prior model predictions that these two pathways are predominantly activated by clinical SCC DBS and provide first evidence of a link between cortical EPs and selective fiber bundle activation.


Assuntos
Estimulação Encefálica Profunda , Substância Branca , Humanos , Estimulação Encefálica Profunda/métodos , Giro do Cíngulo/fisiologia , Corpo Caloso , Potenciais Evocados
11.
Proc Natl Acad Sci U S A ; 121(28): e2403763121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38968111

RESUMO

Advancing the mechanistic understanding of absence epilepsy is crucial for developing new therapeutics, especially for patients unresponsive to current treatments. Utilizing a recently developed mouse model of absence epilepsy carrying the BK gain-of-function channelopathy D434G, here we report that attenuating the burst firing of midline thalamus (MLT) neurons effectively prevents absence seizures. We found that enhanced BK channel activity in the BK-D434G MLT neurons promotes synchronized bursting during the ictal phase of absence seizures. Modulating MLT neurons through pharmacological reagents, optogenetic stimulation, or deep brain stimulation effectively attenuates burst firing, leading to reduced absence seizure frequency and increased vigilance. Additionally, enhancing vigilance by amphetamine, a stimulant medication, or physical perturbation also effectively suppresses MLT bursting and prevents absence seizures. These findings suggest that the MLT is a promising target for clinical interventions. Our diverse approaches offer valuable insights for developing next generation therapeutics to treat absence epilepsy.


Assuntos
Modelos Animais de Doenças , Epilepsia Tipo Ausência , Animais , Epilepsia Tipo Ausência/fisiopatologia , Camundongos , Tálamo/fisiopatologia , Neurônios/metabolismo , Neurônios/fisiologia , Optogenética , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Estimulação Encefálica Profunda/métodos , Masculino , Núcleos da Linha Média do Tálamo/fisiologia
12.
PLoS Biol ; 21(6): e3002140, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37262014

RESUMO

Adapting actions to changing goals and environments is central to intelligent behavior. There is evidence that the basal ganglia play a crucial role in reinforcing or adapting actions depending on their outcome. However, the corresponding electrophysiological correlates in the basal ganglia and the extent to which these causally contribute to action adaptation in humans is unclear. Here, we recorded electrophysiological activity and applied bursts of electrical stimulation to the subthalamic nucleus, a core area of the basal ganglia, in 16 patients with Parkinson's disease (PD) on medication using temporarily externalized deep brain stimulation (DBS) electrodes. Patients as well as 16 age- and gender-matched healthy participants attempted to produce forces as close as possible to a target force to collect a maximum number of points. The target force changed over trials without being explicitly shown on the screen so that participants had to infer target force based on the feedback they received after each movement. Patients and healthy participants were able to adapt their force according to the feedback they received (P < 0.001). At the neural level, decreases in subthalamic beta (13 to 30 Hz) activity reflected poorer outcomes and stronger action adaptation in 2 distinct time windows (Pcluster-corrected < 0.05). Stimulation of the subthalamic nucleus reduced beta activity and led to stronger action adaptation if applied within the time windows when subthalamic activity reflected action outcomes and adaptation (Pcluster-corrected < 0.05). The more the stimulation volume was connected to motor cortex, the stronger was this behavioral effect (Pcorrected = 0.037). These results suggest that dynamic modulation of the subthalamic nucleus and interconnected cortical areas facilitates adaptive behavior.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Núcleo Subtalâmico/fisiologia , Estimulação Encefálica Profunda/métodos , Doença de Parkinson/terapia , Gânglios da Base , Adaptação Psicológica
13.
J Neurosci ; 44(27)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38724284

RESUMO

While ipsilesional cortical electroencephalography has been associated with poststroke recovery mechanisms and outcomes, the role of the cerebellum and its interaction with the ipsilesional cortex is still largely unknown. We have previously shown that poststroke motor control relies on increased corticocerebellar coherence (CCC) in the low beta band to maintain motor task accuracy and to compensate for decreased excitability of the ipsilesional cortex. We now extend our work to investigate corticocerebellar network changes associated with chronic stimulation of the dentato-thalamo-cortical pathway aimed at promoting poststroke motor rehabilitation. We investigated the excitability of the ipsilesional cortex, the dentate (DN), and their interaction as a function of treatment outcome measures. Relative to baseline, 10 human participants (two women) at the end of 4-8 months of DN deep brain stimulation (DBS) showed (1) significantly improved motor control indexed by computerized motor tasks; (2) significant increase in ipsilesional premotor cortex event-related desynchronization that correlated with improvements in motor function; and (3) significant decrease in CCC, including causal interactions between the DN and ipsilesional cortex, which also correlated with motor function improvements. Furthermore, we show that the functional state of the DN in the poststroke state and its connectivity with the ipsilesional cortex were predictive of motor outcomes associated with DN-DBS. The findings suggest that as participants recovered, the ipsilesional cortex became more involved in motor control, with less demand on the cerebellum to support task planning and execution. Our data provide unique mechanistic insights into the functional state of corticocerebellar-cortical network after stroke and its modulation by DN-DBS.


Assuntos
Núcleos Cerebelares , Estimulação Encefálica Profunda , Recuperação de Função Fisiológica , Acidente Vascular Cerebral , Humanos , Feminino , Estimulação Encefálica Profunda/métodos , Masculino , Pessoa de Meia-Idade , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/terapia , Recuperação de Função Fisiológica/fisiologia , Idoso , Núcleos Cerebelares/fisiopatologia , Núcleos Cerebelares/fisiologia , Córtex Motor/fisiopatologia , Reabilitação do Acidente Vascular Cerebral/métodos , Adulto , Eletroencefalografia
14.
Annu Rev Neurosci ; 40: 453-477, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28772097

RESUMO

Modern functional neurosurgery for movement disorders such as Parkinson's disease, tremor, and dystonia involves the placement of focal lesions or the application of deep brain stimulation (DBS) within circuits that modulate motor function. Precise targeting of these motor structures can be further refined by the use of electrophysiological approaches. In particular, microelectrode recordings enable the delineation of neuroanatomic structures. In the course of these operations, there is an opportunity not only to map basal ganglia structures but also to gain insights into how disturbances in neural activity produce movement disorders. In this review, we aim to highlight what the field has uncovered thus far about movement disorders through DBS. The work to date lays the foundation for future studies that will shed further light on dysfunctional circuits mediating diseases of the nervous system and how we might modulate these circuits therapeutically.


Assuntos
Gânglios da Base/fisiopatologia , Distúrbios Distônicos/fisiopatologia , Distúrbios Distônicos/terapia , Doença de Parkinson/fisiopatologia , Doença de Parkinson/terapia , Tremor/fisiopatologia , Tremor/terapia , Gânglios da Base/cirurgia , Estimulação Encefálica Profunda , Distúrbios Distônicos/cirurgia , Humanos , Procedimentos Neurocirúrgicos , Doença de Parkinson/cirurgia , Tremor/cirurgia
15.
Ann Neurol ; 95(6): 1205-1219, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38501317

RESUMO

OBJECTIVE: The aim of this study was to investigate the cognitive effects of unilateral directional versus ring subthalamic nucleus deep brain stimulation (STN DBS) in patients with advanced Parkinson's disease. METHODS: We examined 31 participants who underwent unilateral STN DBS (left n = 17; right n = 14) as part of an National Institutes of Health (NIH)-sponsored randomized, double-blind, crossover study contrasting directional versus ring stimulation. All participants received unilateral DBS implants in the hemisphere more severely affected by motor parkinsonism. Measures of cognition included verbal fluency, auditory-verbal memory, and response inhibition. We used mixed linear models to contrast the effects of directional versus ring stimulation and implant hemisphere on longitudinal cognitive function. RESULTS: Crossover analyses showed no evidence for group-level changes in cognitive performance related to directional versus ring stimulation. Implant hemisphere, however, impacted cognition in several ways. Left STN participants had lower baseline verbal fluency than patients with right implants (t [20.66 = -2.50, p = 0.02]). Verbal fluency declined after left (p = 0.013) but increased after right STN DBS (p < 0.001), and response inhibition was faster following right STN DBS (p = 0.031). Regardless of hemisphere, delayed recall declined modestly over time versus baseline (p = 0.001), and immediate recall was unchanged. INTERPRETATION: Directional versus ring STN DBS did not differentially affect cognition. Similar to prior bilateral DBS studies, unilateral left stimulation worsened verbal fluency performance. In contrast, unilateral right STN surgery increased performance on verbal fluency and response inhibition tasks. Our findings raise the hypothesis that unilateral right STN DBS in selected patients with predominant right brain motor parkinsonism could mitigate declines in verbal fluency associated with the bilateral intervention. ANN NEUROL 2024;95:1205-1219.


Assuntos
Cognição , Estudos Cross-Over , Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Estimulação Encefálica Profunda/efeitos adversos , Estimulação Encefálica Profunda/métodos , Doença de Parkinson/terapia , Doença de Parkinson/fisiopatologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Método Duplo-Cego , Cognição/fisiologia
16.
Ann Neurol ; 96(2): 405-411, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38822686

RESUMO

Outcomes following vagus nerve stimulation (VNS) improve over years after implantation in children with drug-resistant epilepsy. The added value of deep brain stimulation (DBS) instead of continued VNS optimization is unknown. In a prospective, non-blinded, randomized patient preference trial of 18 children (aged 8-17 years) who did not respond to VNS after at least 1 year, add-on DBS resulted in greater seizure reduction compared with an additional year of VNS optimization (51.9% vs. 12.3%, p = 0.047). Add-on DBS also resulted in less bothersome seizures (p = 0.03), but no change in quality of life. DBS may be considered earlier for childhood epilepsy after non-response to VNS. ANN NEUROL 2024;96:405-411.


Assuntos
Estimulação Encefálica Profunda , Epilepsia Resistente a Medicamentos , Preferência do Paciente , Estimulação do Nervo Vago , Humanos , Criança , Estimulação do Nervo Vago/métodos , Adolescente , Masculino , Estimulação Encefálica Profunda/métodos , Feminino , Epilepsia Resistente a Medicamentos/terapia , Resultado do Tratamento , Estudos Prospectivos , Qualidade de Vida
17.
Ann Neurol ; 96(2): 234-246, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38721781

RESUMO

OBJECTIVE: Bradykinesia and rigidity are considered closely related motor signs in Parkinson disease (PD), but recent neurophysiological findings suggest distinct pathophysiological mechanisms. This study aims to examine and compare longitudinal changes in bradykinesia and rigidity in PD patients treated with bilateral subthalamic nucleus deep brain stimulation (STN-DBS). METHODS: In this retrospective cohort study, the clinical progression of appendicular and axial bradykinesia and rigidity was assessed up to 15 years after STN-DBS in the best treatment conditions (ON medication and ON stimulation). The severity of bradykinesia and rigidity was examined using ad hoc composite scores from specific subitems of the Unified Parkinson's Disease Rating Scale motor part (UPDRS-III). Short- and long-term predictors of bradykinesia and rigidity were analyzed through linear regression analysis, considering various preoperative demographic and clinical data, including disease duration and severity, phenotype, motor and cognitive scores (eg, frontal score), and medication. RESULTS: A total of 301 patients were examined before and 1 year after surgery. Among them, 101 and 56 individuals were also evaluated at 10-year and 15-year follow-ups, respectively. Bradykinesia significantly worsened after surgery, especially in appendicular segments (p < 0.001). Conversely, rigidity showed sustained benefit, with unchanged clinical scores compared to preoperative assessment (p > 0.05). Preoperative motor disability (eg, composite scores from the UPDRS-III) predicted short- and long-term outcomes for both bradykinesia and rigidity (p < 0.01). Executive dysfunction was specifically linked to bradykinesia but not to rigidity (p < 0.05). INTERPRETATION: Bradykinesia and rigidity show long-term divergent progression in PD following STN-DBS and are associated with independent clinical factors, supporting the hypothesis of partially distinct pathophysiology. ANN NEUROL 2024;96:234-246.


Assuntos
Estimulação Encefálica Profunda , Hipocinesia , Rigidez Muscular , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/terapia , Doença de Parkinson/fisiopatologia , Doença de Parkinson/complicações , Estimulação Encefálica Profunda/efeitos adversos , Estimulação Encefálica Profunda/métodos , Masculino , Feminino , Hipocinesia/etiologia , Hipocinesia/fisiopatologia , Pessoa de Meia-Idade , Núcleo Subtalâmico/fisiopatologia , Rigidez Muscular/etiologia , Rigidez Muscular/fisiopatologia , Idoso , Estudos Retrospectivos , Progressão da Doença , Estudos de Coortes
18.
Mol Psychiatry ; 29(4): 1075-1087, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38287101

RESUMO

Deep brain stimulation (DBS) has emerged as a promising treatment for select patients with refractory major depressive disorder (MDD). The clinical effectiveness of DBS for MDD has been demonstrated in meta-analyses, open-label studies, and a few controlled studies. However, randomized controlled trials have yielded mixed outcomes, highlighting challenges that must be addressed prior to widespread adoption of DBS for MDD. These challenges include tracking MDD symptoms objectively to evaluate the clinical effectiveness of DBS with sensitivity and specificity, identifying the patient population that is most likely to benefit from DBS, selecting the optimal patient-specific surgical target and stimulation parameters, and understanding the mechanisms underpinning the therapeutic benefits of DBS in the context of MDD pathophysiology. In this review, we provide an overview of the latest clinical evidence of MDD DBS effectiveness and the recent technological advancements that could transform our understanding of MDD pathophysiology, improve the clinical outcomes for MDD DBS, and establish a path forward to develop more effective neuromodulation therapies to alleviate depressive symptoms.


Assuntos
Estimulação Encefálica Profunda , Transtorno Depressivo Maior , Estimulação Encefálica Profunda/métodos , Humanos , Transtorno Depressivo Maior/terapia , Resultado do Tratamento , Transtorno Depressivo Resistente a Tratamento/terapia , Encéfalo/fisiopatologia
19.
Mol Psychiatry ; 29(5): 1550-1566, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38361128

RESUMO

Major depressive disorder (MDD) is characterized by diverse debilitating symptoms that include loss of motivation and anhedonia. If multiple medications, psychotherapy, and electroconvulsive therapy fail in some patients with MDD, their condition is then termed treatment-resistant depression (TRD). MDD can be associated with abnormalities in the reward-system-dopaminergic mesolimbic pathway, in which the nucleus accumbens (NAc) and ventral tegmental area (VTA) play major roles. Deep brain stimulation (DBS) applied to the NAc alleviates the depressive symptoms of MDD. However, the mechanism underlying the effects of this DBS has remained elusive. In this study, using the chronic unpredictable mild stress (CUMS) mouse model, we investigated the behavioral and neurobiological effects of NAc-DBS on the multidimensional depression-like phenotypes induced by CUMS by integrating behavioral, in vivo microdialysis coupled with high-performance liquid chromatography-electrochemical detector (HPLC-ECD), calcium imaging, pharmacological, and genetic manipulation methods in freely moving mice. We found that long-term and repeated, but not single, NAc-DBS induced robust antidepressant responses in CUMS mice. Moreover, even a single trial NAc-DBS led to the elevation of the γ-aminobutyric acid (GABA) neurotransmitter, accompanied by the increase in dopamine (DA) neuron activity in the VTA. Both the inhibition of the GABAA receptor activity and knockdown of the GABAA-α1 gene in VTA-GABA neurons blocked the antidepressant effect of NAc-DBS in CUMS mice. Our results showed that NAc-DBS could disinhibit VTA-DA neurons by regulating the level of GABA and the activity of VTA-GABA in the VTA and could finally correct the depression-like behaviors in the CUMS mouse model.


Assuntos
Estimulação Encefálica Profunda , Depressão , Transtorno Depressivo Maior , Modelos Animais de Doenças , Neurônios Dopaminérgicos , Núcleo Accumbens , Estresse Psicológico , Área Tegmentar Ventral , Animais , Área Tegmentar Ventral/metabolismo , Núcleo Accumbens/metabolismo , Neurônios Dopaminérgicos/metabolismo , Camundongos , Masculino , Estimulação Encefálica Profunda/métodos , Depressão/terapia , Depressão/metabolismo , Transtorno Depressivo Maior/terapia , Transtorno Depressivo Maior/metabolismo , Estresse Psicológico/terapia , Estresse Psicológico/metabolismo , Camundongos Endogâmicos C57BL , Dopamina/metabolismo , Comportamento Animal/fisiologia , Ácido gama-Aminobutírico/metabolismo
20.
Brain ; 147(2): 472-485, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-37787488

RESUMO

Postoperative apathy is a frequent symptom in Parkinson's disease patients who have undergone bilateral deep brain stimulation of the subthalamic nucleus. Two main hypotheses for postoperative apathy have been suggested: (i) dopaminergic withdrawal syndrome relative to postoperative dopaminergic drug tapering; and (ii) direct effect of chronic stimulation of the subthalamic nucleus. The primary objective of our study was to describe preoperative and 1-year postoperative apathy in Parkinson's disease patients who underwent chronic bilateral deep brain stimulation of the subthalamic nucleus. We also aimed to identify factors associated with 1-year postoperative apathy considering: (i) preoperative clinical phenotype; (ii) dopaminergic drug management; and (iii) volume of tissue activated within the subthalamic nucleus and the surrounding structures. We investigated a prospective clinical cohort of 367 patients before and 1 year after chronic bilateral deep brain stimulation of the subthalamic nucleus. We assessed apathy using the Lille Apathy Rating Scale and carried out a systematic evaluation of motor, cognitive and behavioural signs. We modelled the volume of tissue activated in 161 patients using the Lead-DBS toolbox and analysed overlaps within motor, cognitive and limbic parts of the subthalamic nucleus. Of the 367 patients, 94 (25.6%) exhibited 1-year postoperative apathy: 67 (18.2%) with 'de novo apathy' and 27 (7.4%) with 'sustained apathy'. We observed disappearance of preoperative apathy in 22 (6.0%) patients, who were classified as having 'reversed apathy'. Lastly, 251 (68.4%) patients had neither preoperative nor postoperative apathy and were classified as having 'no apathy'. We identified preoperative apathy score [odds ratio (OR) 1.16; 95% confidence interval (CI) 1.10, 1.22; P < 0.001], preoperative episodic memory free recall score (OR 0.93; 95% CI 0.88, 0.97; P = 0.003) and 1-year postoperative motor responsiveness (OR 0.98; 95% CI 0.96, 0.99; P = 0.009) as the main factors associated with postoperative apathy. We showed that neither dopaminergic dose reduction nor subthalamic stimulation were associated with postoperative apathy. Patients with 'sustained apathy' had poorer preoperative fronto-striatal cognitive status and a higher preoperative action initiation apathy subscore. In these patients, apathy score and cognitive status worsened postoperatively despite significantly lower reduction in dopamine agonists (P = 0.023), suggesting cognitive dopa-resistant apathy. Patients with 'reversed apathy' benefited from the psychostimulant effect of chronic stimulation of the limbic part of the left subthalamic nucleus (P = 0.043), suggesting motivational apathy. Our results highlight the need for careful preoperative assessment of motivational and cognitive components of apathy as well as executive functions in order to better prevent or manage postoperative apathy.


Assuntos
Apatia , Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/complicações , Núcleo Subtalâmico/fisiologia , Apatia/fisiologia , Estudos Prospectivos , Estimulação Encefálica Profunda/métodos , Cognição , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA