Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arch Pharm (Weinheim) ; 357(6): e2300649, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38396281

RESUMO

Transcription factors are generally considered challenging, if not "undruggable", targets but they promise new therapeutic options due to their fundamental involvement in many diseases. In this study, we aim to assess the ligandability of the C-terminal Rel-homology domain of nuclear factor of activated T cells 1 (NFAT1), a TF implicated in T-cell regulation. Using a combination of experimental and computational approaches, we demonstrate that small molecule fragments can indeed bind to this protein domain. The newly identified binder is the first small molecule binder to NFAT1 validated with biophysical methods and an elucidated binding mode by X-ray crystallography. The reported eutomer/distomer pair provides a strong basis for potential exploration of higher potency binders on the path toward degrader or glue modalities.


Assuntos
Fatores de Transcrição NFATC , Sítios de Ligação , Cristalografia por Raios X , Ligantes , Fatores de Transcrição NFATC/metabolismo , Fatores de Transcrição NFATC/química , Ligação Proteica , Domínios Proteicos , Relação Estrutura-Atividade
2.
Mol Cell ; 58(2): 232-43, 2015 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-25818645

RESUMO

Protein isoforms are widely expressed in biological systems. How isoforms that co-exist within the same sub-cellular domain are differentially activated remains unclear. Here, we compare the regulatory mechanism of two closely related transcription factor isoforms, NFAT1 and NFAT4, that migrate from the cytoplasm to the nucleus following the increase in intracellular Ca(2+) that accompanies the opening of store-operated Orai1/CRAC channels. We demonstrate that NFAT1 has a private line of communication with Orai1, activating in response to Ca(2+) microdomains near the open channels. By contrast, NFAT4 stimulation requires both local Ca(2+) entry and a nuclear Ca(2+) rise. We mapped differences in nuclear location to amino acids within the SP-3 motif of the NFAT regulatory domain. The different Ca(2+) dependencies enable agonists to recruit different isoform combinations as stimulus strength increases. Our study uncovers a mechanism whereby co-existing cytoplasmic transcription factor isoforms are differentially activated by distinct sub-cellular Ca(2+) signals.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Fatores de Transcrição NFATC/metabolismo , Motivos de Aminoácidos , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Fatores de Transcrição NFATC/química , Proteína ORAI1 , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo
3.
FASEB J ; 34(2): 3197-3208, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31909857

RESUMO

Nuclear factor of activated T cells (NFAT) leads to the transcription of diverse inducible genes involved in many biological processes; therefore, aberrant NFAT expression is responsible for the development and exacerbation of various disorders. Since five isoforms of NFAT (NFATc1-c4, NFAT5) exhibit distinct and overlapping functions, selective control of a part, but not all, of NFAT family members is desirable. By comparing the binding activity of each NFATc1-c4 with its regulatory enzyme, calcineurin (CN), using a quantitative immunoprecipitation assay, we found a new CN-binding region (CNBR) selectively functioning in NFATc1 and NFATc4. This region, termed CNBR3, is located between two preexisting CNBR1 and CNBR2, within the Ca2+ regulatory domain. The nuclear translocation of NFATc1 but not NFATc2 in T cells was suppressed by ectopic expression of CNBR3 and, accordingly, NFATc1-dependent cytokine expression was downregulated. Through competition assays using NFATc1-derived partial peptides and mass spectrometry with photoaffinity technology, we identified 18 amino acids in NFATc1 (Arg258 to Pro275 ) and 13 amino acids in CN catalytic subunit (CNA) (Asn77 to Gly89 ) responsible for CNA/CNBR3 binding in which Cys263 and Asp82 , respectively, played crucial roles. The possible selective regulation of NFAT-mediated biological processes by targeting this new CN/NFAT-binding region is suggested.


Assuntos
Calcineurina/química , Simulação de Acoplamento Molecular , Fatores de Transcrição NFATC/química , Animais , Sítios de Ligação , Calcineurina/genética , Calcineurina/metabolismo , Linhagem Celular , Cricetinae , Cricetulus , Humanos , Células Jurkat , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Ligação Proteica
4.
Proc Natl Acad Sci U S A ; 115(8): E1710-E1719, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29432148

RESUMO

Studies over the past decade have highlighted the functional significance of intrinsically disordered proteins (IDPs). Due to conformational heterogeneity and inherent dynamics, structural studies of IDPs have relied mostly on NMR spectroscopy, despite IDPs having characteristics that make them challenging to study using traditional 1H-detected biomolecular NMR techniques. Here, we develop a suite of 3D 15N-detected experiments that take advantage of the slower transverse relaxation property of 15N nuclei, the associated narrower linewidth, and the greater chemical shift dispersion compared with those of 1H and 13C resonances. The six 3D experiments described here start with aliphatic 1H magnetization to take advantage of its higher initial polarization, and are broadly applicable for backbone assignment of proteins that are disordered, dynamic, or have unfavorable amide proton exchange rates. Using these experiments, backbone resonance assignments were completed for the unstructured regulatory domain (residues 131-294) of the human transcription factor nuclear factor of activated T cells (NFATC2), which includes 28 proline residues located in functionally important serine-proline (SP) repeats. The complete assignment of the NFATC2 regulatory domain enabled us to study phosphorylation of NFAT by kinase PKA and phosphorylation-dependent binding of chaperone protein 14-3-3 to NFAT, providing mechanistic insight on how 14-3-3 regulates NFAT nuclear translocation.


Assuntos
Espectroscopia de Ressonância Magnética , Fatores de Transcrição NFATC/química , Isótopos de Nitrogênio/química , Conformação Proteica
5.
Molecules ; 26(16)2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34443374

RESUMO

The activation of NFAT (nuclear factor of activated T cells) transcription factors by calcium-dependent phosphatase calcineurin is a key step in controlling T cell activation and plays a vital role during carcinogenesis. NFATs are overexpressed in many cancers, including the most common primary brain tumor, gliomas. In the present study, we demonstrate the expression of NFATs and NFAT-driven transcription in several human glioma cells. We used a VIVIT peptide for interference in calcineurin binding to NFAT via a conserved PxIxIT motif. VIVIT was expressed as a fusion protein with a green fluorescent protein (VIVIT-GFP) or conjugated to cell-penetrating peptides (CPP), Sim-2 or 11R. We analyzed the NFAT expression, phosphorylation, subcellular localization and their transcriptional activity in cells treated with peptides. Overexpression of VIVIT-GFP decreased the NFAT-driven activity and inhibited the transcription of endogenous NFAT-target genes. These effects were not reproduced with synthetic peptides: Sim2-VIVIT did not show any activity, and 11R-VIVIT did not inhibit NFAT signaling in glioma cells. The presence of two calcineurin docking sites in NFATc3 might require dual-specificity blocking peptides. The cell-penetrating peptides Sim-2 or 11R linked to VIVIT did not improve its action making it unsuitable for evaluating NFAT dependent events in glioma cells with high expression of NFATc3.


Assuntos
Neoplasias Encefálicas/patologia , Calcineurina/metabolismo , Glioma/patologia , Fatores de Transcrição NFATC/metabolismo , Oligopeptídeos/farmacologia , Transdução de Sinais , Sequência de Aminoácidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Peptídeos Penetradores de Células/farmacologia , Glioma/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Fatores de Transcrição NFATC/química , Oligopeptídeos/química , Peptídeos/farmacologia , Transporte Proteico/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
6.
Immunity ; 34(4): 479-91, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21458306

RESUMO

The transcription factor FOXP3 is essential for the suppressive function of regulatory T cells that are required for maintaining self-tolerance. We have solved the crystal structure of the FOXP3 forkhead domain as a ternary complex with the DNA-binding domain of the transcription factor NFAT1 and a DNA oligonucleotide from the interleukin-2 promoter. A striking feature of this structure is that FOXP3 forms a domain-swapped dimer that bridges two molecules of DNA. Structure-guided or autoimmune disease (IPEX)-associated mutations in the domain-swap interface diminished dimer formation by the FOXP3 forkhead domain without compromising FOXP3 DNA binding. These mutations also eliminated T cell-suppressive activity conferred by FOXP3, both in vitro and in a murine model of autoimmune diabetes in vivo. We conclude that FOXP3-mediated suppressor function requires dimerization through the forkhead domain and that mutations in the dimer interface can lead to the systemic autoimmunity observed in IPEX patients.


Assuntos
Fatores de Transcrição Forkhead/química , Fatores de Transcrição Forkhead/imunologia , Linfócitos T Reguladores/química , Linfócitos T Reguladores/imunologia , Sequência de Aminoácidos , Animais , Humanos , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Fatores de Transcrição NFATC/química , Fatores de Transcrição NFATC/imunologia , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência
7.
Biochem Biophys Res Commun ; 513(1): 172-178, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-30952432

RESUMO

The NFAT family of transcription factors plays an important role in immune system development and function. NFATc1 and NFATc2 are highly expressed in peripheral T cells, and several isoforms are produced via the use of different promoters and polyadenylation sites. The specific isoforms with relatively long C-termini, NFATc1/C and NFATc2/A, have been shown to be modified by SUMO within their specific C-terminal regions, which regulates NFAT protein localization and transactivation activity. Here, we demonstrate that an isoform NFATc1/A, which has a short C-terminus and does not contain the sumoylation sites found in the long isoforms, is also modified by SUMO. NFATc1/A sumoylation increased with low level expression of SUMO E3 ligases, specifically PIAS1, PIAS3, and PIASy, in co-transfected cells. PIAS3 interacted with NFATc1/A and an active site mutant failed to promote NFATc1/A sumoylation, indicating a role for PIAS3 as a SUMO E3 ligase. A lysine residue at 351 within the central regulatory domain was identified as the major SUMO attachment site in both co-transfection and in vitro assays. Sumoylation of NFATc1/A did not affect nuclear translocation upon ionomycin and phorbol 12-myristate 13-acetate treatment. However, although sumoylation of NFATc1/A slightly increased protein stability, it inhibited transactivation activity for reporter genes driven by promoters containing NFAT sites. Our results indicate that the transactivation activity of NFATc1/A is negatively regulated by PIAS protein-mediated sumoylation, and that SUMO is a general regulator of NFAT family members with either long or short C-termini.


Assuntos
Fatores de Transcrição NFATC/metabolismo , Proteínas Inibidoras de STAT Ativados/metabolismo , Sumoilação , Ativação Transcricional , Sequência de Aminoácidos , Linhagem Celular , Humanos , Fatores de Transcrição NFATC/química , Estabilidade Proteica
8.
Anal Biochem ; 549: 66-71, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29555327

RESUMO

Calcineurin is a phosphatase that targets the transcription factor, nuclear factor of activated T-cells (NFAT) dephosphorylates multiple sites along NFAT's regulatory domain. The calcineurin-NFAT complex interaction is mediated through two conserved binding motifs known as the PxIxIT and LxVP, which are located at the N- and C- terminus to the phosphorylation sites. The vast range of cellular processes regulated by the calcineurin-NFAT interaction has aroused great interest in the investigation of the structural aspects that govern their complex formation and in the discovery of protein-protein interaction inhibitors; the latter interfere with calcineurin-NFAT complex formation while keeping calcineurin's catalytic site free. To assist additional biophysical study of the calcineurin-NFAT structure-function relation and to screen for new inhibitors, we present a robust and cost-effective Enzyme Linked Immuno Sorbent Assay (ELISA) that is based on the interaction of calcineurin with the NFAT homology region. The latter includes the two calcineurin's binding sites, in addition to the phosphorylation sites. The ELISA experiment shown here can thus be applied towards the study of important structural aspects of the complex and for the discovery of new inhibitors. This will allow for a better understanding of T-cell activation switch.


Assuntos
Calcineurina/química , Fatores de Transcrição NFATC/química , Calcineurina/metabolismo , Ensaio de Imunoadsorção Enzimática/métodos , Humanos
9.
J Biol Chem ; 291(7): 3385-94, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26710850

RESUMO

The adhesion G protein-coupled receptors (aGPCRs) are a large yet poorly understood family of seven-transmembrane proteins. A defining characteristic of the aGPCR family is the conserved GAIN domain, which has autoproteolytic activity and can cleave the receptors near the first transmembrane domain. Several aGPCRs, including ADGRB1 (BAI1 or B1) and ADGRG1 (GPR56 or G1), have been found to exhibit significantly increased constitutive activity when truncated to mimic GAIN domain cleavage (ΔNT). Recent reports have suggested that the new N-terminal stalk, which is revealed by GAIN domain cleavage, can directly activate aGPCRs as a tethered agonist. We tested this hypothesis in studies on two distinct aGPCRs, B1 and G1, by engineering mutant receptors lacking the entire NT including the stalk (B1- and G1-SL, with "SL" indicating "stalkless"). These receptors were evaluated in a battery of signaling assays and compared with full-length wild-type and cleavage-mimicking (ΔNT) forms of the two receptors. We found that B1-SL, in multiple assays, exhibited robust signaling activity, suggesting that the membrane-proximal stalk region is not necessary for its activation. For G1, however, the results were mixed, with the SL mutant exhibiting robust activity in several signaling assays (including TGFα shedding, activation of NFAT luciferase, and ß-arrestin recruitment) but reduced activity relative to ΔNT in a distinct assay (activation of SRF luciferase). These data support a model in which the activation of certain pathways downstream of aGPCRs is stalk-dependent, whereas signaling to other pathways is stalk-independent.


Assuntos
Proteínas Angiogênicas/agonistas , Modelos Moleculares , Receptores Acoplados a Proteínas G/agonistas , Transdução de Sinais , Regulação Alostérica , Substituição de Aminoácidos , Proteínas Angiogênicas/química , Proteínas Angiogênicas/genética , Proteínas Angiogênicas/metabolismo , Arrestinas/química , Arrestinas/genética , Arrestinas/metabolismo , Sequência Conservada , Genes Reporter , Células HEK293 , Humanos , Ligantes , Fatores de Transcrição NFATC/agonistas , Fatores de Transcrição NFATC/química , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Fragmentos de Peptídeos/agonistas , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Mutação Puntual , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteólise , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Fator de Crescimento Transformador alfa/química , Fator de Crescimento Transformador alfa/genética , Fator de Crescimento Transformador alfa/metabolismo , Ubiquitinação , beta-Arrestinas
10.
Physiol Genomics ; 48(11): 835-849, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27764768

RESUMO

NFAT5 is a transcription factor originally identified because it is activated by hypertonicity and that activation increases expression of genes that protect against the adverse effects of the hypertonicity. However, its targets also include genes not obviously related to tonicity. The transactivating domain of NFAT5 is contained in its COOH-terminal region, which is predicted to be unstructured. Unstructured regions are common in transcription factors particularly in transactivating domains where they can bind co-regulatory proteins essential to their function. To identify potential binding partners of NFAT5 from either cytoplasmic or nuclear HEK293 cell extracts, we used peptide affinity chromatography followed by mass spectrometry. Peptide aptamer-baits consisted of overlapping 20 amino acid peptides within the predicted COOH-terminal unstructured region of NFAT5. We identify a total of 351 unique protein preys that associate with at least one COOH-terminal peptide bait from NFAT5 in either cytoplasmic or nuclear extracts from cells incubated at various tonicities (NaCl varied). In addition to finding many proteins already known to associate with NFAT5, we found many new ones whose function suggest novel aspects of NFAT5 regulation, interaction, and function. Relatively few of the proteins pulled down by peptide baits from NFAT5 are generally involved in transcription, and most, therefore, are likely to be specifically related to the regulation of NFAT5 or its function. The novel associated proteins are involved with cancer, effects of hypertonicity on chromatin, development, splicing of mRNA, transcription, and vesicle trafficking.


Assuntos
Cromatografia de Afinidade/métodos , Fatores de Transcrição NFATC/metabolismo , Peptídeos/metabolismo , Sequência de Aminoácidos , Extratos Celulares , Células HEK293 , Humanos , Fatores de Transcrição NFATC/química , Osmose , Ligação Proteica , Domínios Proteicos , Mapas de Interação de Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Cloreto de Sódio/farmacologia
11.
Mol Cell Biochem ; 412(1-2): 27-40, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26597853

RESUMO

The thirteen-lined ground squirrel (Ictidomys tridecemlineatus) undergoes remarkable adaptive changes during hibernation. Interestingly, skeletal muscle remodelling occurs during the torpor-arousal cycle of hibernation to prevent net muscle loss despite inactivity. Reversible cardiomyocyte hypertrophy occurs in cardiac muscle, allowing the heart to preserve cardiac output during hibernation, while avoiding chronic maladaptive hypertrophy post-hibernation. We propose that calcium signalling proteins [calcineurin (Cn), calmodulin (CaM), and calpain], the nuclear factor of activated T cell (NFAT) family of transcription factors, and the NFAT targets myoferlin and myomaker contribute significantly to adaptations taking place in skeletal and cardiac muscle during hibernation. Protein-level analyses were performed over several conditions: euthermic room temperature (ER), euthermic cold room (EC), entrance into (EN), early (ET), and late torpor (LT) time points, in addition to early (EA), interbout (IA), and late arousal (LA) time points using immunoblotting and DNA-protein interaction (DPI) enzyme-linked immunosorbent assay (ELISAs). In skeletal and cardiac muscle, NFATc2 protein levels were elevated during torpor. NFATc4 increased throughout the torpor-arousal cycle in both tissues, and NFATc1 showed this trend in cardiac muscle only. NFATc3 showed an elevation in DNA-binding activity but not expression during torpor. Myoferlin protein levels dramatically increased during torpor in both skeletal and cardiac muscle. Myomaker levels also increased significantly in cardiac muscle during torpor. Cardiac Cn levels remained stable, whereas CaM and calpain decreased throughout the torpor-arousal cycle. Activation and/or upregulation of NFATc2, c3, myoferlin, and myomaker at torpor could be part of a stress-response mechanism to preserve skeletal muscle mass, whereas CaM and calpain appear to initiate the rapid reversal of cardiac hypertrophy during arousal through downregulation of the NFAT-Cn pathway.


Assuntos
Hibernação , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Fatores de Transcrição NFATC/metabolismo , Sciuridae/fisiologia , Sequência de Aminoácidos , Animais , DNA/metabolismo , Proteínas Musculares/química , Fatores de Transcrição NFATC/química , Ligação Proteica
12.
Proc Natl Acad Sci U S A ; 108(28): 11381-6, 2011 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-21709260

RESUMO

Nuclear factor of activated T cells (NFAT) proteins are Ca(2+)-regulated transcription factors that control gene expression in many cell types. NFAT proteins are heavily phosphorylated and reside in the cytoplasm of resting cells; when cells are stimulated by a rise in intracellular Ca(2+), NFAT proteins are dephosphorylated by the Ca(2+)/calmodulin-dependent phosphatase calcineurin and translocate to the nucleus to activate target gene expression. Here we show that phosphorylated NFAT1 is present in a large cytoplasmic RNA-protein scaffold complex that contains a long intergenic noncoding RNA (lincRNA), NRON [noncoding (RNA) repressor of NFAT]; a scaffold protein, IQ motif containing GTPase activating protein (IQGAP); and three NFAT kinases, casein kinase 1, glycogen synthase kinase 3, and dual specificity tyrosine phosphorylation regulated kinase. Combined knockdown of NRON and IQGAP1 increased NFAT dephosphorylation and nuclear import exclusively after stimulation, without affecting the rate of NFAT rephosphorylation and nuclear export; and both NRON-depleted T cells and T cells from IQGAP1-deficient mice showed increased production of NFAT-dependent cytokines. Our results provide evidence that a complex of lincRNA and protein forms a scaffold for a latent transcription factor and its regulatory kinases, and support an emerging consensus that lincRNAs that bind transcriptional regulators have a similar scaffold function.


Assuntos
Fatores de Transcrição NFATC/química , Fatores de Transcrição NFATC/metabolismo , RNA/química , RNA/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Sequência de Bases , Linfócitos T CD8-Positivos/metabolismo , Primers do DNA/genética , Células HeLa , Humanos , Células Jurkat , Substâncias Macromoleculares/química , Substâncias Macromoleculares/metabolismo , Camundongos , Camundongos Knockout , Modelos Biológicos , Fosforilação , RNA Longo não Codificante , RNA Interferente Pequeno/genética , RNA não Traduzido/química , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Proteínas Ativadoras de ras GTPase/química , Proteínas Ativadoras de ras GTPase/deficiência , Proteínas Ativadoras de ras GTPase/genética , Proteínas Ativadoras de ras GTPase/metabolismo
13.
Genomics ; 102(4): 355-62, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23657135

RESUMO

The Nuclear Factor of Activated T cells (NFAT) plays an important role in innate and adaptive immunity, but no NFAT genes have yet been identified in amphioxus species. Here we identified and characterized an NFAT-like gene from Branchiostoma belcheri, and also studied extensively the evolutionary history of NFAT family genes. We found that the amphioxus genome contains an AmphiNFAT gene encoding an NFAT homolog. The AmphiNFAT gene was found to be involved in the innate immune response to LPS stimulation in B. belcheri and was ubiquitously and differentially expressed in all investigated tissues. The NFAT family genes were present in a common ancestor with cnidaria, and NFAT1-4 paralogs were lost early in Branchiostoma and Strongylocentrotus genomes. We discovered that NFAT family genes underwent strong purifying selection. Taken together, our findings provide an insight into the innate immune response of amphioxus and the evolution of the NFAT gene family.


Assuntos
Imunidade Inata/genética , Anfioxos/genética , Anfioxos/imunologia , Fatores de Transcrição NFATC/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , Evolução Molecular , Humanos , Lipopolissacarídeos/imunologia , Dados de Sequência Molecular , Família Multigênica , Fatores de Transcrição NFATC/química , Fatores de Transcrição NFATC/metabolismo , Filogenia , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico , Fatores de Transcrição/genética
14.
J Biol Chem ; 287(51): 42739-50, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23105117

RESUMO

Human VRK2 (vaccinia-related kinase 2), a kinase that emerged late in evolution, affects different signaling pathways, and some carcinomas express high levels of VRK2. Invasion by cancer cells has been associated with NFAT1 (nuclear factor of activated T cells) activation and expression of the COX-2 (cyclooxygenase 2) gene. We hypothesized that VRK proteins might play a regulatory role in NFAT1 activation in tumor cells. We demonstrate that VRK2 directly interacts and phosphorylates NFAT1 in Ser-32 within its N-terminal transactivation domain. VRK2 increases NFAT1-dependent transcription by phosphorylation, and this effect is only detected following cell phorbol 12-myristate 13-acetate and ionomycin stimulation and calcineurin activation. This NFAT1 hyperactivation by VRK2 increases COX-2 gene expression through the proximal NFAT1 binding site in the COX-2 gene promoter. Furthermore, VRK2A down-regulation by RNA interference reduces COX-2 expression at transcriptional and protein levels. Therefore, VRK2 down-regulation reduces cell invasion by tumor cells, such as MDA-MB-231 and MDA-MB-435, upon stimulation with phorbol 12-myristate 13-acetate plus ionomycin. These findings identify the first reported target and function of human VRK2 as an active kinase playing a role in regulation of cancer cell invasion through the NFAT pathway and COX-2 expression.


Assuntos
Ciclo-Oxigenase 2/genética , Fatores de Transcrição NFATC/metabolismo , Neoplasias/enzimologia , Neoplasias/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Ciclo-Oxigenase 2/metabolismo , Proteínas de Ligação a DNA , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ionomicina/farmacologia , Isoenzimas/metabolismo , Camundongos , Modelos Biológicos , Proteínas Musculares/metabolismo , Fatores de Transcrição NFATC/química , Fatores de Transcrição NFATC/genética , Invasividade Neoplásica , Fosforilação/efeitos dos fármacos , Fosfosserina/metabolismo , Ligação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Elementos de Resposta/genética , Acetato de Tetradecanoilforbol/farmacologia , Transcrição Gênica/efeitos dos fármacos
15.
Nature ; 441(7093): 646-50, 2006 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-16511445

RESUMO

Precise regulation of the NFAT (nuclear factor of activated T cells) family of transcription factors (NFAT1-4) is essential for vertebrate development and function. In resting cells, NFAT proteins are heavily phosphorylated and reside in the cytoplasm; in cells exposed to stimuli that raise intracellular free Ca2+ levels, they are dephosphorylated by the calmodulin-dependent phosphatase calcineurin and translocate to the nucleus. NFAT dephosphorylation by calcineurin is countered by distinct NFAT kinases, among them casein kinase 1 (CK1) and glycogen synthase kinase 3 (GSK3). Here we have used a genome-wide RNA interference (RNAi) screen in Drosophila to identify additional regulators of the signalling pathway leading from Ca2+-calcineurin to NFAT. This screen was successful because the pathways regulating NFAT subcellular localization (Ca2+ influx, Ca2+-calmodulin-calcineurin signalling and NFAT kinases) are conserved across species, even though Ca2+-regulated NFAT proteins are not themselves represented in invertebrates. Using the screen, we have identified DYRKs (dual-specificity tyrosine-phosphorylation regulated kinases) as novel regulators of NFAT. DYRK1A and DYRK2 counter calcineurin-mediated dephosphorylation of NFAT1 by directly phosphorylating the conserved serine-proline repeat 3 (SP-3) motif of the NFAT regulatory domain, thus priming further phosphorylation of the SP-2 and serine-rich region 1 (SRR-1) motifs by GSK3 and CK1, respectively. Thus, genetic screening in Drosophila can be successfully applied to cross evolutionary boundaries and identify new regulators of a transcription factor that is expressed only in vertebrates.


Assuntos
Drosophila/enzimologia , Drosophila/genética , Genoma de Inseto/genética , Fatores de Transcrição NFATC/metabolismo , Proteínas Serina-Treonina Quinases/classificação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/classificação , Proteínas Tirosina Quinases/metabolismo , Interferência de RNA , Animais , Caseína Quinase I/metabolismo , Drosophila/metabolismo , Genômica , Quinase 3 da Glicogênio Sintase/metabolismo , Interleucina-2/genética , Fatores de Transcrição NFATC/química , Fosforilação , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína , Proteínas Tirosina Quinases/deficiência , Proteínas Tirosina Quinases/genética , Transcrição Gênica/genética , Quinases Dyrk
16.
Proc Natl Acad Sci U S A ; 106(17): 7034-9, 2009 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-19351896

RESUMO

NFAT transcription factors are highly phosphorylated proteins residing in the cytoplasm of resting cells. Upon dephosphorylation by the phosphatase calcineurin, NFAT proteins translocate to the nucleus, where they orchestrate developmental and activation programs in diverse cell types. NFAT is rephosphorylated and inactivated through the concerted action of at least 3 different kinases: CK1, GSK-3, and DYRK. The major docking sites for calcineurin and CK1 are strongly conserved throughout vertebrate evolution, and conversion of either the calcineurin docking site to a high-affinity version or the CK1 docking site to a low-affinity version results in generation of hyperactivable NFAT proteins that are still fully responsive to stimulation. In this study, we generated transgenic mice expressing hyperactivable versions of NFAT1 from the ROSA26 locus. We show that hyperactivable NFAT increases the expression of NFAT-dependent cytokines by differentiated T cells as expected, but exerts unexpected signal-dependent effects during T cell differentiation in the thymus, and is progressively deleterious for the development of B cells from hematopoietic stem cells. Moreover, progressively hyperactivable versions of NFAT1 are increasingly deleterious for embryonic development, particularly when normal embryos are also present in utero. Forced expression of hyperactivable NFAT1 in the developing embryo leads to mosaic expression in many tissues, and the hyperactivable proteins are barely tolerated in organs such as brain, and cardiac and skeletal muscle. Our results highlight the need for balanced Ca/NFAT signaling in hematopoietic stem cells and progenitor cells of the developing embryo, and emphasize the evolutionary importance of kinase and phosphatase docking sites in preventing inappropriate activation of NFAT.


Assuntos
Desenvolvimento Embrionário , Hematopoese , Fatores de Transcrição NFATC/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Animais , Calcineurina/metabolismo , Caseína Quinase I/metabolismo , Diferenciação Celular/imunologia , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Mutação/genética , Fatores de Transcrição NFATC/química , Fatores de Transcrição NFATC/genética , Especificidade de Órgãos , Fenótipo , Ligação Proteica , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Linfócitos T/citologia , Linfócitos T/imunologia , Timo/citologia , Timo/imunologia , Timo/metabolismo , Fatores de Tempo
17.
J Biomol NMR ; 51(4): 497-504, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22038648

RESUMO

Experiments detecting low gyromagnetic nuclei have recently been proposed to utilize the relatively slow relaxation properties of these nuclei in comparison to (1)H. Here we present a new type of (15)N direct-detection experiment. Like the previously proposed CaN experiment (Takeuchi et al. in J Biomol NMR 47:271-282, 2010), the hCaN experiment described here sequentially connects amide (15)N resonances, but utilizes the initial high polarization and the faster recovery of the (1)H nucleus to shorten the recycling delay. This allows recording 2D (15)N-detected NMR experiments on proteins within a few hours, while still obtaining superior resolution for (13)C and (15)N, establishing sequential assignments through prolines, and at conditions where amide protons exchange rapidly. The experiments are demonstrated on various biomolecules, including the small globular protein GB1, the 22 kDa HEAT2 domain of eIF4G, and an unstructured polypeptide fragment of NFAT1, which contains many SerPro sequence repeats.


Assuntos
Isótopos de Nitrogênio , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Fator de Iniciação Eucariótico 4G/química , Humanos , Fatores de Transcrição NFATC/química , Conformação Proteica , Receptores de GABA-B/química
18.
Electrophoresis ; 32(16): 2174-80, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21792994

RESUMO

Nuclear factor of activated T-cells (NFAT) is a transcription factor involved in the development of cardiac and skeletal muscle and the nervous system. NFAT is activated by calcium signal pathway and translocated into the nucleus. The quantification of binding between NFAT and NFAT-specific DNA gives important information about cardiac hypertrophy. We investigated the binding of NFAT3 in nuclear extracts from H9c2 cells to its specific DNA by capillary electrophoretic mobility shift assay. The binding reaction time required for stable formation of the DNA-NFAT3 complex was 3 h and the separation of the complex and free DNA was achieved within 10 min by CE. The formation of NFAT3-DNA complex was confirmed by the competitive reaction. Comparison of the ratios of complex/free DNA peak area for 1 µM endothelin-1 (ET-1)-treated cells and control cells showed the NFAT3 translocation into the nucleus promoted by ET-1. The binding constant between NFAT3 and DNA was estimated to be 7.7×10(9) M(-1) at 4°C.


Assuntos
DNA/metabolismo , Eletroforese Capilar/métodos , Ensaio de Desvio de Mobilidade Eletroforética/métodos , Fatores de Transcrição NFATC/metabolismo , Animais , Western Blotting , Linhagem Celular , DNA/análise , DNA/química , Endotelina-1/química , Endotelina-1/metabolismo , Miócitos Cardíacos/química , Miócitos Cardíacos/metabolismo , Fatores de Transcrição NFATC/análise , Fatores de Transcrição NFATC/química , Ligação Proteica , Ratos
19.
Proc Natl Acad Sci U S A ; 105(50): 19637-42, 2008 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-19060202

RESUMO

The transcription factor NFATp integrates multiple signal transduction pathways through coordinate binding with basic-region leucine zipper (bZIP) proteins and other transcription factors. The NFATp monomer, even in the absence of its activation domains, recruits bZIP proteins to canonical NFAT-bZIP composite DNA elements. By contrast, the NFATp dimer and its bZIP partner bind noncooperatively to the NFAT-bZIP element of the tumor necrosis factor (TNF) gene promoter. This observation raises the possibility that the function of the activation domains of NFATp is dimer-specific. Here, we determine the consensus DNA binding site of the NFATp dimer, describe monomer- and dimer-specific NFATp-DNA contact patterns, and demonstrate that NFATp dimerization and dimer-specific activation subdomains are required for transcriptional activation from the TNF NFAT-bZIP element. We also show that these NFATp subdomains interact with the coactivator CBP (CREB-binding protein), which is required for NFATp-dependent TNF gene transcription. Thus, the context-specific function of the activation domains of NFAT can be potentiated by DNA-directed dimerization.


Assuntos
Fatores de Transcrição NFATC/metabolismo , Sequência de Bases , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteína de Ligação a CREB/metabolismo , Sequência Consenso , DNA/metabolismo , Dimerização , Ensaio de Desvio de Mobilidade Eletroforética , Fatores de Transcrição NFATC/química , Fatores de Transcrição NFATC/genética , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , Transcrição Gênica , Fator de Necrose Tumoral alfa/genética
20.
Mol Genet Genomic Med ; 9(9): e1771, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34363434

RESUMO

BACKGROUND: Cardiac valvulogenesis is a highly conserved process among vertebrates and cause unidirectional flow of blood in the heart. It was precisely regulated by signal pathways such as VEGF, NOTCH, and WNT and transcriptional factors such as TWIST1, TBX20, NFATC1, and SOX9. Tricuspid atresia refers to morphological deficiency of the valve and confined right atrioventricular traffic due to tricuspid maldevelopment, and is one of the most common types of congenital valve defects. METHODS: We recruited a healthy couple with two fetuses aborted due to tricuspid atresia and identified related gene mutations using whole-exome sequencing. We then discussed the pathogenic significance of this mutation by bioinformatic and functional analyses. RESULTS: PROVEAN, PolyPhen, MutationTaster, and HOPE indicated the mutation could change the protein function and cause disease; Western blotting showed the expression of NFATC1 c.964G>A mutation was lower than the wild type. What's more, dual-luciferase reporter assay showed the transcriptional activity of NFATC1 was impact by mutation and the expression of downstream DEGS1 was influenced. CONCLUSION: Taken together, the c.964G>A mutation might be pathological and related to the occurrence of disease. Our research tended to deepen the understanding of etiology of tricuspid atresia and gene function of NFATC1, and provide some references or suggestions for genetic diagnosis of tricuspid atresia.


Assuntos
Fatores de Transcrição NFATC/genética , Atresia Tricúspide/genética , Feto Abortado/anormalidades , Adulto , Animais , Linhagem Celular , Células Cultivadas , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Feminino , Humanos , Masculino , Camundongos , Mutação , Fatores de Transcrição NFATC/química , Fatores de Transcrição NFATC/metabolismo , Linhagem , Domínios Proteicos , Atresia Tricúspide/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA