Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.185
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 183(3): 650-665.e15, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33031742

RESUMO

Endocannabinoids are host-derived lipid hormones that fundamentally impact gastrointestinal (GI) biology. The use of cannabis and other exocannabinoids as anecdotal treatments for various GI disorders inspired the search for mechanisms by which these compounds mediate their effects, which led to the discovery of the mammalian endocannabinoid system. Dysregulated endocannabinoid signaling was linked to inflammation and the gut microbiota. However, the effects of endocannabinoids on host susceptibility to infection has not been explored. Here, we show that mice with elevated levels of the endocannabinoid 2-arachidonoyl glycerol (2-AG) are protected from enteric infection by Enterobacteriaceae pathogens. 2-AG directly modulates pathogen function by inhibiting virulence programs essential for successful infection. Furthermore, 2-AG antagonizes the bacterial receptor QseC, a histidine kinase encoded within the core Enterobacteriaceae genome that promotes the activation of pathogen-associated type three secretion systems. Taken together, our findings establish that endocannabinoids are directly sensed by bacteria and can modulate bacterial function.


Assuntos
Endocanabinoides/metabolismo , Enterobacteriaceae/patogenicidade , Animais , Ácidos Araquidônicos/química , Ácidos Araquidônicos/metabolismo , Aderência Bacteriana , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/metabolismo , Citrobacter rodentium/patogenicidade , Colo/microbiologia , Colo/patologia , Endocanabinoides/química , Infecções por Enterobacteriaceae/microbiologia , Feminino , Microbioma Gastrointestinal , Glicerídeos/química , Glicerídeos/metabolismo , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monoacilglicerol Lipases/metabolismo , Salmonella/patogenicidade , Virulência
2.
J Sci Food Agric ; 104(9): 5139-5148, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38284624

RESUMO

BACKGROUND: The inherent properties of coconut oil (CO), including its elevated saturated fatty acid content and low melting point, make it suitable for application in plastic fat processing. The present study explores the physicochemical characteristics, micromorphology and oxidative stability of oleogels produced from CO using various gelators [ethylcellulose (EC), ß-sitosterol/γ-oryzanol (PS) and glyceryl monostearate (MG)] to elucidate the formation mechanisms of coconut oleogels (EC-COO, PS-COO and MG-COO). RESULTS: Three oleogel systems exhibited a solid-like behavior, with the formation of crystalline forms dominated by ß and ß'. Among them, PS-COO exhibited enhanced capability with respect to immobilizing liquid oils, resulting in solidification with high oil-binding capacity, moderate hardness and good elasticity. By contrast, MG-COO demonstrated inferior stability compared to PS-COO and EC-COO. Furthermore, MG-COO and PS-COO demonstrated antioxidant properties against CO oxidation, whereas EC-COO exhibited the opposite effect. PS-COO and EC-COO exhibited superior thermodynamic behavior compared to MG-COO. CONCLUSION: Three oleogels based on CO were successfully prepared. The mechanical strength, storage modulus and thermodynamic stability of the CO oleogel exhibited concentration dependence with increasing gelling agent addition. PS-COO demonstrated relatively robust oil-binding capacity and oxidative stability, particularly with a 15% PS addition. This information contributes to a deeper understanding of CO-based oleogels and offers theoretical insights for their application in food products. © 2024 Society of Chemical Industry.


Assuntos
Óleo de Coco , Cocos , Compostos Orgânicos , Compostos Orgânicos/química , Óleo de Coco/química , Cocos/química , Oxirredução , Glicerídeos/química , Géis/química , Sitosteroides/química , Antioxidantes/química , Celulose/química , Fenilpropionatos
3.
AAPS PharmSciTech ; 25(5): 95, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710921

RESUMO

Verapamil hydrochloride (VRP), an antihypertensive calcium channel blocker drug has limited bioavailability and short half-life when taken orally. The present study was aimed at developing cubosomes containing VRP for enhancing its bioavailability and targeting to brain for cluster headache (CH) treatment as an off-label use. Factorial design was conducted to analyze the impact of different components on entrapment efficiency (EE%), particle size (PS), zeta potential (ZP), and percent drug release. Various in-vitro characterizations were performed followed by pharmacokinetic and brain targeting studies. The results revealed the significant impact of glyceryl monooleate (GMO) on increasing EE%, PS, and ZP of cubosomes with a negative influence on VRP release. The remarkable effect of Poloxamer 407 (P407) on decreasing EE%, PS, and ZP of cubosomes was observed besides its influence on accelerating VRP release%. The DSC thermograms indicated the successful entrapment of the amorphous state of VRP inside the cubosomes. The design suggested an optimized formulation containing GMO (50% w/w) and P407 (5.5% w/w). Such formulation showed a significant increase in drug permeation through nasal mucosa with high Er value (2.26) when compared to VRP solution. Also, the histopathological study revealed the safety of the utilized components used in the cubosomes preparation. There was a significant enhancement in the VRP bioavailability when loaded in cubosomes owing to its sustained release favored by its direct transport to brain. The I.N optimized formulation had greater BTE% and DTP% at 183.53% and 90.19%, respectively in comparison of 41.80% and 59% for the I.N VRP solution.


Assuntos
Administração Intranasal , Encéfalo , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Glicerídeos , Mucosa Nasal , Tamanho da Partícula , Verapamil , Administração Intranasal/métodos , Animais , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Verapamil/administração & dosagem , Verapamil/farmacocinética , Distribuição Tecidual , Glicerídeos/química , Mucosa Nasal/metabolismo , Disponibilidade Biológica , Ratos , Bloqueadores dos Canais de Cálcio/farmacocinética , Bloqueadores dos Canais de Cálcio/administração & dosagem , Poloxâmero/química , Masculino , Química Farmacêutica/métodos , Ratos Wistar , Nanopartículas/química
4.
Trends Biochem Sci ; 44(6): 546-554, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30587414

RESUMO

In eukaryotes, organelles and vesicles modulate their contents and identities through highly regulated membrane fusion events. Membrane trafficking and fusion are carried out through a series of stages that lead to the formation of SNARE complexes between cellular compartment membranes to trigger fusion. Although the protein catalysts of membrane fusion are well characterized, their response to their surrounding microenvironment, provided by the lipid composition of the membrane, remains to be fully understood. Membranes are composed of bulk lipids (e.g., phosphatidylcholine), as well as regulatory lipids that undergo constant modifications by kinases, phosphatases, and lipases. These lipids include phosphoinositides, diacylglycerol, phosphatidic acid, and cholesterol/ergosterol. Here we describe the roles of these lipids throughout the stages of yeast vacuole homotypic fusion.


Assuntos
Colesterol/metabolismo , Ergosterol/metabolismo , Glicerídeos/metabolismo , Ácidos Fosfatídicos/metabolismo , Fosfatidilinositóis/metabolismo , Vacúolos/metabolismo , Colesterol/química , Ergosterol/química , Glicerídeos/química , Humanos , Fusão de Membrana , Ácidos Fosfatídicos/química , Fosfatidilinositóis/química , Vacúolos/química
5.
Crit Rev Food Sci Nutr ; 63(32): 11310-11326, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35699651

RESUMO

n-3 Polyunsaturated fatty acids (n-3 PUFA) has been widely used in foods, and pharmaceutical products due to its beneficial effects. The content of n-3 PUFA in natural oils is usually low, which decreases its added value. Thus, there is an increasing demand on the market for n-3 PUFA concentrates. This review firstly introduces the differences in bioavailability and oxidative stability between different types of PUFA concentrate (free fatty acid, ethyl ester and acylglycerol), and then provides a comprehensive discussion of different methods for enrichment of lipids with n-3 PUFA including physical-chemical methods and enzymatic methods. Lipases used for catalyzing esterification, transesterification and hydrolysis reactions play an important role in the production of highly enriched various types of n-3 PUFA concentrates. Lipase-catalyzed alcoholysis or hydrolysis reactions are the mostly employed method to prepare high-quality n-3 PUFA of structural acylglycerols. Although many important advantages offered by lipases in enrichment of n-3 PUFA, the high cost of enzyme limits its industrial-scale production. Further research should focus on looking for biological enzymes with extraordinary catalytic ability and clear selectivity. Other novel technologies such as protein engineering and immobilization may be needed to modify lipases to improve its selectivity, catalytic ability and reuse.


Assuntos
Ácidos Graxos Ômega-3 , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Insaturados/metabolismo , Lipase/metabolismo , Hidrólise , Glicerídeos/química
6.
J Sci Food Agric ; 103(8): 4184-4194, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36628517

RESUMO

BACKGROUND: Oleogels can be used in the food industry to reduce the consumption of solid fat in the human diet and diminish some of the industrial-technological issues of using oil instead of fat. Regarding the structural weakness of neat monoglyceride oleogel and the waxy mouthfeel of pure carnauba wax oleogel, as a result of the high melting and crystallization points, the present study aimed to diminish these defects. RESULTS: Carnauba wax (CBW) was used as a co-gelator with distilled monoglyceride (DMG) at different weight ratios (100:0, 85:15, 70:30, 55:45, 40:60, and 0:100) (DMG: CBW) and two total gelator concentrations (50 and 100 g kg-1 ) to improve the DMG oleogel characteristics. The addition of CBW strengthened the DMG network and decreased the polymorphic transition. Thermal analysis showed just co-crystallization at the 85:15 ratio, whereas, in the other combinations, high melting components of CBW crystalized at first. As a result of the crystal homogeneity and long-time development, the oleogel properties improved at the 85:15 ratio. The low concentration of CBW and the formation of the eutectic system were efficient in the waxy mouthfeel reduction of oleogel at the 85:15 ratio in food applications. CONCLUSION: The DMG/CBW oleogel at the 85:15 ratio, with better structural and sensorial properties than DMG and CBW oleogels, respectively, has the potential for use instead of fat in food formulations. © 2023 Society of Chemical Industry.


Assuntos
Monoglicerídeos , Ceras , Humanos , Ceras/química , Compostos Orgânicos/química , Glicerídeos/química
7.
Biochem Biophys Res Commun ; 591: 31-36, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34995983

RESUMO

2-Arachidonoylglycerol (2-AG) is the most potent and abundant endocannabinoid that acts as a full agonist at the cannabinoid 1 (CB1) and 2 (CB2) receptors. It serves as a substrate for several serine hydrolases, including monoacylglycerol lipase (MGL), α/ß hydrolase domain 6 (ABHD6) and fatty acid amide hydrolase (FAAH). However, 2-AG's rapid conversion to 1-AG (the S stereoisomer) and 3-AG (the R stereoisomer) complicates in vivo signaling. Here, we present the interaction profiles of 2-AG and its isomerization products, 1- and 3-AG, with the endocannabinoid MGL, ABHD6 and FAAH enzymes as well as the CB1 receptor. The 1- and 3-AG enantiomers are less prone to isomerization, and their affinities to endocannabinoid enzymes and potencies at CB1 receptor are quite different compared to 2-AG. Although MGL is the principal hydrolytic enzyme of 2-AG, 3-AG (the R isomer) appears to be the best substrate for hMGL. Contrarily, 1-AG (the S isomer) demonstrates the worst substrate profile, indicating that the stereochemistry of 1(3)-monoacylglycerols is very important for MGL enzyme. On the other hand, both 1- and 3-AG (the sn1 monoacylglycerols) are efficiently hydrolyzed by hABHD6 without preference, while 2-AG (the sn2 monoacylglycerol) has the lowest rate of hydrolysis. FAAH, the principal hydrolytic enzyme for arachidonoylethanolamide (anandamide, AEA), catalyzes the hydrolysis of all three isomers with similar efficiencies. In a functional cAMP assay at CB1 receptor, all three isomers behaved as agonists, with 2-AG being the most potent, followed by 3-AG then 1-AG. The presented data provides stereochemical insights to design chemically stable AG analogs with preferential stability against enzymes of interest.


Assuntos
Ácidos Araquidônicos/metabolismo , Endocanabinoides/metabolismo , Glicerídeos/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Amidoidrolases/metabolismo , Ácidos Araquidônicos/química , Soluções Tampão , Cromatografia Líquida de Alta Pressão , AMP Cíclico/metabolismo , Endocanabinoides/química , Glicerídeos/química , Células HEK293 , Humanos , Hidrólise , Isomerismo , Cinética , Ligantes , Monoacilglicerol Lipases/metabolismo , Especificidade por Substrato
8.
J Synchrotron Radiat ; 29(Pt 3): 602-614, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35510993

RESUMO

Serial crystallography of membrane proteins often employs high-viscosity injectors (HVIs) to deliver micrometre-sized crystals to the X-ray beam. Typically, the carrier medium is a lipidic cubic phase (LCP) media, which can also be used to nucleate and grow the crystals. However, despite the fact that the LCP is widely used with HVIs, the potential impact of the injection process on the LCP structure has not been reported and hence is not yet well understood. The self-assembled structure of the LCP can be affected by pressure, dehydration and temperature changes, all of which occur during continuous flow injection. These changes to the LCP structure may in turn impact the results of X-ray diffraction measurements from membrane protein crystals. To investigate the influence of HVIs on the structure of the LCP we conducted a study of the phase changes in monoolein/water and monoolein/buffer mixtures during continuous flow injection, at both atmospheric pressure and under vacuum. The reservoir pressure in the HVI was tracked to determine if there is any correlation with the phase behaviour of the LCP. The results indicated that, even though the reservoir pressure underwent (at times) significant variation, this did not appear to correlate with observed phase changes in the sample stream or correspond to shifts in the LCP lattice parameter. During vacuum injection, there was a three-way coexistence of the gyroid cubic phase, diamond cubic phase and lamellar phase. During injection at atmospheric pressure, the coexistence of a cubic phase and lamellar phase in the monoolein/water mixtures was also observed. The degree to which the lamellar phase is formed was found to be strongly dependent on the co-flowing gas conditions used to stabilize the LCP stream. A combination of laboratory-based optical polarization microscopy and simulation studies was used to investigate these observations.


Assuntos
Glicerídeos , Lipídeos , Glicerídeos/química , Proteínas de Membrana/química , Viscosidade , Água/química , Difração de Raios X
9.
J Clin Lab Anal ; 36(1): e24146, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34837712

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19) and is capable of human-to-human transmission and rapid global spread. Thus, the establishment of high-quality viral detection and quantification methods, and the development of anti-SARS-CoV-2 agents are critical. METHODS: Here, we present the rapid detection of infectious SARS-CoV-2 particles using a plaque assay with 0.5% agarose-ME (Medium Electroosmosis) as an overlay medium. RESULTS: The plaques were capable of detecting the virus within 36-40 h post-infection. In addition, we showed that a monogalactosyl diacylglyceride isolated from a microalga (Coccomyxa sp. KJ) could inactivate the clinical isolates of SARS-CoV-2 in a time- and concentration-dependent manner. CONCLUSIONS: These results would allow rapid quantification of the infectious virus titers and help develop more potent virucidal agents against SARS-CoV-2.


Assuntos
Antivirais/farmacologia , Galactose/análogos & derivados , Glicerídeos/farmacologia , Microalgas/química , SARS-CoV-2/efeitos dos fármacos , Animais , Antivirais/química , COVID-19/virologia , Chlorocebus aethiops , Clorófitas/química , Galactose/química , Galactose/farmacologia , Glicerídeos/química , Humanos , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Células Vero , Ensaio de Placa Viral
10.
Amino Acids ; 53(1): 73-88, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33398527

RESUMO

The objective of this study was to prepare a stable self-nanoemulsifying formulation of exendin-4, which is an antidiabetic peptide. As exendin-4 is commercially available only in subcutaneous form, several attempts have been made to discover an effective oral formulation. Self-nanoemulsifying drug delivery systems are known to be suitable carriers for the oral administration of peptide drugs. Various ratios of oil, surfactant, and co-surfactant mixtures were used to determine the area in the pseudoternary phase diagram for clear nanoemulsion. The Design of Experiment approach was used for the optimization of the formulation. Blank self-nanoemulsifying formulations containing ethyl oleate as oil phase, Cremophor EL®, and Labrasol® as surfactant, absolute ethanol, and propylene glycol as co-solvent in various proportions were approximately 18-50 nm, 0.08-0.204 and - 3 to - 23 mV in droplet size, polydispersity index, and zeta potential, respectively. When all formulations were compared by statistical analysis, five of them with smaller droplet sizes were selected for further studies. The physical stability test was performed for 1 month at 5 °C ± 3 °C and 25 °C ± 2 °C/60% RH ± 5% RH storage conditions. As a result of the characterization and physical stability test results, ethyl oleate: Cremophor EL®:absolute ethanol (30:52.5:17.5) formulation and four formulations containing ethyl oleate: Cremophor EL®:Labrasol®:propylene glycol:absolute ethanol at varying concentrations were considered for peptide encapsulation efficiency. Formulation having the highest encapsulation efficiency of exendin-4 containing ethyl oleate: Cremophor EL®:Labrasol®:propylene glycole:absolute ethanol (15:42.5:21.25:15.94:5.31) was selected for in vitro Caco-2 intestinal permeability study. The permeabiliy coefficient was increased by 1.5-folds by exendin-4-loaded self-nanoemulsifying formulation as compared to the exendin-4 solution. It can be concluded that intestinal permeability has been improved by self-nanoemulsifying formulation.


Assuntos
Exenatida/química , Exenatida/farmacocinética , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Estabilidade de Medicamentos , Emulsões , Etanol/química , Peptídeo 1 Semelhante ao Glucagon/agonistas , Glicerídeos/química , Glicerol/análogos & derivados , Glicerol/química , Humanos , Ácidos Oleicos/química , Permeabilidade/efeitos dos fármacos , Propilenoglicóis/química , Tensoativos/química
11.
Mol Pharm ; 18(9): 3281-3289, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34351769

RESUMO

Lipid-based formulations, such as self-microemulsifying drug-delivery systems (SMEDDSs), are promising tools for the oral delivery of poorly water-soluble drugs. However, failure to maintain adequate aqueous solubility after coming into contact with gastrointestinal fluids is a major drawback. In this study, we examined the use of a novel cinnamic acid-derived oil-like material (CAOM) that binds drugs with a high affinity through π-π stacking and hydrophobic interactions, as an oil core in a SMEDDS for the oral delivery of fenofibrate in rats. The use of the CAOM in the SMEDDS resulted in an unprecedented enhancement in fenofibrate bioavailability, which exceeded the bioavailability values obtained using SMEDDSs based on corn oil, a conventional triglyceride oil, or Labrasol, an enhancer of intestinal permeation. Further characterization revealed that the CAOM SMEDDS does not alter the intestinal permeability and has no inhibitory activity on P-glycoprotein-mediated drug efflux. The results reported herein demonstrate the strong potential of CAOM formulations as new solubilizers for the efficient and safe oral delivery of drugs that have limited water solubility.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Emulsões/química , Excipientes/química , Fenofibrato/farmacocinética , Lipídeos/química , Administração Oral , Animais , Disponibilidade Biológica , Química Farmacêutica , Óleo de Milho/química , Cães , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Fenofibrato/administração & dosagem , Glicerídeos/química , Mucosa Intestinal/metabolismo , Células Madin Darby de Rim Canino , Masculino , Modelos Animais , Ratos , Solubilidade , Água/química
12.
Phys Chem Chem Phys ; 23(25): 14093-14108, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34159985

RESUMO

Mapping the topological phase behaviour of lipids in aqueous solution is time consuming and finding the ideal lipid system for a desired application is often a matter of trial and error. Modelling techniques that can accurately predict the mesomorphic phase behaviour of lipid systems are therefore of paramount importance. Here, the self-consistent field theory of Scheutjens and Fleer (SF-SCF) in which a lattice refinement has been implemented, is used to scrutinize how various additives modify the self-assembled phase behaviour of monoolein (MO) and 1,2-dioleoyl-phosphatidylcholine (DOPC) lipids in water. The mesomorphic behaviour is inferred from trends in the mechanical properties of equilibrium lipid bilayers with increasing additive content. More specifically, we focus on the Helfrich parameters, that is, the mean and Gaussian bending rigidities (κ and [small kappa, Greek, macron], respectively) supplemented with the spontaneous curvature of the monolayer (Jm0). We use previously established interaction parameters that position the unperturbed DOPC system in the lamellar Lα phase ([small kappa, Greek, macron] < 0, κ > 0 and Jm0 ≈ 0). Similar interaction parameters position the MO system firmly in a bicontinuous cubic phase ([small kappa, Greek, macron] > 0). In line with experimental data, a mixture of MO and DOPC tends to be in one of these two phases, depending on the mixing ratio. Moreover we find good correlations between predicted trends and experimental data concerning the phase changes of MO in response to a wide range of additives. These correlations give credibility to the use of SF-SCF modelling as a valuable tool to quickly explore the mesomorphic phase space of (phospho)lipid bilayer systems including additives.


Assuntos
Glicerídeos/química , Bicamadas Lipídicas/química , Fosfatidilcolinas/química , Fenômenos Mecânicos , Modelos Moleculares , Distribuição Normal , Transição de Fase , Temperatura de Transição , Água
13.
J Nanobiotechnology ; 19(1): 168, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34082768

RESUMO

BACKGROUND: Lipid liquid crystalline nanoparticles (LLCNPs) emerge as a suitable system for drug and contrast agent delivery. In this regard due to their unique properties, they offer a solubility of a variety of active pharmaceutics with different polarities increasing their stability and the possibility of controlled delivery. Nevertheless, the most crucial aspect underlying the application of LLCNPs for drug or contrast agent delivery is the unequivocal assessment of their biocompatibility, including cytotoxicity, genotoxicity, and related aspects. Although studies regarding the cytotoxicity of LLCNPs prepared from various lipids and surfactants were conducted, the actual mechanism and its impact on the cells (both cancer and normal) are not entirely comprehended. Therefore, in this study, LLCNPs colloidal formulations were prepared from two most popular structure-forming lipids, i.e., glyceryl monooleate (GMO) and phytantriol (PHT) with different lipid content of 2 and 20 w/w%, and the surfactant Pluronic F-127 using the top-down approach for further comparison of their properties. Prepared formulations were subjected to physicochemical characterization and followed with in-depth biological characterization, which included cyto- and genotoxicity towards cervical cancer cells (HeLa) and human fibroblast cells (MSU 1.1), the evaluation of cytoskeleton integrity, intracellular reactive oxygen species (ROS) generation upon treatment with prepared LLCNPs and finally the identification of internalization pathways. RESULTS: Results denote the higher cytotoxicity of PHT-based nanoparticles on both cell lines on monolayers as well as cellular spheroids, what is in accordance with evaluation of ROS activity level and cytoskeleton integrity. Detected level of ROS in cells upon the treatment with LLCNPs indicates their insignificant contribution to the cellular redox balance for most concentrations, however distinct for GMO- and PHT-based LLCNPs. The disintegration of cytoskeleton after administration of LLCNPs implies the relation between LLCNPs and F-actin filaments. Additionally, the expression of four genes involved in DNA damage and important metabolic processes was analyzed, indicating concentration-dependent differences between PHT- and GMO-based LLCNPs. CONCLUSIONS: Overall, GMO-based LLCNPs emerge as potentially more viable candidates for drug delivery systems as their impact on cells is not as deleterious as PHT-based as well as they were efficiently internalized by cell monolayers and 3D spheroids.


Assuntos
Álcoois Graxos/toxicidade , Glicerídeos/toxicidade , Nanopartículas/química , Química Farmacêutica , Portadores de Fármacos/química , Composição de Medicamentos , Sistemas de Liberação de Medicamentos/métodos , Álcoois Graxos/química , Glicerídeos/química , Humanos , Lipídeos/química , Testes de Mutagenicidade , Tamanho da Partícula , Poloxâmero/química , Poloxâmero/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Solubilidade , Tensoativos
14.
Bioprocess Biosyst Eng ; 44(5): 941-949, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-31838608

RESUMO

Low crystallization-rate and formation of crystalline clusters makes palm stearin unpopular in fat-based products especially in their post-processing stage. Addition of emulsifiers is commonly used to overcome these drawbacks, since they are believed to induce or stabilize specific polymorphs of palm stearin. Glyceryl monostearate (GMS) was applied in palm stearin (1%, 2%, and 4% w/w) in this study, and the mechanisms on crystallization of palm stearin were investigated by means of differential scanning calorimetry (DSC), X-ray diffraction (XRD), and polarized light microscopic (PLM) method. Data showed that GMS prompted the isothermal crystallization (15-30 °C) in a dose-dependent manner. Crystallization turned to low super-cooling sporadic nucleation at 30 °C. Besides, GMS led to an earlier onset of crystallization during cooling. GMS-palm stearin blends crystallized to form α polymorphs at first and subsequently underwent polymorphic transition to become ß' polymorphs. Addition of 4% w/w GMS in palm stearin significantly decreased the size of crystals, which is helpful to reduce the grainy mouth feel of fat products in practice.


Assuntos
Glicerídeos/química , Óleo de Palmeira/química , Triglicerídeos/química , Cristalização
15.
Drug Dev Ind Pharm ; 47(1): 83-91, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33289591

RESUMO

OBJECTIVE: This study developed a novel child-friendly drug delivery system for pediatric HIV treatment: a liquid, taste-masked, and solvent-free monoolein-based nanoparticles formulation containing indinavir (0.1%). SIGNIFICANCE: Adherence to antiretroviral therapy by pediatric patients is difficult because of the lack of dosage forms adequate for children. METHODS: Monoolein-based nanoparticles were developed. The particle size, zeta potential, pH, drug content, small angle X-ray scattering, stability, in vitro drug release profile, biocompatibility, toxicity, and taste-masking properties were evaluated. RESULTS: Monoolein-based formulations containing indinavir had nanosized particles with 155 ± 7 nm, unimodal particle size distribution, and polydispersity index of 0.16 ± 0.03. The zeta potential was negative (-31.3 ± 0.3 mV) and pH was neutral (7.78 ± 0.01). A 96% drug incorporation efficiency was achieved, and the indinavir concentration remained constant for 30 days. Polarized light microscopy revealed isotropic characteristics. Transmission electron microscopy images showed spherical shaped morphology. Small-angle X-ray scattering displayed a form factor broad peak. Indinavir had a sustained release from the nanoparticles. The system was nonirritant and was able to mask drug bitter taste. CONCLUSIONS: Monoolein-based nanoparticles represent a suitable therapeutic strategy for antiretroviral treatment with the potential to reduce the frequency of drug administration and promote pediatric adherence.


Assuntos
Glicerídeos/química , Indinavir , Nanopartículas , Criança , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Humanos , Tamanho da Partícula , Paladar
16.
Int J Mol Sci ; 22(20)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34681877

RESUMO

The activation of the human cannabinoid receptor type II (CB2R) is known to mediate analgesic and anti-inflammatory processes without the central adverse effects related to cannabinoid receptor type I (CB1R). In this work we describe the synthesis and evaluation of a novel series of N-aryl-2-pyridone-3-carboxamide derivatives tested as human cannabinoid receptor type II (CB2R) agonists. Different cycloalkanes linked to the N-aryl pyridone by an amide group displayed CB2R agonist activity as determined by intracellular [cAMP] levels. The most promising compound 8d exhibited a non-toxic profile and similar potency (EC50 = 112 nM) to endogenous agonists Anandamide (AEA) and 2-Arachidonoylglycerol (2-AG) providing new information for the development of small molecules activating CB2R. Molecular docking studies showed a binding pose consistent with two structurally different agonists WIN-55212-2 and AM12033 and suggested structural requirements on the pyridone substituents that can satisfy the orthosteric pocket and induce an agonist response. Our results provide additional evidence to support the 2-pyridone ring as a suitable scaffold for the design of CB2R agonists and represent a starting point for further optimization and development of novel compounds for the treatment of pain and inflammation.


Assuntos
Agonistas de Receptores de Canabinoides/química , Agonistas de Receptores de Canabinoides/farmacologia , Piridonas/química , Receptor CB2 de Canabinoide/agonistas , Animais , Ácidos Araquidônicos/química , Ácidos Araquidônicos/farmacologia , Benzoxazinas/química , Benzoxazinas/farmacologia , Sítios de Ligação , Células CHO , Agonistas de Receptores de Canabinoides/síntese química , Sobrevivência Celular/efeitos dos fármacos , Cricetulus , AMP Cíclico/metabolismo , Avaliação Pré-Clínica de Medicamentos , Endocanabinoides/química , Endocanabinoides/farmacologia , Glicerídeos/química , Glicerídeos/farmacologia , Células HL-60 , Células Hep G2 , Humanos , Simulação de Acoplamento Molecular , Morfolinas/química , Morfolinas/farmacologia , Naftalenos/química , Naftalenos/farmacologia , Alcamidas Poli-Insaturadas/química , Alcamidas Poli-Insaturadas/farmacologia , Piridonas/farmacologia , Receptor CB2 de Canabinoide/química , Receptor CB2 de Canabinoide/genética , Receptor CB2 de Canabinoide/metabolismo , Relação Estrutura-Atividade
17.
Molecules ; 26(11)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070869

RESUMO

Monoacylglycerol lipase (MAGL) is a key enzyme in the human endocannabinoid system. It is also the main enzyme responsible for the conversion of 2-arachidonoyl glycerol (2-AG) to arachidonic acid (AA), a precursor of prostaglandin synthesis. The inhibition of MAGL activity would be beneficial for the treatment of a wide range of diseases, such as inflammation, neurodegeneration, metabolic disorders and cancer. Here, the author reports the pharmacological evaluation of new disulfiram derivatives as potent inhibitors of MAGL. These analogues displayed high inhibition selectivity over fatty acid amide hydrolase (FAAH), another endocannabinoid-hydrolyzing enzyme. In particular, compound 2i inhibited MAGL in the low micromolar range. However, it did not show any inhibitory activity against FAAH.


Assuntos
Dissulfiram/farmacologia , Monoacilglicerol Lipases/antagonistas & inibidores , Monoacilglicerol Lipases/química , Amidoidrolases/química , Ácidos Araquidônicos/química , Carbamatos/farmacologia , Dissulfiram/análogos & derivados , Endocanabinoides/química , Endocanabinoides/metabolismo , Inibidores Enzimáticos/farmacologia , Glicerídeos/química , Humanos , Hidrólise , Monoglicerídeos/química , Relação Estrutura-Atividade
18.
Molecules ; 26(22)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34833929

RESUMO

Plant sterols, also referred as phytosterols, have been known as bioactive compounds which have cholesterol-lowering properties in human blood. It has been established that a diet rich in plant sterols or their esters alleviates cardiovascular diseases (CVD), and also may inhibit breast, colon and lung carcinogenesis. Phytosterols, in their free and esterified forms, are prone to thermo-oxidative degradation, where time and temperature affect the level of degradation. Looking for new derivatives of phytosterols with high thermo-oxidative stability for application in foods, our idea was to obtain novel structured acylglycerols in which two fatty acid parts are replaced by stigmasterol residues. In this work, asymmetric (1,2- and 2,3-) distigmasterol-modified acylglycerols (dStigMAs) were synthesized by the covalent attachment of stigmasterol residues to sn-1 and sn-2 or sn-2 and sn-3 positions of 3-palmitoyl-sn-glycerol or 1-oleoyl-sn-glycerol, respectively, using a succinate or carbonate linker. The chemical structures of the synthesized compounds were identified by NMR, HR-MS, and IR data. Moreover, the cytotoxicity of the obtained compounds was determined. The dStigMAs possessing a carbonate linker showed potent cytotoxicity to cells isolated from the small intestine and colon epithelium and liver, whereas the opposite results were obtained for compounds containing a succinate linker.


Assuntos
Citotoxinas/química , Citotoxinas/farmacologia , Glicerídeos/química , Glicerídeos/farmacologia , Lipídeos/química , Estigmasterol/química , Estigmasterol/farmacologia , Células Cultivadas , Ésteres/química , Ácidos Graxos/química , Humanos , Oxirredução/efeitos dos fármacos , Fitosteróis/química , Fitosteróis/farmacologia
19.
Int J Cosmet Sci ; 43(3): 302-310, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33566391

RESUMO

OBJECTIVE: Nicotinamide, also known as niacinamide, is a water-soluble vitamin that is used to prevent and treat acne and pellagra. It is often found in water-based skin care cosmetics because of its high water solubility. Nicotinamide is a small molecule with a molar mass of 122.1 g/mol. However, it has a hydrophilic nature that becomes an obstacle when it penetrates through the skin. The topmost layer of the skin, the stratum corneum, acts as a strong hydrophobic barrier for such hydrophilic molecules. The oil-based formulations are expected to enhance the transdermal delivery efficiency of nicotinamide. METHODS: We have developed oil-based microemulsion formulations composed of a squalane vehicle. Monoolein was used as an emulsifier that has a potential to enhance the nicotinamide delivery through the stratum corneum. RESULTS: Because the mean size of the emulsions measured by dynamic light scattering was 20.9 ± 0.4 nm, the microemulsion formulation was stable under the long-term storage. Monoolein acted as a skin penetration enhancer, and it effectively enabled the penetration of nicotinamide through human abdominal skin, compared with nicotinamide in a phosphate-buffered saline solution. The flux was increased 25-fold. Microscopic imaging revealed that the hydrophilic bioactive compounds penetrated through the intercellular spaces in the epidermis. CONCLUSION: The monoolein-based microemulsion was transparent and stable, suggesting that it is a promising formulation for a transdermal nicotinamide delivery.


OBJECTIF: Le nicotinamide, aussi connu sous le nom de niacinamide, est une vitamine hydrosoluble utilisée pour prévenir et traiter l'acné et la pellagre. On le trouve souvent dans les produits cosmétiques de soins de la peau à base d'eau en raison de sa forte solubilité dans l'eau. Le nicotinamide est une petite molécule d'une masse molaire de 122,1 g/mol. Cependant, sa nature hydrophile devient un obstacle lorsqu'il pénètre la peau. La couche supérieure de la peau, la couche cornée, agit comme une barrière hydrophobe robuste contre ces molécules hydrophiles. Les formulations à base d'huile devraient améliorer l'efficacité de l'administration par voie transdermique du nicotinamide. MÉTHODES: Nous avons développé des formulations de microémulsions à base d'huile composées d'un véhicule de squalane. La monooléine a été utilisée en tant qu'émulsifiant doté du potentiel d'améliorer l'administration de nicotinamide par la couche cornée. RÉSULTATS: Étant donné que la taille moyenne des émulsions mesurées par diffusion dynamique de la lumière était de 20,9 ± 0,4 nm, la formulation de microémulsion était stable en cas de stockage à long terme. La monooléine a agi comme promoteur de l'absorption cutanée et a permis la pénétration efficace du nicotinamide dans la peau abdominale humaine, par rapport au nicotinamide dans une solution avec tampon phosphate salin. Le flux a été multiplié par 25. L'imagerie microscopique a révélé que les composés bioactifs hydrophiles ont pénétré les espaces intercellulaires de l'épiderme. CONCLUSION: La microémulsion à base de monooléine était transparente et stable, ce qui suggère qu'il s'agit d'une formulation prometteuse pour une administration de nicotinamide par voie transdermique.


Assuntos
Emulsões/química , Glicerídeos/química , Niacinamida/administração & dosagem , Óleos/química , Administração Cutânea , Cromatografia Líquida de Alta Pressão/métodos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Microscopia Eletrônica de Transmissão , Pele/metabolismo , Água/química
20.
Pharm Dev Technol ; 26(5): 576-581, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33719822

RESUMO

The objective of this study was to develop a novel acetaminophen and tramadol hydrochloride-loaded soft capsule (ATSC) with enhanced bioavailability of tramadol. The ATSC was manufactured in a pilot-scale batch size with the capsule contents composed of tramadol, acetaminophen, PEG 400 and Capmul MCM at a weight ratio of 37.5:325:177.5:30. Moreover, its dissolution, stability and pharmacokinetics in beagle dogs were carried out compared to commercial tablet. The dissolved amounts of acetaminophen from the ATSC and commercial tablet were not significantly different. However, compared to the latter, the former had significantly higher dissolution rate of tramadol at the initial times. In beagle dogs, the ATSC provided no significant difference in plasma concentrations and AUC of acetaminophen than did the commercial tablet; however, it significantly improved those of tramadol compared to the other, indicating the enhanced oral bioavailability of tramadol. Compared to the commercial tablet, the ATSC had a larger AUC value for tramadol (55.27 ± 11.06 vs. 92.62 ± 21.52 h·ng/ml). In the accelerated long-term stability, the ATSC offered higher than 96% drug content of acetaminophen and tramadol, suggesting that it was stable for at least six months. Therefore, this ATSC would be a recommendable candidate with enhanced oral bioavailability and excellent stability.


Assuntos
Acetaminofen/administração & dosagem , Excipientes/química , Tramadol/administração & dosagem , Acetaminofen/farmacocinética , Administração Oral , Animais , Área Sob a Curva , Disponibilidade Biológica , Caprilatos/química , Cápsulas , Cães , Combinação de Medicamentos , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Gelatina , Glicerídeos/química , Masculino , Projetos Piloto , Polietilenoglicóis/química , Solubilidade , Comprimidos , Tramadol/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA