Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 841
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(4): 107123, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417796

RESUMO

Thiram is a toxic fungicide extensively used for the management of pathogens in fruits. Although it is known that thiram degrades in plant tissues, the key enzymes involved in this process remain unexplored. In this study, we report that a tau class glutathione S-transferase (GST) from Carica papaya can degrade thiram. This enzyme was easily obtained by heterologous expression in Escherichia coli, showed low promiscuity toward other thiuram disulfides, and catalyzed thiram degradation under physiological reaction conditions. Site-directed mutagenesis indicated that G-site residue S67 shows a key influence for the enzymatic activity toward thiram, while mutation of residue S13, which reduced the GSH oxidase activity, did not significantly affect the thiram-degrading activity. The formation of dimethyl dithiocarbamate, which was subsequently converted into carbon disulfide, and dimethyl dithiocarbamoylsulfenic acid as the thiram degradation products suggested that thiram undergoes an alkaline hydrolysis that involves the rupture of the disulfide bond. Application of the GST selective inhibitor 4-chloro-7-nitro-2,1,3-benzoxadiazole reduced papaya peel thiram-degrading activity by 95%, indicating that this is the main degradation route of thiram in papaya. GST from Carica papaya also catalyzed the degradation of the fungicides chlorothalonil and thiabendazole, with residue S67 showing again a key influence for the enzymatic activity. These results fill an important knowledge gap in understanding the catalytic promiscuity of plant GSTs and reveal new insights into the fate and degradation products of thiram in fruits.


Assuntos
Carica , Glutationa Transferase , Tiram , Carica/enzimologia , Carica/genética , Fungicidas Industriais/metabolismo , Glutationa Transferase/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/química , Mutagênese Sítio-Dirigida , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tiram/metabolismo , Escherichia coli/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
2.
J Biol Inorg Chem ; 29(4): 427-439, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38796812

RESUMO

Chlorothalonil (2,4,5,6-tetrachloroisophthalonitrile; TPN) is an environmentally persistent fungicide that sees heavy use in the USA and is highly toxic to aquatic species and birds, as well as a probable human carcinogen. The chlorothalonil dehalogenase from Pseudomonas sp. CTN-3 (Chd, UniProtKB C9EBR5) degrades TPN to its less toxic 4-OH-TPN analog making it an exciting candidate for the development of a bioremediation process for TPN; however, little is currently known about its catalytic mechanism. Therefore, an active site residue histidine-114 (His114) which forms a hydrogen bond with the Zn(II)-bound water/hydroxide and has been suggested to be the active site acid/base, was substituted by an Ala residue. Surprisingly, ChdH114A exhibited catalytic activity with a kcat value of 1.07 s-1, ~ 5% of wild-type (WT) Chd, and a KM of 32 µM. Thus, His114 is catalytically important but not essential. The electronic and structural aspects of the WT Chd and ChdH114A active sites were examined using UV-Vis and EPR spectroscopy on the catalytically competent Co(II)-substituted enzyme as well as all-atomistic molecular dynamics (MD) simulations. Combination of these data suggest His114 can quickly and reversibly move nearly 2 Å between one conformation that facilitates catalysis and another that enables product egress and active site recharge. In light of experimental and computational data on ChdH114A, Asn216 appears to play a role in substrate binding and preorganization of the transition-state while Asp116 likely facilitates the deprotonation of the Zn(II)-bound water in the absence of His114. Based on these data, an updated proposed catalytic mechanism for Chd is presented.


Assuntos
Histidina , Nitrilas , Pseudomonas , Pseudomonas/enzimologia , Pseudomonas/metabolismo , Nitrilas/metabolismo , Nitrilas/química , Histidina/química , Histidina/metabolismo , Hidrólise , Biocatálise , Domínio Catalítico , Fungicidas Industriais/química , Fungicidas Industriais/metabolismo , Halogenação , Hidrolases/metabolismo , Hidrolases/química
3.
Appl Microbiol Biotechnol ; 108(1): 133, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38229332

RESUMO

Transcription factor Cmr1 (Colletotrichum melanin regulation 1) and its homologs in several plant fungal pathogens are the regulators of the 1,8-dihydroxynaphthalene (DHN)-melanin biosynthesis pathway and have evolved functional diversification in morphology and pathogenicity. The fungal genus Alternaria comprises the group of "black fungi" that are rich in DHN-melanin in the primary cell wall and septa of the conidia. Some Alternaria species cause many economically important plant diseases worldwide. However, the evolution and function of Cmr1 homologs in Alternaria remain poorly understood. Here, we identified a total of forty-two Cmr1 homologs from forty-two Alternaria spp. and all contained one additional diverse fungal specific transcription factor motif. Phylogenetic analysis indicated the division of these homologs into five major clades and three branches. Dated phylogeny showed the A and D clades diverged latest and earliest, respectively. Molecular evolutionary analyses revealed that three amino acid sites of Cmr1 homologs in Alternaria were the targets of positive selection. Asmr1, the homolog of Cmr1 in the potato early blight pathogen, Alternaria solani was amplified and displayed the sequence conservation at the amino acid level in different A. solani isolates. Asmr1 was further confirmed to have the transcriptional activation activity and was upregulated during the early stage of potato infection. Deletion of asmr1 led to the decreased melanin content and pathogenicity, deformed conidial morphology, and responses to cell wall and fungicide stresses in A. solani. These results suggest positive selection and functional divergence have played a role in the evolution of Cmr1 homologs in Alternaria. KEY POINTS: • Cmr1 homologs were under positive selection in Alternaria species • Asmr1 is a functional transcription factor, involved in spore development, melanin biosynthesis, pathogenicity, and responses to cell wall and fungicide stresses in A. solani • Cmr1 might be used as a potential taxonomic marker of the genus Alternaria.


Assuntos
Fungicidas Industriais , Naftóis , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Alternaria/genética , Alternaria/metabolismo , Melaninas/metabolismo , Fungicidas Industriais/metabolismo , Filogenia
4.
Biodegradation ; 35(5): 551-564, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38530488

RESUMO

Triadimefon, a type of triazole systemic fungicide, has been extensively used to control various fungal diseases. However, triadimefon could lead to severe environmental pollution, and even threatens human health. To eliminate triadimefon residues, a triadimefon-degrading bacterial strain TY18 was isolated from a long-term polluted site and was identified as Enterobacter hormaechei. Strain TY18 could grow well in a carbon salt medium with triadimefon as the sole nitrogen source, and could efficiently degrade triadimefon. Under triadimefon stress, a total of 430 differentially expressed genes (DEGs), including 197 up-regulated and 233 down-regulated DEGs, were identified in strain TY18 using transcriptome sequencing (RNA-Seq). Functional classification and enrichment analysis revealed that these DEGs were mainly related to amino acid transport and metabolism, carbohydrate transport and metabolism, small molecule and pyrimidine metabolism. Interestingly, the DEGs encoding monooxygenase and hydrolase activity acting on carbon-nitrogen were highly up-regulated, might be mainly responsible for the metabolism in triadimefon. Our findings in this work suggest that strain E. hormaechei TY18 could efficiently degrade triadimefon for the first time. They provide a great potential to manage triadimefon biodegradation in the environment successfully.


Assuntos
Biodegradação Ambiental , Enterobacter , Fungicidas Industriais , Perfilação da Expressão Gênica , Triazóis , Enterobacter/genética , Enterobacter/metabolismo , Enterobacter/isolamento & purificação , Fungicidas Industriais/farmacologia , Fungicidas Industriais/metabolismo , Triazóis/farmacologia , Transcriptoma
5.
Ecotoxicol Environ Saf ; 270: 115870, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38159340

RESUMO

Chiral pesticides that are still commercialized and incorporated into the environment as racemic mixtures of enantiomers require evaluation of the enantioselectivity of their biological activity and environmental fate processes for a better prediction of their field efficacy and environmental risks. In this work, we successfully separated the enantiomers of the chiral herbicide ethofumesate (ETFM), determined their absolute configuration, and characterized their herbicidal activity as well as their adsorption, degradation, enantiomerization, and leaching in Mediterranean agricultural soils. While the herbicidal activity of R-ethofumesate to the sensitive species Portulaca grandiflora was greater than that of S-ethofumesate, the adsorption, degradation, and leaching of the herbicide showed negligible enantioselectivity and enantiomer interconversion did not occur in soils. The adsorption of both enantiomers showed a positive correlation with the soil organic carbon content (r = 0.856, P = 0.015), and their degradation in soils occurred slowly (DT50 > 60 days) and at similar rates independent of their application as individual enantiomers or as a racemic mixture of enantiomers. The addition of three highly adsorptive materials to a scarcely adsorptive soil increased the adsorption of the enantiomers of ETFM and delayed their degradation without affecting the non-enantioselective character of the processes. As a result of their high adsorption capacity, the materials were highly effective in reducing the leaching of both enantiomers of ETFM through soil columns. The results of this work indicate that the application of single-enantiomer ETFM formulations, based on a higher herbicidal activity or a lower toxicity to non-target organisms of the formulated enantiomer, would reduce considerable exposure risks associated with incorporating into the environment the less favorable enantiomer, as this would show long persistence and high leaching potential in soils similar to its optical isomer.


Assuntos
Benzofuranos , Carvão Vegetal , Fungicidas Industriais , Herbicidas , Mesilatos , Poluentes do Solo , Solo , Estereoisomerismo , Carbono , Fungicidas Industriais/metabolismo , Poluentes do Solo/metabolismo , Alanina/metabolismo , Biodegradação Ambiental
6.
Ecotoxicol Environ Saf ; 270: 115876, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38154155

RESUMO

Early life exposure to endocrine disrupting chemicals (EDCs) has been suggested to adversely affect reproductive health in humans and wildlife. Here, we characterize endocrine and adverse effects on the reproductive system after juvenile exposure to propiconazole (PROP) or imazalil (IMZ), two common azole fungicides with complex endocrine modes of action. Using the frog Xenopus tropicalis, two short-term (2-weeks) studies were conducted. I: Juveniles (2 weeks post metamorphosis (PM)) were exposed to 0, 17 or 178 µg PROP/L. II: Juveniles (6 weeks PM) were exposed to 0, 1, 12 or 154 µg IMZ/L. Histological analysis of the gonads revealed an increase in the number of dark spermatogonial stem cells (SSCs)/testis area, and in the ratio secondary spermatogonia: dark SSCs were increased in all IMZ groups compared to control. Key genes in gametogenesis, retinoic acid and sex steroid pathways were also analysed in the gonads. Testicular levels of 3ß-hsd, ddx4 were increased and cyp19 and id4 levels were decreased in the IMZ groups. In PROP exposed males, increased testicular aldh1a2 levels were detected, but no histological effects observed. Although no effects on ovarian histology were detected, ovarian levels of esr1, rsbn1 were increased in PROP groups, and esr1 levels were decreased in IMZ groups. In conclusion, juvenile azole exposure disrupted testicular expression of key genes in retinoic acid (PROP) and sex steroid pathways and in gametogenesis (IMZ). Our results further show that exposure to environmental concentrations of IMZ disrupted spermatogenesis in the juvenile testis, which is a cause for concern as it may lead to impaired fertility. Testicular levels of id4, ddx4 and the id4:ddx4 ratio were associated with the number of dark SSCs and secondary spermatogonia suggesting that they may serve as a molecular markers for disrupted spermatogenesis.


Assuntos
Fungicidas Industriais , Humanos , Masculino , Feminino , Animais , Fungicidas Industriais/metabolismo , Xenopus laevis , Azóis/toxicidade , Xenopus/metabolismo , Testículo , Espermatogênese , Hormônios Esteroides Gonadais/metabolismo , Tretinoína , Esteroides/metabolismo , Família Aldeído Desidrogenase 1/metabolismo , Proteínas de Xenopus/metabolismo , Proteínas de Xenopus/farmacologia , Retinal Desidrogenase/metabolismo
7.
Pestic Biochem Physiol ; 199: 105757, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458660

RESUMO

Fenhexamid are fungicides that act against plant pathogens by inhibiting sterol biosynthesis. Nonetheless, it can trigger endocrine disruption and promote breast cancer cell growth. In a recent study, we investigated the mechanism underlying the lipid accumulation induced by fenhexamid hydroxyanilide fungicides in 3 T3-L1 adipocytes. To examine the estrogen receptor alpha (ERα)-agonistic effect, ER transactivation assay using the ERα-HeLa-9903 cell line was applied, and fenhexamid-induced ERα agonist effect was confirmed. Further confirmation that ERα-dependent lipid accumulation occurred was provided by treating 3 T3-L1 adipocytes with Methyl-piperidino-pyrazole hydrate (MPP), an ERα-selective antagonist. Fenhexamid mimicked the actions of ERα agonists and impacted lipid metabolism, and its mechanism involves upregulation of the expression of transcription factors that facilitate adipogenesis and lipogenesis. Additionally, it stimulated the expression of peroxisome proliferator-activated receptor (PPARγ), CCAAT/enhancer-binding protein α (C/EBPα), fatty acid synthase (FAS), and sterol regulatory element-binding protein 1 (SREBP1) and significantly elevated the expression of fatty acid-binding protein 4 (FABP4). In contrast, in combination with an ERα-selective antagonist, fenhexamid suppressed the expression of adipogenic/lipogenic transcription factors. These results suggest that fenhexamid affects the endocrine system and leads to lipid accumulation by interfering with processes influenced by ERα activation.


Assuntos
Amidas , Receptor alfa de Estrogênio , Fungicidas Industriais , Camundongos , Animais , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Fungicidas Industriais/toxicidade , Fungicidas Industriais/metabolismo , Adipócitos/metabolismo , Adipogenia , Metabolismo dos Lipídeos , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/farmacologia , Lipídeos , Células 3T3-L1 , PPAR gama/metabolismo
8.
J Environ Sci Health B ; 59(5): 233-247, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38534106

RESUMO

Accelerating safety assessments for novel agrochemicals is imperative, advocating for in vitro setups to present pesticide biodegradation by soil microbiota before field studies. This approach enables metabolic profile generation in a controlled laboratory environment eliminating extrinsic factors. In the current study, ten different soil samples were utilized to check their capability to degrade Ametoctradin by their microbiota. Furthermore, five different fungal strains (Aspergillus niger, Aspergillus flavus, Aspergillus fumigatus, Lasiodiplodia theobromae, and Penicillium chrysogenum) were utilized to degrade Ametoctradin in aqueous media. A degradation pathway was established using the metabolic patterns created during the biodegradation of Ametoctradin. In contrast to 47% degradation (T1/2 of 34 days) when Ametoctradin was left in the soil samples, the fungal strain Aspergillus fumigatus demonstrated 71% degradation of parent Ametoctradin with a half-life (T1/2) of 16 days. In conclusion, soil rich in microorganisms effectively cleans Ametoctradin-contaminated areas while Fungi have also been shown to be an effective, affordable, and promising way to remove Ametoctradin from the environment.


Assuntos
Fungicidas Industriais , Pirimidinas , Poluentes do Solo , Fungicidas Industriais/metabolismo , Solo/química , Fungos , Agricultura , Triazóis/metabolismo , Biodegradação Ambiental , Microbiologia do Solo , Poluentes do Solo/análise
9.
World J Microbiol Biotechnol ; 40(6): 180, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38668960

RESUMO

DNA adduction in the model yeast Saccharomyces cerevisiae was investigated after exposure to the fungicide penconazole and the reference genotoxic compound benzo(a)pyrene, for validating yeasts as a tool for molecular toxicity studies, particularly of environmental pollution. The effect of the toxicants on the yeast's growth kinetics was determined as an indicator of cytotoxicity. Fermentative cultures of S. cerevisiae were exposed to 2 ppm of Penconazole during different phases of growth; while 0.2 and 2 ppm of benzo(a)pyrene were applied to the culture medium before inoculation and on exponential cultures. Exponential respiratory cultures were also exposed to 0.2 ppm of B(a)P for comparison of both metabolisms. Penconazole induced DNA adducts formation in the exponential phase test; DNA adducts showed a peak of 54.93 adducts/109 nucleotides. Benzo(a)pyrene induced the formation of DNA adducts in all the tests carried out; the highest amount of 46.7 adducts/109 nucleotides was obtained in the fermentative cultures after the exponential phase exposure to 0.2 ppm; whereas in the respiratory cultures, 14.6 adducts/109 nucleotides were detected. No cytotoxicity was obtained in any experiment. Our study showed that yeast could be used to analyse DNA adducts as biomarkers of exposure to environmental toxicants.


Assuntos
Benzo(a)pireno , Adutos de DNA , Poluentes Ambientais , Saccharomyces cerevisiae , Adutos de DNA/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Benzo(a)pireno/toxicidade , Benzo(a)pireno/metabolismo , Poluentes Ambientais/toxicidade , Poluentes Ambientais/metabolismo , Mutagênicos/toxicidade , Mutagênicos/metabolismo , DNA Fúngico/genética , Fungicidas Industriais/toxicidade , Fungicidas Industriais/metabolismo
10.
Microb Ecol ; 86(1): 1-24, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35604432

RESUMO

Several fungi act as parasites for crops causing huge annual crop losses at both pre- and post-harvest stages. For years, chemical fungicides were the solution; however, their wide use has caused environmental contamination and human health problems. For this reason, the use of biofungicides has been in practice as a green solution against fungal phytopathogens. In the context of a more sustainable agriculture, microbial biofungicides have the largest share among the commercial biocontrol products that are available in the market. Precisely, the genus Bacillus has been largely studied for the management of plant pathogenic fungi because they offer a chemically diverse arsenal of antifungal secondary metabolites, which have spawned a heightened industrial engrossment of it as a biopesticide. In this sense, it is indispensable to know the wide arsenal that Bacillus genus has to apply these products for sustainable agriculture. Having this idea in our minds, in this review, secondary metabolites from Bacillus having antifungal activity are chemically and structurally described giving details of their action against several phytopathogens. Knowing the current status of Bacillus secreted antifungals is the base for the goal to apply these in agriculture and it is addressed in depth in the second part of this review.


Assuntos
Antifúngicos , Bacillus , Microbiologia Industrial , Controle Biológico de Vetores , Doenças das Plantas , Humanos , Agricultura/métodos , Agricultura/tendências , Antifúngicos/metabolismo , Bacillus/genética , Bacillus/metabolismo , Fungicidas Industriais/metabolismo , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Produtos Agrícolas/microbiologia , Controle Biológico de Vetores/métodos , Controle Biológico de Vetores/tendências , Família Multigênica/genética
11.
Appl Microbiol Biotechnol ; 107(4): 1177-1188, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36648527

RESUMO

Physcion is one of natural anthraquinones, registered as a novel plant-derived fungicide due to its excellent prevention of plant disease. However, the current production of physcion via plant extraction limits its yield promotion and application. Here, a pair of polyketide synthases (PKS) in emodin biosynthesis were used as probes to mining the potential O-methyltransferase (OMT) responsible for physcion biosynthesis. Further refinement using the phylogenetic analysis of the mined OMTs revealed a distinct OMT (AcOMT) with the ability of transferring a methyl group to C-6 hydroxyl of emodin to form physcion. Through introducing AcOMT, we successfully obtained the de novo production of physcion in Aspergillus nidulans. The physcion biosynthetic pathway was further rationally engineered by expressing the decarboxylase genes from different fungi. Finally, the titer of physcion reached to 64.6 mg/L in shake-flask fermentation through enhancing S-adenosylmethionine supply. Our work provides a native O-methyltransferase for physcion biosynthesis and lays the foundation for further improving the production of physcion via a sustainable route. KEY POINTS: • Genome mining of the native O-methyltransferase responsible for physcion biosynthesis • De novo biosynthesis of physcion in the engineered Aspergillus nidulans • Providing an alternative way to produce plant-derived fungicide physcion.


Assuntos
Aspergillus nidulans , Emodina , Fungicidas Industriais , Emodina/metabolismo , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Metiltransferases/genética , Fungicidas Industriais/metabolismo , Filogenia
12.
Ecotoxicol Environ Saf ; 251: 114540, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36640570

RESUMO

Pesticides could induce long-term impacts on aquatic ecosystem via transgenerational toxicity. However, for many chiral pesticides, the potential enantioselectivity of transgenerational toxicity has yet to be fully understood. In this study, we used zebrafish as models to evaluate the maternal transfer risk of tebuconazole (TEB), which is a chiral triazole fungicide currently used worldwide and has been frequently detected in surface waters. After 28-day food exposure (20 and 400 ng/g) to the two enantiomers of TEB (S- and R-TEB) in adult female zebrafish (F0), increased malformation rate and decreased swimming speed were found in F1 larvae, with R-TEB showing higher impacts than S-enantiomer. Additionally, enantioselective effects on the secretion of thyroid hormones (THs) and expression of TH-related key genes along the hypothalamic-pituitary-thyroid (HPT) axis were found in both F0 and F1 after maternal exposure. Both the two enantiomers significantly disrupted the triiodothyronine (T3) and thyroxine (T4) contents in F0 with different degrees, whereas in F1, significant effects were only found in R-TEB groups with decreasing of both T3 and T4 contents. Most of the HPT axis related genes in F0 were upregulated by TEB and more sensitive to R-TEB than to S-TEB. In contrast, most of the genes in F1 were downregulated by both R- and S-TEB, especially the genes that are primarily responsible for thyroid development and growth (Nkx2-1), TH synthesis (NIS and TSHꞵ) and metabolism (Deio1). Findings from this study highlight the key role of enantioselectivity in the ecological risk assessment of chiral pesticides through maternal transfer.


Assuntos
Disruptores Endócrinos , Fungicidas Industriais , Praguicidas , Poluentes Químicos da Água , Animais , Humanos , Feminino , Glândula Tireoide , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Fungicidas Industriais/metabolismo , Exposição Materna/efeitos adversos , Ecossistema , Estereoisomerismo , Poluentes Químicos da Água/metabolismo , Disruptores Endócrinos/metabolismo , Triazóis/metabolismo , Praguicidas/toxicidade , Larva/metabolismo
13.
Pestic Biochem Physiol ; 194: 105506, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532325

RESUMO

Fusarium head blight caused by Fusarium asiaticum is an important cereal crop disease, and the trichothecene mycotoxins produced by F. asiaticum can contaminate wheat grain, which is very harmful to humans and animals. To effectively control FHB in large areas, the application of fungicides is the major strategy; however, the application of different types of fungicides has varying influences on the accumulation of trichothecene mycotoxins in F. asiaticum. In this study, phenamacril inhibited trichothecene mycotoxin accumulation in F. asiaticum; however, carbendazim (N-1H-benzimidazol-2-yl-carbamic acid, methyl ester) induced trichothecene mycotoxin accumulation. Additionally, phenamacril led to a lower level of reactive oxygen species (ROS) by inducing gene expression of the catalase and superoxide dismutase (SOD) pathways in F. asiaticum, whereas carbendazim stimulated ROS accumulation by inhibiting gene expression of the catalase and SOD pathways. Based on these results, we conclude that phenamacril and carbendazim regulate trichothecene mycotoxin synthesis by affecting ROS levels in F. asiaticum.


Assuntos
Fungicidas Industriais , Fusarium , Micotoxinas , Tricotecenos , Humanos , Catalase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fungicidas Industriais/farmacologia , Fungicidas Industriais/metabolismo , Tricotecenos/farmacologia , Tricotecenos/metabolismo , Micotoxinas/metabolismo , Micotoxinas/farmacologia , Doenças das Plantas
14.
Pestic Biochem Physiol ; 191: 105343, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36963925

RESUMO

Difenoconazole is a widely used but difficult-to-degrade fungicide that can directly affect aquatic ecosystems. Here, two doses (0.488 mg/L, 1.953 mg/L) of difenoconazole were used to study the toxicity to the respiratory system of carp at an exposure time of 96 h. The results showed that difenoconazole exposure resulted in severe structural damage to carp gill tissue with extensive inflammatory cell infiltration. Mechanistically, difenoconazole exposure led to excessive accumulation of ROS in carp gill tissue, which induced an inflammatory response in the gill tissue. Meanwhile, the activities of SOD and CAT were reduced and the NRF2 signaling pathway was activated to regulate the imbalance between oxidation and antioxidation. In addition, difenoconazole exposure further activated the mitochondrial pathway of apoptosis by upregulating cytochrome C, BAX, cleaved-caspase 9, and downregulating Bcl-2. More interestingly, exposure to difenoconazole increased autophagosomes, but lysosomal dysfunction prevented the late stages of autophagy from proceeding smoothly, resulting in a protective autophagic response that is not properly initiated. In summary, difenoconazole exposure caused respiratory toxicity including inflammation response, oxidative stress, apoptosis, and autophagy in carp through the accumulation of ROS. The present study expanded our understanding of the toxic effects of difenoconazole on organisms and its possible threat to the aquatic environment.


Assuntos
Carpas , Fungicidas Industriais , Animais , Apoptose , Carpas/metabolismo , Ecossistema , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Fungicidas Industriais/metabolismo , Fungicidas Industriais/toxicidade
15.
Pestic Biochem Physiol ; 190: 105311, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36740345

RESUMO

The calcium-calcineurin and high-osmolarity glycerol (HOG) pathways play crucial roles in fungal development, pathogenicity, and in responses to various environmental stresses. However, interaction of these pathways in regulating fungicide sensitivity remains largely unknown in phytopathogenic fungi. In this study, we investigated the function of the calcium-calcineurin signalling pathway in Fusarium graminearum, the causal agent of Fusarium head blight. Inhibitors of Ca2+ and calcineurin enhanced antifungal activity of tebuconazole (an azole fungicide) against F. graminearum. Deletion of the putative downstream transcription factor FgCrz1 resulted in significantly increased sensitivity of F. graminearum to tebuconazole. FgCrz1-GFP was translocated to the nucleus upon tebuconazole treatment in a calcineurin-dependent manner. In addition, deletion of FgCrz1 increased the phosphorylation of FgHog1 in response to tebuconazole. Moreover, the calcium-calcineurin and HOG signalling pathways exhibited synergistic effect in regulating pathogenicity and sensitivity of F. graminearum to tebuconazole and multiple other stresses. RNA-seq data revealed that FgCrz1 regulated expression of a set of non-CYP51 genes that are associated with tebuconazole sensitivity, including multidrug transporters, membrane lipid biosynthesis and metabolism, and cell wall organization. Our findings demonstrate that the calcium-calcineurin and HOG pathways act coordinately to orchestrate tebuconazole sensitivity and pathogenicity in F. graminearum, which may provide novel insights in management of Fusarium disease.


Assuntos
Fungicidas Industriais , Fusarium , Glicerol/metabolismo , Cálcio/metabolismo , Fungicidas Industriais/farmacologia , Fungicidas Industriais/metabolismo , Calcineurina/genética , Calcineurina/metabolismo , Calcineurina/farmacologia , Virulência/genética , Concentração Osmolar , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Doenças das Plantas/microbiologia
16.
Pestic Biochem Physiol ; 196: 105614, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37945251

RESUMO

Citrus fruit were easily infected by Penicillium digitatum, and caused green mold rapidly, resulting in enormous post-harvest losses. ε-poly-l-lysine (ε-PL) was generally regarded as a safe (GRAS) substance. Besides, it was proved to have a dual effect on harming fungi and triggering fruit defense responses. Fatty acid metabolism is closely related to fruit defense response. However, little is known about how ε-PL affected fatty acid metabolism in citrus fruit. Here, we found that ε-PL increased the expression of CsFATA, CsACSL, CsFAD2, CsFAD3, CsLOX2S, and CsHPL in fatty acid metabolism, decreasing oleic acid levels and enhancing linoleic and linolenic acid levels. Additionally, ε-PL enriched the activities of LOX and HPL during the oxidative decomposition of fatty acids, and activating C9 aldehyde biosynthesis. Interestingly, ε-PL combined with (2E,4E)-nonadienal (C9 aldehyde) would improve the inhibitory effect against Penicillium digitatum. And the combined bio-fungicide significantly delayed the citrus green mold compared to single concentrations of the individual components. These results suggested that ε-PL improved citrus fruit defense responses through fatty acid-mediated defense responses. Combined bio-fungicide consisting of ε-PL and (2E,4E)-nonadienal have an excellent prospect for controlling citrus green mold.


Assuntos
Citrus , Fungicidas Industriais , Fungicidas Industriais/metabolismo , Polilisina/farmacologia , Citrus/metabolismo , Citrus/microbiologia , Frutas/microbiologia , Ácidos Graxos , Doenças das Plantas/microbiologia
17.
Int J Mol Sci ; 24(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36674895

RESUMO

Calcium/calmodulin-dependent protein kinase (CaMK), a key downstream target protein in the Ca2+ signaling pathway of eukaryotes, plays an important regulatory role in the growth, development and pathogenicity of plant fungi. Three AaCaMKs (AaCaMK1, AaCaMK2 and AaCaMK3) with conserved PKC_like superfamily domains, ATP binding sites and ACT sites have been cloned from Alternaria alternata, However, their regulatory mechanism in A. alternata remains unclear. In this study, the function of the AaCaMKs in the development, infection structure differentiation and pathogenicity of A. alternata was elucidated through targeted gene disruption. The single disruption of AaCaMKs had no impact on the vegetative growth and spore morphology but significantly influenced hyphae growth, sporulation, biomass accumulation and melanin biosynthesis. Further expression analysis revealed that the AaCaMKs were up-regulated during the infection structure differentiation of A. alternata on hydrophobic and pear wax substrates. In vitro and in vivo analysis further revealed that the deletion of a single AaCaMKs gene significantly reduced the A. alternata conidial germination, appressorium formation and infection hyphae formation. In addition, pharmacological analysis confirmed that the CaMK specific inhibitor, KN93, inhibited conidial germination and appressorium formation in A. alternata. Meanwhile, the AaCaMKs genes deficiency significantly reduced the A. alternata pathogenicity. These results demonstrate that AaCaMKs regulate the development, infection structure differentiation and pathogenicity of A. alternata and provide potential targets for new effective fungicides.


Assuntos
Fungicidas Industriais , Pyrus , Pyrus/microbiologia , Virulência/genética , Alternaria , Fungicidas Industriais/farmacologia , Fungicidas Industriais/metabolismo
18.
Int J Mol Sci ; 24(24)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38139303

RESUMO

A microbial fungicide developed from Bacillus subtilis NCD-2 has been registered for suppressing verticillium wilt in crops in China. Spores are the main ingredient of this fungicide and play a crucial role in suppressing plant disease. Therefore, increasing the number of spores of strain NCD-2 during fermentation is important for reducing the cost of the fungicide. In this study, five kinds of carbon sources were found to promote the metabolism of strain NCD-2 revealed via Biolog Phenotype MicroArray (PM) technology. L-arabinose showed the strongest ability to promote the growth and sporulation of strain NCD-2. L-arabinose increased the bacterial concentration and the sporulation efficiency of strain NCD-2 by 2.04 times and 1.99 times compared with D-glucose, respectively. Moreover, L-arabinose significantly decreased the autolysis of strain NCD-2. Genes associated with arabinose metabolism, sporulation, spore resistance to heat, and spore coat formation were significantly up-regulated, and genes associated with sporulation-delaying protein were significantly down-regulated under L-arabinose treatment. The deletion of msmX, which is involved in arabinose transport in the Bacillus genus, decreased growth and sporulation by 53.71% and 86.46% compared with wild-type strain NCD-2, respectively. Complementing the mutant strain by importing an intact msmX gene restored the strain's growth and sporulation.


Assuntos
Fungicidas Industriais , Doenças não Transmissíveis , Humanos , Arabinose , Bacillus subtilis/metabolismo , Fungicidas Industriais/metabolismo , Fermentação
19.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36674501

RESUMO

Botrytis cinerea, the causal agent of gray mold, is one of the most destructive pathogens of cherry tomatoes, causing fruit decay and economic loss. Fludioxonil is an effective fungicide widely used for crop protection and is effective against tomato gray mold. The emergence of fungicide-resistant strains has made the control of B. cinerea more difficult. While the genome of B. cinerea is available, there are few reports regarding the large-scale functional annotation of the genome using expressed genes derived from transcriptomes, and the mechanism(s) underlying such fludioxonil resistance remain unclear. The present study prepared RNA-sequencing (RNA-seq) libraries for three B. cinerea strains (two highly resistant (LR and FR) versus one highly sensitive (S) to fludioxonil), with and without fludioxonil treatment, to identify fludioxonil responsive genes that associated to fungicide resistance. Functional enrichment analysis identified nine resistance related DEGs in the fludioxonil-induced LR and FR transcriptome that were simultaneously up-regulated, and seven resistance related DEGs down-regulated. These included adenosine triphosphate (ATP)-binding cassette (ABC) transporter-encoding genes, major facilitator superfamily (MFS) transporter-encoding genes, and the high-osmolarity glycerol (HOG) pathway homologues or related genes. The expression patterns of twelve out of the sixteen fludioxonil-responsive genes, obtained from the RNA-sequence data sets, were validated using quantitative real-time PCR (qRT-PCR). Based on RNA-sequence analysis, it was found that hybrid histidine kinase, fungal HHKs, such as BOS1, BcHHK2, and BcHHK17, probably involved in the fludioxonil resistance of B. cinerea, in addition, a number of ABC and MFS transporter genes that were not reported before, such as BcATRO, BMR1, BMR3, BcNMT1, BcAMF1, BcTOP1, BcVBA2, and BcYHK8, were differentially expressed in the fludioxonil-resistant strains, indicating that overexpression of these efflux transporters located in the plasma membranes may associate with the fludioxonil resistance mechanism of B. cinerea. All together, these lines of evidence allowed us to draw a general portrait of the anti-fludioxonil mechanisms for B. cinerea, and the assembled and annotated transcriptome data provide valuable genomic resources for further study of the molecular mechanisms of B. cinerea resistance to fludioxonil.


Assuntos
Fungicidas Industriais , Transcriptoma , Fungicidas Industriais/farmacologia , Fungicidas Industriais/metabolismo , Perfilação da Expressão Gênica , Botrytis , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , RNA/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Farmacorresistência Fúngica/genética
20.
Molecules ; 28(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36771067

RESUMO

The presence of endophytes in plants is undeniable, but how significant their involvement is in the host plant biosynthetic pathways is still unclear. The results reported from fungicide treatments in plants varied. Fungicide treatment in Taxus was found to decrease the taxol content. In Ipomoea asarifolia, Pronto Plus and Folicur treatments coincided with the disappearance of ergot alkaloids from the plant. In Narcissus pseudonarcissus cv. Carlton, a mixture of fungicide applications decreased the alkaloids concentration and altered the carbohydrate metabolism. Jacobaea plants treated with Folicur reduced the pyrrolizidine alkaloids content. There have not been any studies into the involvement of endophytic fungi on alkaloids production of Catharanthus roseus until now. Though there is a report on the isolation of the endophytic fungi, Fusarium oxysporum from C. roseus, which was reported to produce vinblastine and vincristine in vitro. To detect possible collaborations between these two different organisms, fungicides were applied to suppress the endophytic fungi in seedlings and then measure the metabolomes by 1HNMR and HPLC analysis. The results indicate that endophytic fungi were not directly involved in alkaloids biosynthesis. Treatment with fungicides influenced both the primary and secondary metabolism of C. roseus. The systemic fungicides Pronto Plus and Folicur caused an increase in loganin and secologanin levels. In contrast, control samples had higher level of catharanthine and vindoline. This means that fungicide treatments cause changes in plant secondary metabolism.


Assuntos
Alcaloides , Antineoplásicos , Catharanthus , Fungicidas Industriais , Alcaloides de Triptamina e Secologanina , Plântula/metabolismo , Fungicidas Industriais/farmacologia , Fungicidas Industriais/metabolismo , Catharanthus/química , Alcaloides/metabolismo , Vincristina/metabolismo , Antineoplásicos/metabolismo , Alcaloides de Triptamina e Secologanina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA