Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.025
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 175(1): 146-158.e15, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30100182

RESUMO

Pathogen virulence exists on a continuum. The strategies that drive symptomatic or asymptomatic infections remain largely unknown. We took advantage of the concept of lethal dose 50 (LD50) to ask which component of individual non-genetic variation between hosts defines whether they survive or succumb to infection. Using the enteric pathogen Citrobacter, we found no difference in pathogen burdens between healthy and symptomatic populations. Iron metabolism-related genes were induced in asymptomatic hosts compared to symptomatic or naive mice. Dietary iron conferred complete protection without influencing pathogen burdens, even at 1000× the lethal dose of Citrobacter. Dietary iron induced insulin resistance, increasing glucose levels in the intestine that were necessary and sufficient to suppress pathogen virulence. A short course of dietary iron drove the selection of attenuated Citrobacter strains that can transmit and asymptomatically colonize naive hosts, demonstrating that environmental factors and cooperative metabolic strategies can drive conversion of pathogens toward commensalism.


Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Ferro/metabolismo , Virulência/fisiologia , Animais , Infecções Assintomáticas , Citrobacter rodentium/metabolismo , Citrobacter rodentium/patogenicidade , Colite/tratamento farmacológico , Colite/metabolismo , Colo/microbiologia , Suplementos Nutricionais , Infecções por Enterobacteriaceae/tratamento farmacológico , Feminino , Resistência à Insulina/fisiologia , Intestino Delgado/microbiologia , Ferro/farmacologia , Dose Letal Mediana , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos DBA
2.
J Biol Chem ; 299(9): 105093, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37507018

RESUMO

Epitranscriptomics studies the mechanisms of acquired RNA modifications. The epitranscriptome is dynamically regulated by specific enzymatic reactions, and the proper execution of these enzymatic RNA modifications regulates a variety of physiological RNA functions. However, the lack of experimental tools, such as antibodies for RNA modification, limits the development of epitranscriptomic research. Furthermore, the regulatory enzymes of many RNA modifications have not yet been identified. Herein, we aimed to identify new molecular mechanisms involved in RNA modification by focusing on the AlkB homolog (ALKBH) family molecules, a family of RNA demethylases. We demonstrated that ALKBH4 interacts with small RNA, regulating the formation and metabolism of the (R)-5-carboxyhydroxymethyl uridine methyl ester. We also found that the reaction of ALKBH4 with small RNA enhances protein translation efficiency in an in vitro assay system. These findings indicate that ALKBH4 is involved in the regulation of uridine modification and expand on the role of tRNA-mediated translation control through ALKBH4.


Assuntos
Homólogo AlkB 4 da Lisina Desmetilase , Biossíntese de Proteínas , Uridina , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , Uridina/genética , Uridina/metabolismo , Células HEK293 , Homólogo AlkB 4 da Lisina Desmetilase/metabolismo , Biossíntese de Proteínas/genética , Ácidos Cetoglutáricos/farmacologia , Ferro/farmacologia , Humanos
3.
J Nutr ; 154(4): 1440-1448, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417549

RESUMO

BACKGROUND: Although there is growing evidence on the role of preconception nutrition for birth outcomes, limited evidence exists for its effects on maternal health. OBJECTIVES: This study evaluates the impact of preconception micronutrient supplementation on maternal BMI (kg/m2) and body composition at 6 to 7 y postpartum (PP). METHODS: We followed females who participated in a randomized controlled trial of preconception supplementation in Vietnam and delivered live offspring (n = 1599). Females received weekly supplements containing either 2800 µg folic acid (FA) only, 60 mg iron and 2800 µg FA (IFA), or multiple micronutrients (MMs) (15 micronutrients including IFA) from baseline until conception followed by daily prenatal IFA supplements until delivery. Height, weight, mid-upper arm circumference, triceps skinfold, and waist-hip circumference were measured at recruitment and at 1, 2, and 6 to 7 y PP. Body fat was assessed using bioelectric impedance at 6 to 7 y PP (n = 867). Group comparisons were made using analysis of variance or chi-square tests and general linear models for adjusted models. RESULTS: At 6 to 7 y PP, we found significant differences (P < 0.05) by treatment group for mean percent fat (MM: 29.2%; IFA: 27.6%; FA: 27.8%), absolute fat mass (MM: 15.1 kg; IFA: 14.0 kg; FA: 14.3 kg), and prevalence of underweight based on BMI < 18.5 (MM: 5.8%; IFA: 10.3%; FA: 14.3%). Mean BMI and triceps skinfold thickness were higher in the MM group, but these differences were not statistically significant; the differences in absolute fat mass were also attenuated after controlling for body weight. No differences were observed for fat-free mass, prevalence of overweight (BMI >23), or other anthropometric measurements. CONCLUSIONS: Preconception MM supplementation was associated with lower prevalence of underweight and higher percent fat when compared with IFA and/or FA only. Preconception micronutrient interventions may have long-term effects on maternal health and merit further examination. This trial was registered at clinicaltrials.gov as NCT01665378.


Assuntos
Ferro , Magreza , Gravidez , Feminino , Humanos , Ferro/farmacologia , Vietnã , Índice de Massa Corporal , Ácido Fólico , Suplementos Nutricionais , Período Pós-Parto , Micronutrientes , Composição Corporal
4.
J Nutr ; 154(4): 1153-1164, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38246358

RESUMO

BACKGROUND: Tissue repair and regeneration in the gastrointestinal system are crucial for maintaining homeostasis, with the process relying on intricate cellular interactions and affected by micro- and macro-nutrients. Iron, essential for various biological functions, plays a dual role in tissue healing by potentially causing oxidative damage and participating in anti-inflammatory mechanisms, underscoring its complex relationship with inflammation and tissue repair. OBJECTIVE: The study aimed to elucidate the role of low dietary iron in gastrointestinal tissue repair. METHODS: We utilized quantitative iron measurements to assess iron levels in inflamed regions of patients with ulcerative colitis and Crohn's disease. In addition, 3 mouse models of gastrointestinal injury/repair (dextran sulfate sodium-induced colitis, radiation injury, and wound biopsy) were used to assess the effects of low dietary iron on tissue repair. RESULTS: We found that levels of iron in inflamed regions of both patients with ulcerative colitis and Crohn's disease are elevated. Similarly, during gastrointestinal repair, iron levels were found to be heightened, specifically in intestinal epithelial cells across the 3 injury/repair models. Mice on a low-iron diet showed compromised tissue repair with reduced proliferation. In standard diet, epithelial cells and the stem cell compartment maintain adequate iron stores. However, during a period of iron deficiency, epithelial cells exhaust their iron reserves, whereas the stem cell compartments maintain their iron pools. During injury, when the stem compartment is disrupted, low iron levels impair proliferation and compromise repair mechanisms. CONCLUSIONS: Low dietary iron impairs intestinal repair through compromising the ability of epithelial cells to aid in intestinal proliferation.


Assuntos
Colite Ulcerativa , Colite , Doença de Crohn , Humanos , Camundongos , Animais , Doença de Crohn/patologia , Ferro da Dieta/efeitos adversos , Colite/induzido quimicamente , Cicatrização , Modelos Animais de Doenças , Ferro/farmacologia , Mucosa Intestinal , Sulfato de Dextrana/farmacologia , Camundongos Endogâmicos C57BL
5.
J Nutr ; 154(5): 1582-1587, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38521191

RESUMO

BACKGROUND: Iron deficiency is the most common nutritional deficiency worldwide, particularly for young children and females of reproductive age. Although oral iron supplements are routinely recommended and generally considered safe, iron supplementation has been shown to alter the fecal microbiota in low-income countries. Little is known about the effect of iron supplementation on the fecal microbiota in high-income settings. OBJECTIVES: To assess the effect of oral iron supplementation compared with placebo on the gut microbiome in nonpregnant females of reproductive age in a high-income country. METHODS: A 21-d prospective parallel design double-blind, randomized control trial conducted in South Australia, Australia. Females (18-45 y) were randomly assigned to either iron (65.7 mg ferrous fumarate) or placebo. Fecal samples were collected prior to commencing supplements and after 21 d of supplementation. The primary outcome was microbiota ß-diversity (paired-sample weighted unique fraction metric dissimilarity) between treatment and placebo groups after 21 d of supplementation. Exploratory outcomes included changes in the relative abundance of bacterial taxa. RESULTS: Of 82 females randomly assigned, 80 completed the trial. There was no significant difference between the groups for weighted unique fraction metric dissimilarity (mean difference: 0.003; 95% confidence interval: -0.007, 0.014; P = 0.52) or relative abundance of common bacterial taxa or Escherichia-Shigella (q > 0.05). CONCLUSIONS: Iron supplementation did not affect the microbiome of nonpregnant females of reproductive age in Australia. This trial was registered at clinicaltrials.gov as NCT05033483.


Assuntos
Suplementos Nutricionais , Fezes , Microbioma Gastrointestinal , Humanos , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Adulto , Método Duplo-Cego , Adulto Jovem , Fezes/microbiologia , Adolescente , Ferro/administração & dosagem , Ferro/farmacologia , Pessoa de Meia-Idade , Austrália do Sul , Anemia Ferropriva , Estudos Prospectivos
6.
Langmuir ; 40(28): 14346-14354, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38953474

RESUMO

The issue of bacterial infectious diseases remains a significant concern worldwide, particularly due to the misuse of antibiotics, which has caused the emergence of antibiotic-resistant strains. Fortunately, the rapid development of nanomaterials has propelled significant progress in antimicrobial therapy, offering promising solutions. Among them, the utilization of nanoenzyme-based chemodynamic therapy (CDT) has become a highly hopeful approach to combating bacterial infectious diseases. Nevertheless, the application of CDT appears to be facing certain constraints for its low efficiency in the Fenton reaction at the infected site. In this study, we have successfully synthesized a versatile nanozyme, which was a composite of molybdenum sulfide (MoS2) and iron sulfide (FeS2), through the hydrothermal method. The results showed that iron/molybdenum sulfide nanozymes (Fe/Mo SNZs) with desirable peroxidase (POD) mimic activity can generate cytotoxic reactive oxygen species (ROS) by successfully triggering the Fenton reaction. The presence of MoS2 significantly accelerates the conversion of Fe2+/Fe3+ through a cocatalytic reaction that involves the participation of redox pairs of Mo4+/Mo6+, thereby enhancing the efficiency of CDT. Additionally, based on the excellent photothermal performance of Fe/Mo SNZs, a near-infrared (NIR) laser was used to induce localized temperature elevation for photothermal therapy (PTT) and enhance the POD-like nanoenzymatic activity. Notably, both in vitro and in vivo results demonstrated that Fe/Mo SNZs with good broad-spectrum antibacterial properties can help eradicate Gram-negative bacteria like Escherichia coli and Gram-positive bacteria like Staphylococcus aureus. The most exciting thing is that the synergistic PTT/CDT exhibited astonishing antibacterial ability and can achieve complete elimination of bacteria, which promoted wound healing after infection. Overall, this study presents a synergistic PTT/CDT strategy to address antibiotic resistance, providing avenues and directions for enhancing the efficacy of wound healing treatments and offering promising prospects for further clinical use in the near future.


Assuntos
Antibacterianos , Dissulfetos , Ferro , Molibdênio , Sulfetos , Cicatrização , Molibdênio/química , Molibdênio/farmacologia , Cicatrização/efeitos dos fármacos , Sulfetos/química , Sulfetos/farmacologia , Animais , Dissulfetos/química , Dissulfetos/farmacologia , Ferro/química , Ferro/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Catálise , Staphylococcus aureus/efeitos dos fármacos , Camundongos , Escherichia coli/efeitos dos fármacos , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Nanoestruturas/química , Fototerapia , Testes de Sensibilidade Microbiana , Terapia Fototérmica , Compostos Ferrosos
7.
Inorg Chem ; 63(23): 10691-10704, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38805682

RESUMO

As the main challenge of dental healthcare, oral infectious diseases are highly associated with the colonization of pathogenic microbes. However, current antibacterial treatments in the field of stomatology still lack a facile, safe, and universal approach. Herein, we report the controllable synthesis of copper aluminum-layered double hydroxides (CuAl-LDHs) with high Fenton-like catalytic activity, which can be utilized in the treatment of oral infectious diseases with negligible side effects. Our strategy can efficiently avoid the unwanted doping of other divalent metal ions in the synthesis of Cu-contained LDHs and result in the formation of binary CuAl-LDHs with high crystallinity and purity. Evidenced by experimental and theoretical results, CuAl-LDHs exhibit excellent catalytic ability toward the ·OH generation in the presence of H2O2 and hold strong affinity toward bacteria, endowing them with great catalytic sterilization against both Gram-positive and Gram-negative bacteria. As expected, these CuAl-LDHs provide outstanding treatments for mucosal infection and periodontitis by promoting wound healing and remodeling of the periodontal microenvironment. Moreover, toxicity investigation demonstrates the overall safety. Accordingly, the current study not only provides a convenient and economic strategy for treating oral infectious diseases but also extends the development of novel LDH-based Fenton or Fenton-like antibacterial reagents for further biomedical applications.


Assuntos
Alumínio , Antibacterianos , Cobre , Peróxido de Hidrogênio , Cobre/química , Cobre/farmacologia , Catálise , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/farmacologia , Alumínio/química , Alumínio/farmacologia , Hidróxidos/química , Hidróxidos/farmacologia , Testes de Sensibilidade Microbiana , Animais , Ferro/química , Ferro/farmacologia , Saúde Bucal , Camundongos , Humanos , Bactérias Gram-Negativas/efeitos dos fármacos
8.
J Biochem Mol Toxicol ; 38(4): e23683, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38483099

RESUMO

Cellular senescence and iron accumulation were separately observed in diabetic nephropathy (DN). Limited evidence supports that iron was significantly accumulated in senescent cells. We aimed to explore whether iron is involved in the pathogenesis role of senescence in DN. Renal cells were treated with high glucose (HG, 35 mM) for 10 or 15 days, and DN mice were induced by high-fat diet and streptozotocin. Gene ontology enrichment, gene set enrichment analysis analysis, ß-galactosidase staining, 5-ethynyl-2-deoxyuridine staining, and western blot depicted the upregulated senescence pathway in vitro and in vivo of DN. Lactate dehydrogenase (LDH) release was increased by HG and reversed by p16/p21 knockdown, and the supernatant of HG-treated cells caused increased LDH release from normal cells. Iron metabolism-related protein expression was disordered after HG exposure concomitant with senescence. Ferric ammonium citrate (50 µM) upregulated gamma-H2A.X variant histone and increased the senescence markers in HG-treated cells. The treatment of deferoxamine (0.5 µM) had the opposite effect. Compared to the non-DN individual, increased ferritin and senescence markers were verified in DN mice and patients, and the co-localization of ferritin and senescence markers was observed by immunofluorescence. These results suggested that accumulated iron was correlated with aggravated DNA damage and accelerated senescence, and revealed the role of iron in the cellular senescence of diseases.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Sobrecarga de Ferro , Humanos , Camundongos , Animais , Nefropatias Diabéticas/metabolismo , Rim/metabolismo , Ferro/farmacologia , Ferritinas , Glucose/farmacologia , Senescência Celular
9.
Biometals ; 37(2): 337-355, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37904075

RESUMO

Fe was selected as an alloying element for the first time to prepare a new antibacterial titanium alloy based on micro-area potential difference (MAPD) antibacterial mechanism. The microstructure, the corrosion resistance, the mechanical properties, the antibacterial properties and the cell biocompatibility have been investigated in detail by optical microscopy, scanning electron microscopy, electrochemical testing, mechanical property test, plate count method and cell toxicity measurement. It was demonstrated that heat treatment had a significant on the compressive mechanical properties and the antibacterial properties. Ti-xFe (x = 3,5 and 9) alloys after 850 °C/3 h + 550 °C/62 h heat treatment exhibited strong antimicrobial properties with an antibacterial rate of more than 90% due to the MAPD caused by the redistribution of Fe element during the aging process. In addition, the Fe content and the heat treatment process had a significant influence on the mechanical properties of Ti-xFe alloy but had nearly no effect on the corrosion resistance. All Ti-xFe alloys showed non-toxicity to the MC3T3 cell line in comparison with cp-Ti, indicating that the microzone potential difference had no adverse effect on the corrosion resistance, cell proliferation, adhesion, and spreading. Strong antibacterial properties, good cell compatibility and good corrosion resistance demonstrated that Ti-xFe alloy might be a candidate titanium alloy for medical applications.


Assuntos
Ligas , Titânio , Titânio/farmacologia , Titânio/química , Ligas/farmacologia , Ligas/química , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Ferro/farmacologia , Corrosão , Teste de Materiais
10.
Part Fibre Toxicol ; 21(1): 17, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561847

RESUMO

BACKGROUND: Amorphous silica nanoparticles (SiNPs) have been gradually proven to threaten cardiac health, but pathogenesis has not been fully elucidated. Ferroptosis is a newly defined form of programmed cell death that is implicated in myocardial diseases. Nevertheless, its role in the adverse cardiac effects of SiNPs has not been described. RESULTS: We first reported the induction of cardiomyocyte ferroptosis by SiNPs in both in vivo and in vitro. The sub-chronic exposure to SiNPs through intratracheal instillation aroused myocardial injury, characterized by significant inflammatory infiltration and collagen hyperplasia, accompanied by elevated CK-MB and cTnT activities in serum. Meanwhile, the activation of myocardial ferroptosis by SiNPs was certified by the extensive iron overload, declined FTH1 and FTL, and lipid peroxidation. The correlation analysis among detected indexes hinted ferroptosis was responsible for the SiNPs-aroused myocardial injury. Further, in vitro tests, SiNPs triggered iron overload and lipid peroxidation in cardiomyocytes. Concomitantly, altered expressions of TfR, DMT1, FTH1, and FTL indicated dysregulated iron metabolism of cardiomyocytes upon SiNP stimuli. Also, shrinking mitochondria with ridge fracture and ruptured outer membrane were noticed. To note, the ferroptosis inhibitor Ferrostatin-1 could effectively alleviate SiNPs-induced iron overload, lipid peroxidation, and myocardial cytotoxicity. More importantly, the mechanistic investigations revealed miR-125b-2-3p-targeted HO-1 as a key player in the induction of ferroptosis by SiNPs, probably through regulating the intracellular iron metabolism to mediate iron overload and ensuing lipid peroxidation. CONCLUSIONS: Our findings firstly underscored the fact that ferroptosis mediated by miR-125b-2-3p/HO-1 signaling was a contributor to SiNPs-induced myocardial injury, which could be of importance to elucidate the toxicity and provide new insights into the future safety applications of SiNPs-related nano products.


Assuntos
Ferroptose , Sobrecarga de Ferro , MicroRNAs , Nanopartículas , Humanos , Miócitos Cardíacos , Dióxido de Silício/metabolismo , Sobrecarga de Ferro/metabolismo , Sobrecarga de Ferro/patologia , Ferro/metabolismo , Ferro/farmacologia , MicroRNAs/metabolismo , Nanopartículas/toxicidade
11.
Cell Biochem Funct ; 42(2): e3958, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38396357

RESUMO

Iron accumulation in the brain causes oxidative stress, blood-brain barrier (BBB) breakdown, and neurodegeneration. We examined the preventive effects of acetylated oligopeptides (AOP) from whey protein on iron-induced hippocampal damage compared to N-acetyl cysteine (NAC). This 5-week study used 40 male albino rats. At the start, all rats received 150 mg/kg/day of oral NAC for a week. The 40 animals were then randomly divided into four groups: Group I (control) received a normal diet; Group II (iron overload) received 60 mg/kg/day intraperitoneal iron dextran 5 days a week for 4 weeks; Group III (NAC group) received 150 mg/kg/day NAC and iron dextran; and Group IV (AOP group) received 150 mg/kg/day AOP and iron dextran. Enzyme-linked immunosorbent assay, spectrophotometry, and qRT-PCR were used to measure MMP-9, tissue inhibitor metalloproteinase-1 (TIMP-1), MDA, reduced glutathione (GSH) levels, and nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) gene expression. Histopathological and immunohistochemical detection of nestin, claudin, caspase, and GFAP was also done. MMP-9, TIMP-1, MDA, caspase, and GFAP rose in the iron overload group, while GSH, Nrf2, HO-1, nestin, and claudin decreased. The NAC and AOP administrations improved iron overload-induced biochemical and histological alterations. We found that AOP and NAC can protect the brain hippocampus from iron overload, improve BBB disruption, and provide neuroprotection with mostly no significant difference from healthy controls.


Assuntos
Acetilcisteína , Sobrecarga de Ferro , Oligopeptídeos , Animais , Masculino , Ratos , Acetilcisteína/farmacologia , Acetilcisteína/metabolismo , Caspases/metabolismo , Claudinas/genética , Giro Denteado/metabolismo , Giro Denteado/patologia , Dextranos/metabolismo , Dextranos/farmacologia , Regulação para Baixo , Glutationa/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Ferro/metabolismo , Ferro/farmacologia , Sobrecarga de Ferro/complicações , Sobrecarga de Ferro/tratamento farmacológico , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/farmacologia , Nestina/genética , Nestina/metabolismo , Nestina/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Inibidor Tecidual de Metaloproteinase-1/genética , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Inibidor Tecidual de Metaloproteinase-1/farmacologia , Regulação para Cima , Oligopeptídeos/farmacologia , Heme Oxigenase-1/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/metabolismo
12.
Echocardiography ; 41(1): e15726, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38078698

RESUMO

BACKGROUND: Iron deficiency correction with ferric carboxymaltose improves symptoms and reduces rehospitalization in patients with reduced left ventricular ejection fraction. The mechanisms underlying these improvements are poorly understood. This study aimed to determine changes in left ventricular contractility after iron treatment as reflected in global longitudinal strain. METHODS: Prospective single-center study including 43 adults with reduced ejection fraction, non-anemic iron deficiency, and functional class II-III heart failure despite optimal medical treatment. Global longitudinal strain through speckle-tracking echocardiography was measured at baseline and 4 weeks after ferric carboxymaltose. RESULTS: A significant improvement in global longitudinal strain was detected (from -12.3% ± 4.0% at baseline to -15.6% ± 4.1%, p < .001); ferritin and transferrin saturation index had increased, but ejection fraction presented no significant changes (baseline 35.7% ± 4.6%, follow-up 37.2% ± 6.6%, p = .073). CONCLUSIONS: In patients with heart failure and reduced ejection fraction, the correction of iron deficiency with ferric carboxymaltose is associated with an early improvement in global longitudinal strain, possibly suggesting a direct effect of iron correction on myocardial contractility.


Assuntos
Anemia Ferropriva , Insuficiência Cardíaca , Deficiências de Ferro , Maltose/análogos & derivados , Disfunção Ventricular Esquerda , Adulto , Humanos , Volume Sistólico , Estudos Prospectivos , Deformação Longitudinal Global , Função Ventricular Esquerda , Compostos Férricos/uso terapêutico , Compostos Férricos/farmacologia , Ferro/farmacologia , Disfunção Ventricular Esquerda/complicações , Disfunção Ventricular Esquerda/diagnóstico por imagem , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/diagnóstico por imagem , Anemia Ferropriva/complicações , Anemia Ferropriva/tratamento farmacológico
13.
Nanomedicine ; 55: 102721, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38007065

RESUMO

Integrin beta-3 is a cell adhesion molecule that mediate cell-to-cell and cell-to-extracellular matrix communication. The major goal of this study was to explore melanoma cells (B16F10) based upon specific direct targeting of the ß3 subunit (CD61) in the integrin αvß3 receptor using carbon-encapsulated iron nanoparticles decorated with monoclonal antibodies (Fe@C-CONH-anti-CD61 and Fe@C-(CH2)2-CONH-anti-CD61). Both melanoma cells treated with nanoparticles as well as C57BL/6 mice bearing syngeneic B16-F10 tumors intravenously injected with nanoparticles were tested in preclinical MRI studies. The as-synthesized carbon-encapsulated iron nanoparticles functionalized with CD61 monoclonal antibodies have been successfully used as a novel targeted contrast agent for MRI-based tracking melanoma cells expressing the ß3 subunit of the integrin αvß3 receptor.


Assuntos
Antineoplásicos , Melanoma , Nanopartículas , Animais , Camundongos , Melanoma/diagnóstico por imagem , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Integrina alfaVbeta3/metabolismo , Anticorpos Monoclonais/farmacologia , Ferro/farmacologia , Camundongos Endogâmicos C57BL , Imageamento por Ressonância Magnética , Adesão Celular , Antineoplásicos/farmacologia , Carbono/uso terapêutico
14.
J Fish Dis ; 47(3): e13902, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38041240

RESUMO

To prevent catfish idiopathic anaemia, diets fortified with iron have been adopted as a regular practice on commercial catfish farms to promote erythropoiesis. However, the effects of prolonged exposure of excess dietary iron on production performance and disease resistance for hybrid catfish (Ictalurus punctatus × I. furcatus) remains unknown. Four experimental diets were supplemented with ferrous monosulphate to provide 0, 500, 1000, and 1500 mg of iron per kg of diet. Groups of 16 hybrid catfish juveniles (~22.4 g) were stocked in each of 20, 110-L aquaria (n = 5), and experimental diets were offered to the fish to apparent satiation for 12 weeks. At the end of the study, production performance, survival, condition indices, as well as protein and iron retention were unaffected by the dietary treatments. Blood haematocrit and the iron concentration in the whole-body presented a linear increase with the increasing the dietary iron. The remaining fish from the feeding trial was challenged with Edwardsiella ictaluri. Mortality was mainly observed for the dietary groups treated with iron supplemented diets. The results for this study suggest that iron supplementation beyond the required levels does affect the blood production, and it may increase their susceptibility to E. ictaluri infection.


Assuntos
Peixes-Gato , Infecções por Enterobacteriaceae , Doenças dos Peixes , Ictaluridae , Animais , Resistência à Doença , Edwardsiella ictaluri , Ferro/farmacologia , Ferro da Dieta , Hematócrito , Doenças dos Peixes/prevenção & controle , Dieta/veterinária , Suplementos Nutricionais , Infecções por Enterobacteriaceae/prevenção & controle , Infecções por Enterobacteriaceae/veterinária
15.
Drug Dev Res ; 85(1): e22129, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37961833

RESUMO

Osteosarcoma (OS) is a primary malignant bone tumor characterized by frequent metastasis, rapid disease progression, and a high rate of mortality. Treatment options for OS have remained largely unchanged for decades, consisting primarily of cytotoxic chemotherapy and surgery, thus necessitating the urgent need for novel therapies. Tropolones are naturally occurring seven-membered non-benzenoid aromatic compounds that possess antiproliferative effects in a wide array of cancer cell types. MO-OH-Nap is an α-substituted tropolone that has activity as an iron chelator. Here, we demonstrate that MO-OH-Nap activates all three arms of the unfolded protein response (UPR) pathway and induces apoptosis in a panel of human OS cell lines. Co-incubation with ferric chloride or ammonium ferrous sulfate completely prevents the induction of apoptotic and UPR markers in MO-OH-Nap-treated OS cells. MO-OH-Nap upregulates transferrin receptor 1 (TFR1) protein levels, as well as TFR1, divalent metal transporter 1 (DMT1), iron-regulatory proteins (IRP1, IRP2), ferroportin (FPN), and zinc transporter 14 (ZIP14) transcript levels, demonstrating the impact of MO-OH-Nap on iron-homeostasis pathways in OS cells. Furthermore, MO-OH-Nap treatment restricts the migration and invasion of OS cells in vitro. Lastly, metabolomic profiling of MO-OH-Nap-treated OS cells revealed distinct changes in purine and pyrimidine metabolism. Collectively, we demonstrate that MO-OH-Nap-induced cytotoxic effects in OS cells are dependent on the tropolone's ability to alter cellular iron availability and that this agent exploits key metabolic pathways. These studies support further evaluation of MO-OH-Nap as a novel treatment for OS.


Assuntos
Osteossarcoma , Tropolona , Humanos , Tropolona/farmacologia , Ferro/metabolismo , Ferro/farmacologia , Apoptose , Linhagem Celular , Osteossarcoma/tratamento farmacológico , Linhagem Celular Tumoral
16.
BMC Med ; 21(1): 167, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37143078

RESUMO

BACKGROUND: Early iron deficiency (ID) is a common risk factor for poorer neurodevelopment, limiting children's potential and contributing to global burden. However, it is unclear how early ID alters the substrate of brain functions supporting high-order cognitive abilities and whether the timing of early ID matters in terms of long-term brain development. This study aimed to examine the effects of ID during fetal or early postnatal periods on brain activities supporting proactive and reactive cognitive control in pre-adolescent children. METHODS: Participants were part of a longitudinal cohort enrolled at birth in southeastern China between December 2008 and November 2011. Between July 2019 and October 2021, 115 children aged 8-11 years were invited to participate in this neuroimaging study. Final analyses included 71 children: 20 with fetal ID, 24 with ID at 9 months (postnatal ID), and 27 iron-sufficient at birth and 9 months. Participants performed a computer-based behavioral task in a Magnetic Resonance Imaging scanner to measure proactive and reactive cognitive control. Outcome measures included accuracy, reaction times, and brain activity. Linear mixed modeling and the 3dlme command in Analysis of Functional NeuroImages (AFNI) were separately used to analyze behavioral performance and neuroimaging data. RESULTS: Faster responses in proactive vs. reactive conditions indicated that all groups could use proactive or reactive cognitive control according to contextual demands. However, the fetal ID group was lower in general accuracy than the other 2 groups. Per the demands of cues and targets, the iron-sufficient group showed greater activation of wide brain regions in proactive vs. reactive conditions. In contrast, such condition differences were reversed in the postnatal ID group. Condition differences in brain activation, shown in postnatal ID and iron-sufficient groups, were not found in the fetal ID group. This group specifically showed greater activation of brain regions in the reward pathway in proactive vs. reactive conditions. CONCLUSIONS: Early ID was associated with altered brain functions supporting proactive and reactive cognitive control in childhood. Alterations differed between fetal and postnatal ID groups. The findings imply that iron supplement alone is insufficient to prevent persisting brain alterations associated with early ID. Intervention strategies in addition to the iron supplement should consider ID timing.


Assuntos
Anemia Ferropriva , Deficiências de Ferro , Recém-Nascido , Gravidez , Feminino , Criança , Adolescente , Humanos , Ferro/farmacologia , Encéfalo/diagnóstico por imagem , Cuidado Pré-Natal , Cognição
17.
Small ; 19(49): e2206688, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37606911

RESUMO

Non-small cell lung cancer (NSCLC) is the most common pathological type of lung cancer , accounting for approximately 85% of lung cancers. For more than 40 years, platinum (Pt)-based drugs are still one of the most widely used anticancer drugs even in the era of precision medicine and immunotherapy. However, the clinical limitations of Pt-based drugs, such as serious side effects and drug resistance, have not been well solved. This study constructs a new albumin-encapsulated Pt(IV) nanodrug (HSA@Pt(IV)) based on the Pt(IV) drug and nanodelivery system. The characterization of nanodrug and biological experiments demonstrate its excellent drug delivery and antitumor effects. The multi-omics analysis of the transcriptome and the ionome reveals that nanodrug can activate ferroptosis by affecting intracellular iron homeostasis in NSCLC. This study provides experimental evidence to suggest the potential of HSA@Pt(IV) as a nanodrug with clinical application.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Ferroptose , Neoplasias Pulmonares , Nanopartículas , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Albuminas , Ferro/farmacologia , Linhagem Celular Tumoral
18.
J Pediatr ; 263: 113721, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37673205

RESUMO

OBJECTIVE: To evaluate the frequency of iron status assessment in pediatric heart failure and the prevalence and adverse effects of absolute iron deficiency in dilated cardiomyopathy-induced heart failure. STUDY DESIGN: We retrospectively reviewed records of children with chronic heart failure at our center between 2010 and 2020. In children with dilated cardiomyopathy, we analyzed baseline cardiac function, hemoglobin level, and subsequent risk of composite adverse events (CAE), including death, heart transplant, ventricular assist device (VAD) placement, and transplant registry listing. Absolute iron deficiency and iron sufficiency were defined as transferrin saturations <20% and ≥30%, respectively; and indeterminant iron status as 20%-29%. RESULTS: Of 799 patients with chronic heart failure, 471 (59%) had no iron-related laboratory measurements. Of 68 children with dilated cardiomyopathy, baseline transferrin saturation, and quantitative left ventricular ejection fraction (LVEF), 33 (49%) and 14 (21%) were iron deficient and sufficient, respectively, and 21 (31%) indeterminant. LVEF was reduced to 23.6 ± 12.1% from 32.9 ± 16.8% in iron deficiency and sufficiency, respectively (P = .04), without a significant difference in hemoglobin. After stratification by New York Heart Association classification, in advanced class IV, hemoglobin was reduced to 10.9 ± 1.3 g/dL vs 12.7 ± 2.0 g/dL in iron deficiency and sufficiency, respectively (P = .01), without a significant difference in LVEF. CONCLUSIONS: In this single-center study, iron deficiency was not monitored in most children with chronic heart failure. In pediatric dilated cardiomyopathy-induced heart failure, absolute iron deficiency was prevalent and associated with clinically consequential and possibly correctable decreases in cardiac function and hemoglobin concentration.


Assuntos
Cardiomiopatia Dilatada , Insuficiência Cardíaca , Deficiências de Ferro , Humanos , Criança , Cardiomiopatia Dilatada/complicações , Cardiomiopatia Dilatada/terapia , Volume Sistólico , Estudos Retrospectivos , Função Ventricular Esquerda , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/terapia , Ferro/farmacologia , Doença Crônica , Hemoglobinas , Transferrinas/farmacologia
19.
BMC Cancer ; 23(1): 179, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36814203

RESUMO

BACKGROUND: This research aimed to investigate the roles of fanconi anemia complementation group D2 (FANCD2) on the regulation of ferroptosis in osteosarcoma progression. METHODS: The function of FANCD2 on cell viability, invasion, migration, and tumor growth were explored. FANCD2 and pathway-related genes were determined by western blot. Ferroptosis-associated markers were determined, including lipid peroxidation, labile iron pool (LIP), ferrous iron (Fe2+), and ferroptosis-related genes. RESULTS: FANCD2 expression was increased in osteosarcoma cells. FANCD2 knockdown reduced cell viability, invasion, and migration of osteosarcoma cells. FANCD2 knockdown regulated ferroptosis-related gene expression, and distinctly increased the levels of LIP, Fe2+, and lipid peroxidation, and these effects were reversed by a ferroptosis inhibitor Fer-1. In addition, JAK2 and STAT3 expression were reduced by silencing of FANCD2, and STAT3 activator (colivelin) distinctly reversed tumor suppressor effects of FANCD2 silencing on osteosarcoma development. CONCLUSION: These findings suggested that FANCD2 silencing could suppress osteosarcoma cell viability, migration, invasion, and tumor growth, and induced ferroptosis by regulating the JAK2/STAT3 axis. These findings may provide novel therapeutic ideas for clinical treatment of osteosarcoma.


Assuntos
Neoplasias Ósseas , Proteína do Grupo de Complementação D2 da Anemia de Fanconi , Ferroptose , Osteossarcoma , Humanos , Neoplasias Ósseas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Ferro/farmacologia , Janus Quinase 2/metabolismo , Osteossarcoma/metabolismo , Fator de Transcrição STAT3/metabolismo
20.
Mutagenesis ; 38(6): 305-314, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-37779442

RESUMO

High intake of red meat and/or dairy products may increase the concentration of iron and calcium in plasma-a risk factor for prostate cancer (PC). Despite our understandings of nutrients and their effects on the genome, studies on the effects of iron and calcium on radiation sensitivity of PC patients are lacking. Therefore, we tested the hypothesis that high plasma levels of iron and calcium could increase baseline or radiation-induced DNA damage in PC patients relative to healthy controls. The present study was performed on 106 PC patients and 132 age-matched healthy individuals. CBMN assay was performed to measure mi-cronuclei (MN), nucleoplasmic bridges (NPBs), and nuclear buds (NBuds) in lymphocytes. Plasma concentrations of iron and calcium were measured using inductively coupled plasma atomic emission spectroscopy. MN, NPBs, and NBuds induced by radiation ex vivo were significantly higher in PC patients with high plasma iron (P = .004, P = .047, and P = .0003, respectively) compared to healthy controls. Radiation-induced MN and NBuds frequency were also significantly higher in PC patients (P = .001 and P = .0001, respectively) with high plasma calcium levels relative to controls. Furthermore, radiation-induced frequency of NBuds was significantly higher in PC patients (P < .0001) with high plasma levels of both iron and calcium relative to controls. Our results support the hypothesis that high iron and calcium levels in plasma increases the sensitivity to radiation-induced DNA damage and point to the need of developing nutrition-based strategies to minimize DNA damage in normal tissue of PC patients undergoing radiotherapy.


Assuntos
Cálcio , Neoplasias da Próstata , Masculino , Humanos , Testes para Micronúcleos/métodos , Ferro/farmacologia , Linfócitos , Dano ao DNA , Neoplasias da Próstata/radioterapia , Tolerância a Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA