Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.184
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Immunity ; 57(10): 2328-2343.e8, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39217987

RESUMO

The precise neurophysiological changes prompted by meningeal lymphatic dysfunction remain unclear. Here, we showed that inducing meningeal lymphatic vessel ablation in adult mice led to gene expression changes in glial cells, followed by reductions in mature oligodendrocyte numbers and specific lipid species in the brain. These phenomena were accompanied by altered meningeal adaptive immunity and brain myeloid cell activation. During brain remyelination, meningeal lymphatic dysfunction provoked a state of immunosuppression that contributed to delayed spontaneous oligodendrocyte replenishment and axonal loss. The deficiencies in mature oligodendrocytes and neuroinflammation due to impaired meningeal lymphatic function were solely recapitulated in immunocompetent mice. Patients diagnosed with multiple sclerosis presented reduced vascular endothelial growth factor C in the cerebrospinal fluid, particularly shortly after clinical relapses, possibly indicative of poor meningeal lymphatic function. These data demonstrate that meningeal lymphatics regulate oligodendrocyte function and brain myelination, which might have implications for human demyelinating diseases.


Assuntos
Encéfalo , Vasos Linfáticos , Meninges , Esclerose Múltipla , Bainha de Mielina , Oligodendroglia , Animais , Oligodendroglia/metabolismo , Camundongos , Meninges/imunologia , Encéfalo/metabolismo , Encéfalo/imunologia , Humanos , Bainha de Mielina/metabolismo , Esclerose Múltipla/imunologia , Esclerose Múltipla/metabolismo , Fator C de Crescimento do Endotélio Vascular/metabolismo , Camundongos Endogâmicos C57BL , Sobrevivência Celular , Remielinização , Feminino , Masculino , Imunidade Adaptativa
2.
Nature ; 628(8006): 204-211, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38418880

RESUMO

The eye, an anatomical extension of the central nervous system (CNS), exhibits many molecular and cellular parallels to the brain. Emerging research demonstrates that changes in the brain are often reflected in the eye, particularly in the retina1. Still, the possibility of an immunological nexus between the posterior eye and the rest of the CNS tissues remains unexplored. Here, studying immune responses to herpes simplex virus in the brain, we observed that intravitreal immunization protects mice against intracranial viral challenge. This protection extended to bacteria and even tumours, allowing therapeutic immune responses against glioblastoma through intravitreal immunization. We further show that the anterior and posterior compartments of the eye have distinct lymphatic drainage systems, with the latter draining to the deep cervical lymph nodes through lymphatic vasculature in the optic nerve sheath. This posterior lymphatic drainage, like that of meningeal lymphatics, could be modulated by the lymphatic stimulator VEGFC. Conversely, we show that inhibition of lymphatic signalling on the optic nerve could overcome a major limitation in gene therapy by diminishing the immune response to adeno-associated virus and ensuring continued efficacy after multiple doses. These results reveal a shared lymphatic circuit able to mount a unified immune response between the posterior eye and the brain, highlighting an understudied immunological feature of the eye and opening up the potential for new therapeutic strategies in ocular and CNS diseases.


Assuntos
Encéfalo , Olho , Sistema Linfático , Animais , Feminino , Humanos , Masculino , Camundongos , Coelhos , Bactérias/imunologia , Encéfalo/anatomia & histologia , Encéfalo/imunologia , Dependovirus/imunologia , Olho/anatomia & histologia , Olho/imunologia , Glioblastoma/imunologia , Herpesvirus Humano 2/imunologia , Injeções Intravítreas , Sistema Linfático/anatomia & histologia , Sistema Linfático/imunologia , Vasos Linfáticos/anatomia & histologia , Vasos Linfáticos/imunologia , Macaca mulatta , Meninges/imunologia , Nervo Óptico/imunologia , Suínos , Peixe-Zebra , Fator C de Crescimento do Endotélio Vascular/imunologia , Fator C de Crescimento do Endotélio Vascular/metabolismo , Fator C de Crescimento do Endotélio Vascular/farmacologia
3.
Development ; 151(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38742432

RESUMO

Development of the vascular system is regulated by multiple signaling pathways mediated by receptor tyrosine kinases. Among them, angiopoietin (Ang)/Tie signaling regulates lymphatic and blood vessel development in mammals. Of the two Tie receptors, Tie2 is well known as a key mediator of Ang/Tie signaling, but, unexpectedly, recent studies have revealed that the Tie2 locus has been lost in many vertebrate species, whereas the Tie1 gene is more commonly present. However, Tie1-driven signaling pathways, including ligands and cellular functions, are not well understood. Here, we performed comprehensive mutant analyses of angiopoietins and Tie receptors in zebrafish and found that only angpt1 and tie1 mutants show defects in trunk lymphatic vessel development. Among zebrafish angiopoietins, only Angpt1 binds to Tie1 as a ligand. We indirectly monitored Ang1/Tie1 signaling and detected Tie1 activation in sprouting endothelial cells, where Tie1 inhibits nuclear import of EGFP-Foxo1a. Angpt1/Tie1 signaling functions in endothelial cell migration and proliferation, and in lymphatic specification during early lymphangiogenesis, at least in part by modulating Vegfc/Vegfr3 signaling. Thus, we show that Angpt1/Tie1 signaling constitutes an essential signaling pathway for lymphatic development in zebrafish.


Assuntos
Angiopoietina-1 , Linfangiogênese , Receptor de TIE-1 , Transdução de Sinais , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Angiopoietina-1/metabolismo , Angiopoietina-1/genética , Movimento Celular , Proliferação de Células , Células Endoteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Linfangiogênese/genética , Vasos Linfáticos/metabolismo , Vasos Linfáticos/embriologia , Mutação/genética , Ligação Proteica , Receptor de TIE-1/metabolismo , Receptor de TIE-1/genética , Fator C de Crescimento do Endotélio Vascular/metabolismo , Fator C de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
4.
Nature ; 593(7858): 255-260, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33911285

RESUMO

Alzheimer's disease (AD) is the most prevalent cause of dementia1. Although there is no effective treatment for AD, passive immunotherapy with monoclonal antibodies against amyloid beta (Aß) is a promising therapeutic strategy2,3. Meningeal lymphatic drainage has an important role in the accumulation of Aß in the brain4, but it is not known whether modulation of meningeal lymphatic function can influence the outcome of immunotherapy in AD. Here we show that ablation of meningeal lymphatic vessels in 5xFAD mice (a mouse model of amyloid deposition that expresses five mutations found in familial AD) worsened the outcome of mice treated with anti-Aß passive immunotherapy by exacerbating the deposition of Aß, microgliosis, neurovascular dysfunction, and behavioural deficits. By contrast, therapeutic delivery of vascular endothelial growth factor C improved clearance of Aß by monoclonal antibodies. Notably, there was a substantial overlap between the gene signature of microglia from 5xFAD mice with impaired meningeal lymphatic function and the transcriptional profile of activated microglia from the brains of individuals with AD. Overall, our data demonstrate that impaired meningeal lymphatic drainage exacerbates the microglial inflammatory response in AD and that enhancement of meningeal lymphatic function combined with immunotherapies could lead to better clinical outcomes.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/imunologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Imunoterapia , Vasos Linfáticos/imunologia , Meninges/imunologia , Microglia/imunologia , Envelhecimento/efeitos dos fármacos , Envelhecimento/imunologia , Doença de Alzheimer/genética , Doença de Alzheimer/imunologia , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/efeitos dos fármacos , Animais , Anticorpos Monoclonais Humanizados/imunologia , Encéfalo/irrigação sanguínea , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Encéfalo/imunologia , Modelos Animais de Doenças , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/imunologia , Humanos , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Masculino , Meninges/irrigação sanguínea , Meninges/citologia , Camundongos , Microglia/citologia , Microglia/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Fator C de Crescimento do Endotélio Vascular/metabolismo , Fator C de Crescimento do Endotélio Vascular/farmacologia
5.
Nature ; 577(7792): 689-694, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31942068

RESUMO

Immune surveillance against pathogens and tumours in the central nervous system is thought to be limited owing to the lack of lymphatic drainage. However, the characterization of the meningeal lymphatic network has shed light on previously unappreciated ways that an immune response can be elicited to antigens that are expressed in the brain1-3. Despite progress in our understanding of the development and structure of the meningeal lymphatic system, the contribution of this network in evoking a protective antigen-specific immune response in the brain remains unclear. Here, using a mouse model of glioblastoma, we show that the meningeal lymphatic vasculature can be manipulated to mount better immune responses against brain tumours. The immunity that is mediated by CD8 T cells to the glioblastoma antigen is very limited when the tumour is confined to the central nervous system, resulting in uncontrolled tumour growth. However, ectopic expression of vascular endothelial growth factor C (VEGF-C) promotes enhanced priming of CD8 T cells in the draining deep cervical lymph nodes, migration of CD8 T cells into the tumour, rapid clearance of the glioblastoma and a long-lasting antitumour memory response. Furthermore, transfection of an mRNA construct that expresses VEGF-C works synergistically with checkpoint blockade therapy to eradicate existing glioblastoma. These results reveal the capacity of VEGF-C to promote immune surveillance of tumours, and suggest a new therapeutic approach to treat brain tumours.


Assuntos
Neoplasias Encefálicas/imunologia , Glioblastoma/imunologia , Vigilância Imunológica/imunologia , Linfonodos/imunologia , Vasos Linfáticos/imunologia , Fator C de Crescimento do Endotélio Vascular/metabolismo , Animais , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/imunologia , Linhagem Celular Tumoral , Movimento Celular , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/patologia , Apresentação Cruzada , Feminino , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Células HEK293 , Humanos , Memória Imunológica/imunologia , Linfangiogênese , Masculino , Melanoma/tratamento farmacológico , Melanoma/imunologia , Meninges/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Fator C de Crescimento do Endotélio Vascular/administração & dosagem , Fator C de Crescimento do Endotélio Vascular/genética , Fator C de Crescimento do Endotélio Vascular/uso terapêutico
6.
Development ; 149(2)2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34919128

RESUMO

Hematopoietic stem and progenitor cells (HSPCs) are multipotent cells that self-renew or differentiate to establish the entire blood hierarchy. HSPCs arise from the hemogenic endothelium of the dorsal aorta (DA) during development in a process called endothelial-to-hematopoietic transition. The factors and signals that control HSPC fate decisions from the hemogenic endothelium are not fully understood. We found that Vegfc has a role in HSPC emergence from the zebrafish DA. Using time-lapse live imaging, we show that some HSPCs in the DA of vegfc loss-of-function embryos display altered cellular behavior. Instead of typical budding from the DA, emergent HSPCs exhibit crawling behavior similar to myeloid cells. This was confirmed by increased myeloid cell marker expression in the ventral wall of the DA and the caudal hematopoietic tissue. This increase in myeloid cells corresponded with a decrease in HSPCs that persisted into larval stages. Together, our data suggest that Vegfc regulates HSPC emergence in the hemogenic endothelium, in part by suppressing a myeloid cell fate. Our study provides a potential signal for modulation of HSPC fate in stem cell differentiation protocols.


Assuntos
Aorta/citologia , Diferenciação Celular , Células-Tronco Hematopoéticas/metabolismo , Fator C de Crescimento do Endotélio Vascular/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Aorta/embriologia , Células Cultivadas , Endotélio Vascular/citologia , Endotélio Vascular/embriologia , Células-Tronco Hematopoéticas/citologia , Mutação com Perda de Função , Células Mieloides/citologia , Células Mieloides/metabolismo , Fator C de Crescimento do Endotélio Vascular/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
7.
Am J Pathol ; 194(2): 225-237, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38065361

RESUMO

Cerebral edema frequently develops in the setting of brain infection and can contribute to elevated intracranial pressure, a medical emergency. How excess fluid is cleared from the brain is not well understood. Previous studies have shown that interstitial fluid is transported out of the brain along perivascular channels that collect into the cerebrospinal fluid (CSF)-filled subarachnoid space. CSF is then removed from the central nervous system through venous and lymphatic routes. The current study tested the hypothesis that increasing lymphatic drainage of CSF would promote clearance of cerebral edema fluid during infection with the neurotropic parasite Toxoplasma gondii. Fluorescent microscopy and magnetic resonance imaging was used to show that C57BL/6 mice develop vasogenic edema 4 to 5 weeks after infection with T. gondii. Tracer experiments were used to evaluate how brain infection affects meningeal lymphatic function, which demonstrated a decreased rate in CSF outflow in T. gondii-infected mice. Next, mice were treated with a vascular endothelial growth factor (VEGF)-C-expressing viral vector, which induced meningeal lymphangiogenesis and improved CSF outflow in chronically infected mice. No difference in cerebral edema was observed between mice that received VEGF-C and those that rececived sham treatment. Therefore, although VEGF-C treatment can improve lymphatic outflow in mice infected with T. gondii, this effect does not lead to increased clearance of edema fluid from the brains of these mice.


Assuntos
Edema Encefálico , Toxoplasma , Toxoplasmose , Fator C de Crescimento do Endotélio Vascular , Animais , Camundongos , Encéfalo/patologia , Edema Encefálico/parasitologia , Edema Encefálico/terapia , Camundongos Endogâmicos C57BL , Toxoplasmose/complicações , Toxoplasmose/terapia , Fator C de Crescimento do Endotélio Vascular/uso terapêutico
8.
FASEB J ; 38(16): e23879, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39162663

RESUMO

Both lymphatic vessels and macrophages are key factors influencing the inflammatory response. During the inflammatory response, lymphatic vessels undergo dilation and growth, playing a beneficial role in alleviating inflammation by facilitating the drainage of exudate, inflammatory mediators, and leukocytes. Consequently, the promotion of lymphangiogenesis has emerged as a novel therapeutic approach to treating inflammation. Macrophages play a crucial role in promoting lymphangiogenesis by secreting several pro-lymphatic growth factors, including vascular endothelial growth factor (VEGF)-C, and undergoing transdifferentiation into lymphatic endothelial cell progenitors (LECP), which integrate into newly formed lymphatic vessels. Macrophages exhibit heterogeneity and perform diverse functions based on their phenotypes. The regulation of macrophage polarization is crucial in inflammatory responses. Notably, macrophages promote lymphangiogenesis, while lymphatic vessels, in turn, serve as a conduit for macrophages to drain out inflamed tissue and also affect macrophage polarization. Thus, there is an interactive relationship between them. In this review, we discuss current work on the effects of macrophages on lymphangiogenesis as well as lymphatic vessel recruitment of macrophages and regulation of macrophage polarization. Furthermore, we explore the roles of lymphatic vessels and macrophages in various inflammation-related diseases, emphasizing potential therapeutic targets within the context of lymphatic-macrophage interactions.


Assuntos
Inflamação , Linfangiogênese , Vasos Linfáticos , Macrófagos , Macrófagos/imunologia , Macrófagos/metabolismo , Vasos Linfáticos/metabolismo , Vasos Linfáticos/patologia , Humanos , Inflamação/metabolismo , Inflamação/patologia , Animais , Linfangiogênese/fisiologia , Fator C de Crescimento do Endotélio Vascular/metabolismo
9.
Arterioscler Thromb Vasc Biol ; 44(4): 807-821, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38269589

RESUMO

BACKGROUND: Rheumatic heart disease is the major cause of valvular heart disease in developing nations. Endothelial cells (ECs) are considered crucial contributors to rheumatic heart disease, but greater insight into their roles in disease progression is needed. METHODS: We used a Cdh5-driven EC lineage-tracing approach to identify and track ECs in the K/B.g7 model of autoimmune valvular carditis. Single-cell RNA sequencing was used to characterize the EC populations in control and inflamed mitral valves. Immunostaining and conventional histology were used to evaluate lineage tracing and validate single-cell RNA-sequencing findings. The effects of VEGFR3 (vascular endothelial growth factor receptor 3) and VEGF-C (vascular endothelial growth factor C) inhibitors were tested in vivo. The functional impact of mitral valve disease in the K/B.g7 mouse was evaluated using echocardiography. Finally, to translate our findings, we analyzed valves from human patients with rheumatic heart disease undergoing mitral valve replacements. RESULTS: Lineage tracing in K/B.g7 mice revealed new capillary lymphatic vessels arising from valve surface ECs during the progression of disease in K/B.g7 mice. Unsupervised clustering of mitral valve single-cell RNA-sequencing data revealed novel lymphatic valve ECs that express a transcriptional profile distinct from other valve EC populations including the recently identified PROX1 (Prospero homeobox protein 1)+ lymphatic valve ECs. During disease progression, these newly identified lymphatic valve ECs expand and upregulate a profibrotic transcriptional profile. Inhibiting VEGFR3 through multiple approaches prevented expansion of this mitral valve lymphatic network. Echocardiography demonstrated that K/B.g7 mice have left ventricular dysfunction and mitral valve stenosis. Valve lymphatic density increased with age in K/B.g7 mice and correlated with worsened ventricular dysfunction. Importantly, human rheumatic valves contained similar lymphatics in greater numbers than nonrheumatic controls. CONCLUSIONS: These studies reveal a novel mode of inflammation-associated, VEGFR3-dependent postnatal lymphangiogenesis in murine autoimmune valvular carditis, with similarities to human rheumatic heart disease.


Assuntos
Doenças das Valvas Cardíacas , Vasos Linfáticos , Miocardite , Cardiopatia Reumática , Humanos , Camundongos , Animais , Cardiopatia Reumática/genética , Cardiopatia Reumática/metabolismo , Cardiopatia Reumática/patologia , Fator C de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Células Endoteliais/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Vasos Linfáticos/metabolismo , Doenças das Valvas Cardíacas/patologia , Progressão da Doença , RNA
10.
Genes Dev ; 31(16): 1615-1634, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28947496

RESUMO

Lymphatic vessels are important for tissue fluid homeostasis, lipid absorption, and immune cell trafficking and are involved in the pathogenesis of several human diseases. The mechanisms by which the lymphatic vasculature network is formed, remodeled, and adapted to physiological and pathological challenges are controlled by an intricate balance of growth factor and biomechanical cues. These transduce signals for the readjustment of gene expression and lymphatic endothelial migration, proliferation, and differentiation. In this review, we describe several of these cues and how they are integrated for the generation of functional lymphatic vessel networks.


Assuntos
Linfangiogênese , Animais , Membrana Basal/fisiologia , Carcinogênese , Inflamação/fisiopatologia , Integrinas/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Vasos Linfáticos/embriologia , Camundongos , Comunicação Parácrina , Fator C de Crescimento do Endotélio Vascular/fisiologia , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
11.
J Cell Mol Med ; 28(11): e18462, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38847478

RESUMO

Osteosarcoma (OS) is the most common primary malignant bone tumour in children and young adults. Account for 80% of all OS cases, conventional OS are characterized by the presence of osteoblastic, chondroblastic and fibroblastic cell types. Despite this heterogeneity, therapeutic treatment and prognosis of OS are essentially the same for all OS subtypes. Here, we report that DEC2, a transcriptional repressor, is expressed at higher levels in chondroblastic OS compared with osteoblastic OS. This difference suggests that DEC2 is disproportionately involved in the progression of chondroblastic OS, and thus, DEC2 may represent a possible molecular target for treating this type of OS. In the human chondroblastic-like OS cell line MNNG/HOS, we found that overexpression of DEC2 affects the proliferation of the cells by activating the VEGFC/VEGFR2 signalling pathway. Enhanced expression of DEC2 increased VEGFR2 expression, as well as increased the phosphorylation levels at sites Y951 and Y1175 of VEGFR2. On the one hand, activation of VEGFR2Y1175 enhanced cell proliferation through VEGFR2Y1175-PLCγ1-PKC-SPHK-MEK-ERK signalling. On the other hand, activation of VEGFR2Y951 decreased mitochondria-dependent apoptosis rate through VEGFR2Y951-VARP-PI3K-AKT signalling. Activation of these two signalling pathways resulted in enhanced progression of chondroblastic OS. In conclusion, DEC2 plays a pivotal role in cell proliferation and apoptosis-resistance in chondroblastic OS via the VEGFC/VEGFR2 signalling pathway. These findings lay the groundwork for developing focused treatments that target specific types of OS.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Neoplasias Ósseas , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Osteossarcoma , Fator C de Crescimento do Endotélio Vascular , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Animais , Humanos , Apoptose/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Neoplasias Ósseas/genética , Linhagem Celular Tumoral , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Osteossarcoma/genética , Fosforilação , Transdução de Sinais , Fator C de Crescimento do Endotélio Vascular/metabolismo , Fator C de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
12.
J Biol Chem ; 299(4): 103012, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36781122

RESUMO

The secreted protein collagen and calcium-binding EGF domain 1 (CCBE1) is critical for embryonic lymphatic development through its role in the proteolytic activation of mature vascular endothelial growth factor C (VEGFC). We previously reported that CCBE1 is overexpressed in colorectal cancer (CRC) and that its transcription is negatively regulated by the TGFß-SMAD pathway, but the transcriptional activation mechanism of CCBE1 in CRC remains unknown. Recent studies have revealed the vital role of the hippo effectors YAP/TAZ in lymphatic development; however, the role of YAP/TAZ in tumor lymphangiogenesis has not been clarified. In this study, we found that high nuclear expression of transcription factor TEAD4 is associated with lymph node metastasis and high lymphatic vessel density in patients with CRC. YAP/TAZ-TEAD4 complexes transcriptionally upregulated the expression of CCBE1 by directly binding to the enhancer region of CCBE1 in both CRC cells and cancer-associated fibroblasts, which resulted in enhanced VEGFC proteolysis and induced tube formation and migration of human lymphatic endothelial cells in vitro and lymphangiogenesis in a CRC cell-derived xenograft model in vivo. In addition, the bromodomain and extraterminal domain (BET) inhibitor JQ1 significantly inhibited the transcription of CCBE1, suppressed VEGFC proteolysis, and inhibited tumor lymphangiogenesis in vitro and in vivo. Collectively, our study reveals a new positive transcriptional regulatory mechanism of CCBE1 via YAP/TAZ-TEAD4-BRD4 complexes in CRC, which exposes the protumor lymphangiogenic role of YAP/TAZ and the potential inhibitory effect of BET inhibitors on tumor lymphangiogenesis.


Assuntos
Neoplasias Colorretais , Linfangiogênese , Humanos , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Colágeno/metabolismo , Neoplasias Colorretais/patologia , Células Endoteliais/metabolismo , Linfangiogênese/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Fator C de Crescimento do Endotélio Vascular/metabolismo , Proteínas de Sinalização YAP/genética , Proteínas de Sinalização YAP/metabolismo
13.
Circulation ; 147(6): 482-497, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36515099

RESUMO

BACKGROUND: Transplant arteriosclerosis is a major complication in long-term survivors of heart transplantation. Increased lymph flow from donor heart to host lymph nodes has been reported to play a role in transplant arteriosclerosis, but how lymphangiogenesis affects this process is unknown. METHODS: Vascular allografts were transplanted among various combinations of mice, including wild-type, Lyve1-CreERT2;R26-tdTomato, CAG-Cre-tdTomato, severe combined immune deficiency, Ccr2KO, Foxn1KO, and lghm/lghdKO mice. Whole-mount staining and 3-dimensional reconstruction identified lymphatic vessels within the grafted arteries. Lineage tracing strategies delineated the cellular origin of lymphatic endothelial cells. Adeno-associated viral vectors and a selective inhibitor were used to regulate lymphangiogenesis. RESULTS: Lymphangiogenesis within allograft vessels began at the anastomotic sites and extended from preexisting lymphatic vessels in the host. Tertiary lymphatic organs were identified in transplanted arteries at the anastomotic site and lymphatic vessels expressing CCL21 (chemokine [C-C motif] ligand 21) were associated with these immune structures. Fibroblasts in the vascular allografts released VEGF-C (vascular endothelial growth factor C), which stimulated lymphangiogenesis into the grafts. Inhibition of VEGF-C signaling inhibited lymphangiogenesis, neointima formation, and adventitial fibrosis of vascular allografts. These studies identified VEGF-C released from fibroblasts as a signal stimulating lymphangiogenesis extending from the host into the vascular allografts. CONCLUSIONS: Formation of lymphatic vessels plays a key role in the immune response to vascular transplantation. The inhibition of lymphangiogenesis may be a novel approach to prevent transplant arteriosclerosis.


Assuntos
Arteriosclerose , Transplante de Coração , Vasos Linfáticos , Camundongos , Animais , Humanos , Linfangiogênese , Fator C de Crescimento do Endotélio Vascular/genética , Fator C de Crescimento do Endotélio Vascular/metabolismo , Fator C de Crescimento do Endotélio Vascular/farmacologia , Transplante de Coração/efeitos adversos , Células Endoteliais/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Doadores de Tecidos , Vasos Linfáticos/patologia , Arteriosclerose/metabolismo
14.
Prostate ; 84(3): 277-284, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37942701

RESUMO

BACKGROUND: Neuropilin 2 (NRP2) expression in tissue is an independent prognostic factor for aggressive prostate cancer. Since the NRP2 pathway activation is thought to occur in part through secondary resistance, quantification of NRP2 in initial tissue biopsy specimens collected at diagnosis may have limited utility in identifying patients at highest risk for morbidity and mortality. Given that metastatic tissue is only occasionally obtained for analysis, there is a need for development of a plasma biomarker indicative of NRP2 pathway activation to potentially inform prostate cancer prognosis. Therefore, we investigated if plasma levels of NRP2 or vascular endothelial growth factor C (VEGF-C), a known soluble ligand of NRP2, are prognostic for prostate cancer. We hypothesized that plasma NRP2 and VEGF-C would be associated with more advanced disease or relapsed disease. METHODS: NRP2 and VEGF-C levels were quantified by enzyme-linked immunoassay in plasma samples obtained from 145 prostate cancer patients in an opportunistic biobank. These patients were either (1) newly diagnosed (N = 28), (2) in remission (N = 56), or (3) relapsed disease (N = 61). Plasma samples from 15 adult males without known malignancy served as a comparator cohort. Statistical analysis was performed to investigate the association of plasma NRP2/VEGF-C with patient outcomes, adjusting for age, race, prostate-specific antigen (PSA), Gleason score, and tumor stage at diagnosis. RESULTS: Neither NRP2 nor VEGF-C levels were significantly different in cancer patients compared to noncancer controls. We observed no clear association between plasma NRP2 and disease severity. Increased plasma VEGF-C was significantly associated with disease remission and correlated with Stage I/II and intermediate-risk Gleason score. Neither NRP2 nor VEGF-C correlated with PSA level. CONCLUSIONS: Although tissue NRP2 expression correlates with severe disease, this was not observed for plasma NRP2. Plasma NRP2 levels did not correlate with disease severity or relapse. VEGF-C was highest in patients in remission and with less severe disease. Future investigation is needed to identify noninvasive methods to assess tumor NRP2 status.


Assuntos
Neoplasias da Próstata , Fator C de Crescimento do Endotélio Vascular , Adulto , Humanos , Masculino , Recidiva Local de Neoplasia , Neuropilina-2/metabolismo , Antígeno Prostático Específico , Neoplasias da Próstata/patologia
15.
J Neuroinflammation ; 21(1): 36, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38287311

RESUMO

BACKGROUND: Sepsis-associated encephalopathy (SAE) is an acute cerebral dysfunction caused by sepsis. Neuroinflammation induced by sepsis is considered a potential mechanism of SAE; however, very little is known about the role of the meningeal lymphatic system in SAE. METHODS: Sepsis was established in male C57BL/6J mice by intraperitoneal injection of 5 mg/kg lipopolysaccharide, and the function of meningeal lymphatic drainage was assessed. Adeno-associated virus 1-vascular endothelial growth factor C (AAV1-VEGF-C) was injected into the cisterna magna to induce meningeal lymphangiogenesis. Ligation of deep cervical lymph nodes (dCLNs) was performed to induce pre-existing meningeal lymphatic dysfunction. Cognitive function was evaluated by a fear conditioning test, and inflammatory factors were detected by enzyme-linked immunosorbent assay. RESULTS: The aged mice with SAE showed a significant decrease in the drainage of OVA-647 into the dCLNs and the coverage of the Lyve-1 in the meningeal lymphatic, indicating that sepsis impaired meningeal lymphatic drainage and morphology. The meningeal lymphatic function of aged mice was more vulnerable to sepsis in comparison to young mice. Sepsis also decreased the protein levels of caspase-3 and PSD95, which was accompanied by reductions in the activity of hippocampal neurons. Microglia were significantly activated in the hippocampus of SAE mice, which was accompanied by an increase in neuroinflammation, as indicated by increases in interleukin-1 beta, interleukin-6 and Iba1 expression. Cognitive function was impaired in aged mice with SAE. However, the injection of AAV1-VEGF-C significantly increased coverage in the lymphatic system and tracer dye uptake in dCLNs, suggesting that AAV1-VEGF-C promotes meningeal lymphangiogenesis and drainage. Furthermore, AAV1-VEGF-C reduced microglial activation and neuroinflammation and improved cognitive dysfunction. Improvement of meningeal lymphatics also reduced sepsis-induced expression of disease-associated genes in aged mice. Pre-existing lymphatic dysfunction by ligating bilateral dCLNs aggravated sepsis-induced neuroinflammation and cognitive impairment. CONCLUSION: The meningeal lymphatic drainage is damaged in sepsis, and pre-existing defects in this drainage system exacerbate SAE-induced neuroinflammation and cognitive dysfunction. Promoting meningeal lymphatic drainage improves SAE. Manipulation of meningeal lymphangiogenesis could be a new strategy for the treatment of SAE.


Assuntos
Lesões Encefálicas , Disfunção Cognitiva , Encefalopatia Associada a Sepse , Sepse , Camundongos , Masculino , Animais , Fator C de Crescimento do Endotélio Vascular , Lipopolissacarídeos , Doenças Neuroinflamatórias , Camundongos Endogâmicos C57BL , Sepse/complicações , Lesões Encefálicas/complicações
16.
Am J Pathol ; 193(12): 2182-2202, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37673329

RESUMO

Liver is the largest lymph-producing organ. In cirrhotic patients, lymph production significantly increases concomitant with lymphangiogenesis. The aim of this study was to determine the mechanism of lymphangiogenesis in liver and its implication in liver fibrosis. Liver biopsies from portal hypertensive patients with portal-sinusoidal vascular disease (n = 22) and liver cirrhosis (n = 5) were evaluated for lymphangiogenesis and compared with controls (n = 9 and n = 6, respectively). For mechanistic studies, rats with partial portal vein ligation (PPVL) and bile duct ligation (BDL) were used. A gene profile data set (GSE77627), including 14 histologically normal liver, 18 idiopathic noncirrhotic portal hypertension, and 22 cirrhotic patients, was analyzed. Lymphangiogenesis was significantly increased in livers from patients with portal-sinusoidal vascular disease, cirrhotic patients, as well as PPVL and BDL rats. Importantly, Schwann cells of sympathetic nerves highly expressed vascular endothelial growth factor-C in PPVL rats. Vascular endothelial growth factor-C neutralizing antibody or sympathetic denervation significantly decreased lymphangiogenesis in livers of PPVL and BDL rats, which resulted in progression of liver fibrosis. Liver specimens from cirrhotic patients showed a positive correlation between sympathetic nerve/Schwann cell-positive areas and lymphatic vessel numbers, which was supported by gene set analysis from patients with noncirrhotic portal hypertension and cirrhotic patients. Sympathetic nerves promote hepatic lymphangiogenesis in noncirrhotic and cirrhotic livers. Increased hepatic lymphangiogenesis can be protective against liver fibrosis.


Assuntos
Doenças Vasculares , Fator C de Crescimento do Endotélio Vascular , Ratos , Humanos , Animais , Linfangiogênese , Ratos Sprague-Dawley , Modelos Animais de Doenças , Cirrose Hepática/patologia , Fígado/patologia , Doenças Vasculares/patologia , Sistema Nervoso Simpático
17.
Exp Eye Res ; 243: 109891, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38615832

RESUMO

The aim of this study is to investigate the relationship between age-related macular degeneration (AMD) and lymphangiogenesis biomarkers, namely LYVE-1, Podoplanin, VEGF-C, VEGFR-2 and VEGFR-3. This prospective and interventional study includes 30 patients with AMD which may be dry or wet type and 30 controls for whom vitrectomy and phacoemulsification was indicated due to additional pathologies (epiretinal membrane, macular hole, retinal detachment, and cataract). 0.1-0,2 ml of aqueous humor and 0.5-1 ml of vitreous sample was taken during the operations. Before the operations 1 tube serum was also taken. All the lymphangiogenesis biomarkers in the study are examined by ELISA method. LYVE-1 (p = 0.001) and Podoplanin (p = 0.004) levels in the vitreous for the patient group are found to be significantly lower than the control group. Serum (p = 0.019), vitreous (p = 0.001), aqueous (p < 0.001) levels of VEGF-C for the patient group are significantly higher than the control group. VEGF-C/VEGFR-2 (p < 0.001), VEGF-C/VEGFR-3 (p < 0.001) ratios in the vitreous for the patient group are found to be significantly higher than the control group. Especially in wet AMD patients, LYVE-1 level is significantly lower in the vitreous (p = 0.002) and aqueous (p = 0.002) than the control group. In addition, Podoplanin level is observed as significantly lower in the vitreous (p = 0.014) and serum (p = 0.002) in comparison to control group. In the wet AMD group, VEGF-C level in the vitreous (p < 0.001), aqueous (p < 0.001) and serum (p = 0.001) is higher than the control group. The result of this study indicates a valid relationship between the weakening of lymphangiogenesis and the pathophysiology of AMD, especially for the wet type. It is observed that the levels of receptors that bind VEGF-C (VEGFR-2 and VEGFR-3) do not increase at the same rate as VEGF-C to compensate for the increase in VEGF-C. The absence of an increase in VEGFR-3, which is especially necessary for lymphangiogenesis, also suggests that lymphangiogenesis is weakened or decreased in AMD. In the future interventional studies with larger series, examination of lymphangiogenic biomarkers in inflammatory retinal diseases and glaucoma may reveal unexplored details.


Assuntos
Humor Aquoso , Biomarcadores , Ensaio de Imunoadsorção Enzimática , Linfangiogênese , Glicoproteínas de Membrana , Fator C de Crescimento do Endotélio Vascular , Receptor 3 de Fatores de Crescimento do Endotélio Vascular , Proteínas de Transporte Vesicular , Corpo Vítreo , Humanos , Masculino , Feminino , Biomarcadores/metabolismo , Biomarcadores/sangue , Estudos Prospectivos , Idoso , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Fator C de Crescimento do Endotélio Vascular/metabolismo , Fator C de Crescimento do Endotélio Vascular/sangue , Humor Aquoso/metabolismo , Corpo Vítreo/metabolismo , Corpo Vítreo/patologia , Glicoproteínas de Membrana/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Degeneração Macular/metabolismo , Degeneração Macular/diagnóstico , Degeneração Macular Exsudativa/metabolismo , Degeneração Macular Exsudativa/diagnóstico
18.
Circ Res ; 130(7): 1014-1029, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35264012

RESUMO

BACKGROUND: Ischemic heart disease following the obstruction of coronary vessels leads to the death of cardiac tissue and the formation of a fibrotic scar. In contrast to adult mammals, zebrafish can regenerate their heart after injury, enabling the study of the underlying mechanisms. One of the earliest responses following cardiac injury in adult zebrafish is coronary revascularization. Defects in this process lead to impaired cardiomyocyte repopulation and scarring. Hence, identifying and investigating factors that promote coronary revascularization holds great therapeutic potential. METHODS: We used wholemount imaging, immunohistochemistry and histology to assess various aspects of zebrafish cardiac regeneration. Deep transcriptomic analysis allowed us to identify targets and potential effectors of Vegfc (vascular endothelial growth factor C) signaling. We used newly generated loss- and gain-of-function genetic tools to investigate the role of Emilin2a (elastin microfibril interfacer 2a) and Cxcl8a (chemokine (C-X-C) motif ligand 8a)-Cxcr1 (chemokine (C-X-C) motif receptor 1) signaling in cardiac regeneration. RESULTS: We first show that regenerating coronary endothelial cells upregulate vegfc upon cardiac injury in adult zebrafish and that Vegfc signaling is required for their proliferation during regeneration. Notably, blocking Vegfc signaling also significantly reduces cardiomyocyte dedifferentiation and proliferation. Using transcriptomic analyses, we identified emilin2a as a target of Vegfc signaling and found that manipulation of emilin2a expression can modulate coronary revascularization as well as cardiomyocyte proliferation. Mechanistically, Emilin2a induces the expression of the chemokine gene cxcl8a in epicardium-derived cells, while cxcr1, the Cxcl8a receptor gene, is expressed in coronary endothelial cells. We further show that Cxcl8a-Cxcr1 signaling is also required for coronary endothelial cell proliferation during cardiac regeneration. CONCLUSIONS: These data show that after cardiac injury, coronary endothelial cells upregulate vegfc to promote coronary network reestablishment and cardiac regeneration. Mechanistically, Vegfc signaling upregulates epicardial emilin2a and cxcl8a expression to promote cardiac regeneration. These studies aid in understanding the mechanisms underlying coronary revascularization in zebrafish, with potential therapeutic implications to enhance revascularization and regeneration in injured human hearts.


Assuntos
Interleucina-8 , Glicoproteínas de Membrana , Miócitos Cardíacos , Regeneração , Fator C de Crescimento do Endotélio Vascular , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Proliferação de Células , Células Endoteliais/metabolismo , Coração/fisiologia , Interleucina-8/metabolismo , Glicoproteínas de Membrana/metabolismo , Miócitos Cardíacos/fisiologia , Regeneração/fisiologia , Fator C de Crescimento do Endotélio Vascular/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
19.
Cell Mol Biol (Noisy-le-grand) ; 70(1): 40-45, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38372116

RESUMO

The purpose of this study was to explore the differential expression of Pax3, Rad51 and VEGF-C in esophageal gastric junction adenocarcinoma and distal gastric adenocarcinoma and their relationship with cancer occurrence and development. 57 patients with gastric cancer were included and divided into esophageal gastric junction adenocarcinoma group (n=28) and distal gastric adenocarcinoma group (n=29). The positive expressions of Pax3, Rad51 and VEGF-C in the control group were lower than those in the esophageal gastric junction adenocarcinoma group and distal gastric adenocarcinoma group respectively (P<0.05). In esophageal gastric junction adenocarcinoma with low differentiation, positive expressions of Pax3, Rad51, and VEGF-C surpassed those in high/medium differentiation (P<0.05). Serosa-infiltrated cases exhibited higher Pax3 and Rad51 expressions compared to non-infiltrated cases (P<0.05). Rad51 and VEGF-C positivity were notably elevated in cases with lymph node metastasis compared to those without (P<0.05). Distal gastric adenocarcinoma displayed higher VEGF expression than middle/low differentiated adenocarcinomas. Rad51 expression was significantly higher in women than in men (P<0.05). The positive rates of Pax3, Rad51, and VEGF-C were markedly increased in esophageal gastric junction adenocarcinoma and distal gastric adenocarcinoma compared to normal gastric tissue, and these were associated with the degree of differentiation, depth of invasion, and lymph node metastasis in patients. Particularly, Rad51 exhibited a positive correlation with cancer cell differentiation, invasion depth, and lymph node metastasis in cancer tissue.


Assuntos
Adenocarcinoma , Neoplasias Esofágicas , Fator de Transcrição PAX3 , Rad51 Recombinase , Neoplasias Gástricas , Fator C de Crescimento do Endotélio Vascular , Feminino , Humanos , Masculino , Adenocarcinoma/genética , Adenocarcinoma/patologia , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Metástase Linfática , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Fatores de Transcrição , Fator C de Crescimento do Endotélio Vascular/genética , Fator de Transcrição PAX3/genética , Rad51 Recombinase/genética
20.
Cell Biochem Funct ; 42(2): e3950, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38348768

RESUMO

Melanoma, an invasive class of skin cancer, originates from mutations in melanocytes, the pigment-producing cells. Globally, approximately 132,000 new cases are reported each year, and in South Africa, the incidence stands at 2.7 per 100,000 people, signifying a worrisome surge in melanoma rates. Therefore, there is a need to explore treatment modalities that will target melanoma's signalling pathways. Melanoma metastasis is aided by ligand activity of transforming growth factor-beta 1 (TGF-ß1), vascular endothelial growth factor-C (VEGF-C) and C-X-C chemokine ligand 12 (CXCL12) which bind to their receptors and promote tumour cell survival, lymphangiogenesis and chemotaxis. (3-(4-dimethylaminonaphthelen-1-ylmethylene)-1,3-dihydroindol-2-one) MAZ-51 is an indolinone-based molecule that inhibits VEGF-C induced phosphorylation of vascular endothelial growth factor receptor 3 (VEGFR-3). Despite the successful use of conventional cancer therapies, patients endure adverse side effects and cancer drug resistance. Moreover, conventional therapies are toxic to the environment and caregivers. The use of medicinal plants and their phytochemical constituents in cancer treatment strategies has become more widespread because of the rise in drug resistance and the development of unfavourable side effects. Zingerone, a phytochemical derived from ginger exhibits various pharmacological properties positioning it as a promising candidate for cancer treatment. This review provides an overview of melanoma biology and the intracellular signalling pathways promoting cell survival, proliferation and adhesion. There is a need to align health and environmental objectives within sustainable development goals 3 (good health and well-being), 13 (climate action) and 15 (life on land) to promote early detection of skin cancer, enhance sun-safe practices, mitigation of environmental factors and advancing the preservation of biodiversity, including medicinal plants. Thus, this review discusses the impact of cytostatic cancer drugs on patients and the environment and examines the potential use of phytochemicals as adjuvant therapy.


Assuntos
Guaiacol/análogos & derivados , Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/metabolismo , Fator C de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular , Ligantes , Desenvolvimento Sustentável , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia , Compostos Fitoquímicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA