RESUMO
Autophagy is crucial for maintaining cell homeostasis. However, the precise mechanism underlying autophagy initiation remains to be defined. Here, we demonstrate that glutamine deprivation and hypoxia result in inhibition of mTOR-mediated acetyl-transferase ARD1 S228 phosphorylation, leading to ARD1-dependent phosphoglycerate kinase 1 (PGK1) K388 acetylation and subsequent PGK1-mediated Beclin1 S30 phosphorylation. This phosphorylation enhances ATG14L-associated class III phosphatidylinositol 3-kinase VPS34 activity by increasing the binding of phosphatidylinositol to VPS34. ARD1-dependent PGK1 acetylation and PGK1-mediated Beclin1 S30 phosphorylation are required for glutamine deprivation- and hypoxia-induced autophagy and brain tumorigenesis. Furthermore, PGK1 K388 acetylation levels correlate with Beclin1 S30 phosphorylation levels and poor prognosis in glioblastoma patients. Our study unearths an important mechanism underlying cellular-stress-induced autophagy initiation in which the protein kinase activity of the metabolic enzyme PGK1 plays an instrumental role and reveals the significance of the mutual regulation of autophagy and cell metabolism in maintaining cell homeostasis.
Assuntos
Autofagossomos/enzimologia , Autofagia , Proteína Beclina-1/metabolismo , Neoplasias Encefálicas/enzimologia , Glioblastoma/enzimologia , Fosfoglicerato Quinase/metabolismo , Acetilação , Animais , Autofagossomos/patologia , Proteína Beclina-1/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Classe III de Fosfatidilinositol 3-Quinases/genética , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Feminino , Glioblastoma/genética , Glioblastoma/patologia , Glutamina/deficiência , Células HEK293 , Humanos , Camundongos Nus , Acetiltransferase N-Terminal A/genética , Acetiltransferase N-Terminal A/metabolismo , Acetiltransferase N-Terminal E/genética , Acetiltransferase N-Terminal E/metabolismo , Fosfoglicerato Quinase/genética , Fosforilação , Ligação Proteica , Interferência de RNA , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Fatores de Tempo , Transfecção , Carga Tumoral , Hipóxia TumoralRESUMO
Exosomes are secreted extracellular vesicles carrying diverse molecular cargos, which can modulate recipient cell behaviour. They are thought to derive from intraluminal vesicles formed in late endosomal multivesicular bodies (MVBs). An alternate exosome formation mechanism, which is conserved from fly to human, is described here, with exosomes carrying unique cargos, including the GTPase Rab11, generated in Rab11-positive recycling endosomal MVBs. Release of Rab11-positive exosomes from cancer cells is increased relative to late endosomal exosomes by reducing growth regulatory Akt/mechanistic Target of Rapamycin Complex 1 (mTORC1) signalling or depleting the key metabolic substrate glutamine, which diverts membrane flux through recycling endosomes. Vesicles produced under these conditions promote tumour cell proliferation and turnover and modulate blood vessel networks in xenograft mouse models in vivo. Their growth-promoting activity, which is also observed in vitro, is Rab11a-dependent, involves ERK-MAPK-signalling and is inhibited by antibodies against amphiregulin, an EGFR ligand concentrated on these vesicles. Therefore, glutamine depletion or mTORC1 inhibition stimulates release from Rab11a compartments of exosomes with pro-tumorigenic functions, which we propose promote stress-induced tumour adaptation.
Assuntos
Proliferação de Células , Exossomos , Glutamina/deficiência , Sistema de Sinalização das MAP Quinases , Neoplasias , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Exossomos/genética , Exossomos/metabolismo , Exossomos/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismoRESUMO
Macrophage polarization involves a coordinated metabolic and transcriptional rewiring that is only partially understood. By using an integrated high-throughput transcriptional-metabolic profiling and analysis pipeline, we characterized systemic changes during murine macrophage M1 and M2 polarization. M2 polarization was found to activate glutamine catabolism and UDP-GlcNAc-associated modules. Correspondingly, glutamine deprivation or inhibition of N-glycosylation decreased M2 polarization and production of chemokine CCL22. In M1 macrophages, we identified a metabolic break at Idh, the enzyme that converts isocitrate to alpha-ketoglutarate, providing mechanistic explanation for TCA cycle fragmentation. (13)C-tracer studies suggested the presence of an active variant of the aspartate-arginosuccinate shunt that compensated for this break. Consistently, inhibition of aspartate-aminotransferase, a key enzyme of the shunt, inhibited nitric oxide and interleukin-6 production in M1 macrophages, while promoting mitochondrial respiration. This systems approach provides a highly integrated picture of the physiological modules supporting macrophage polarization, identifying potential pharmacologic control points for both macrophage phenotypes.
Assuntos
Redes Reguladoras de Genes/imunologia , Imunidade Inata , Macrófagos/metabolismo , Mitocôndrias/metabolismo , Transcrição Gênica/imunologia , Animais , Ácido Argininossuccínico/imunologia , Ácido Argininossuccínico/metabolismo , Aspartato Aminotransferase Mitocondrial/genética , Aspartato Aminotransferase Mitocondrial/imunologia , Ácido Aspártico/imunologia , Ácido Aspártico/metabolismo , Quimiocina CCL22/genética , Quimiocina CCL22/imunologia , Ciclo do Ácido Cítrico , Regulação da Expressão Gênica , Glutamina/deficiência , Glicosilação , Interleucina-6/genética , Interleucina-6/imunologia , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/imunologia , Macrófagos/classificação , Macrófagos/citologia , Macrófagos/imunologia , Redes e Vias Metabólicas/genética , Redes e Vias Metabólicas/imunologia , Camundongos , Mitocôndrias/genética , Mitocôndrias/imunologia , Óxido Nítrico/imunologia , Óxido Nítrico/metabolismo , Transdução de Sinais , Uridina Difosfato N-Acetilglicosamina/imunologia , Uridina Difosfato N-Acetilglicosamina/metabolismoRESUMO
During periods of crisis, cells must compensate to survive. To this end, cells may need to alter the subcellular localization of crucial proteins. Here, we show that during starvation, VCP, the most abundant soluble ATPase, relocalizes and forms aggregate-like structures at perinuclear regions in PC3 prostate cancer cells. This movement is associated with a lowered metabolic state, in which mitochondrial activity and ROS production are reduced. VCP appears to explicitly sense glutamine levels, as removal of glutamine from complete medium triggered VCP relocalization and its addition to starvation media blunted VCP relocalization. Cells cultured in Gln(+) starvation media exhibited uniformly distributed VCP in the cytoplasm (free VCP) and underwent ferroptotic cell death, which was associated with a decrease in GSH levels. Moreover, the addition of a VCP inhibitor, CB-5083, in starvation media prevented VCP relocalization and triggered ferroptotic cell death. Likewise, expression of GFP-fused VCP proteins, irrespective of ATPase activities, displayed free VCP and triggered cell death during starvation. These results indicate that free VCP is essential for the maintenance of mitochondrial function and that PC3 cells employ a strategy of VCP self-aggregation to suppress mitochondrial activity in order to escape cell death during starvation, a novel VCP-mediated survival mechanism.
Assuntos
Ferroptose , Glutamina/deficiência , Glutationa/metabolismo , Mitocôndrias/metabolismo , Neoplasias da Próstata/metabolismo , Proteína com Valosina/metabolismo , Humanos , Masculino , Células PC-3 , Transporte ProteicoRESUMO
Many cancer cells consume large quantities of glutamine to maintain TCA cycle anaplerosis and support cell survival. It was therefore surprising when RNAi screening revealed that suppression of citrate synthase (CS), the first TCA cycle enzyme, prevented glutamine-withdrawal-induced apoptosis. CS suppression reduced TCA cycle activity and diverted oxaloacetate, the substrate of CS, into production of the nonessential amino acids aspartate and asparagine. We found that asparagine was necessary and sufficient to suppress glutamine-withdrawal-induced apoptosis without restoring the levels of other nonessential amino acids or TCA cycle intermediates. In complete medium, tumor cells exhibiting high rates of glutamine consumption underwent rapid apoptosis when glutamine-dependent asparagine synthesis was suppressed, and expression of asparagine synthetase was statistically correlated with poor prognosis in human tumors. Coupled with the success of L-asparaginase as a therapy for childhood leukemia, the data suggest that intracellular asparagine is a critical suppressor of apoptosis in many human tumors.
Assuntos
Apoptose/genética , Asparagina/metabolismo , Aspartato-Amônia Ligase/antagonistas & inibidores , Citrato (si)-Sintase/genética , Glutamina/deficiência , Fator 4 Ativador da Transcrição/metabolismo , Asparagina/biossíntese , Asparagina/química , Aspartato-Amônia Ligase/biossíntese , Ácido Aspártico/biossíntese , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Ciclo do Ácido Cítrico , Humanos , Ácido Oxaloacético/metabolismo , Interferência de RNA , RNA Interferente Pequeno , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína X Associada a bcl-2/genéticaRESUMO
Cells within solid tumours can become deprived of nutrients; in order to survive, they need to invoke mechanisms to conserve these resources. Using cancer cells in culture in the absence of key nutrients, we have explored the roles of two potential survival mechanisms, autophagy and elongation factor 2 kinase (eEF2K), which, when activated, inhibits the resource-intensive elongation stage of protein synthesis. Both processes are regulated through the nutrient-sensitive AMP-activated protein kinase and mechanistic target of rapamycin complex 1 signalling pathways. We find that disabling both autophagy and eEF2K strongly compromises the survival of nutrient-deprived lung and breast cancer cells, whereas, for example, knocking out eEF2K alone has little effect. Contrary to some earlier reports, we find no evidence that eEF2K regulates autophagy. Unexpectedly, eEF2K does not facilitate survival of prostate cancer PC3 cells. Thus, eEF2K and autophagy enable survival of certain cell-types in a mutually complementary manner. To explore this further, we generated, by selection, cells which were able to survive nutrient starvation even when autophagy and eEF2K were disabled. Proteome profiling using mass spectrometry revealed that these 'resistant' cells showed lower levels of diverse proteins which are required for energy-consuming processes such as protein and fatty acid synthesis, although different clones of 'resistant cells' appear to adapt in dissimilar ways. Our data provide further information of the ways that human cells cope with nutrient limitation and to understanding of the utility of eEF2K as a potential target in oncology.
Assuntos
Autofagia/genética , Quinase do Fator 2 de Elongação/genética , Metabolismo Energético/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Glucose/farmacologia , Glutamina/farmacologia , Ácido Pirúvico/farmacologia , Células A549 , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Quinase do Fator 2 de Elongação/metabolismo , Metabolismo Energético/genética , Glucose/deficiência , Glutamina/deficiência , Humanos , Macrolídeos/farmacologia , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Células PC-3 , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Biossíntese de Proteínas , Proteoma/genética , Proteoma/metabolismo , Proteômica/métodos , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo , Transdução de SinaisRESUMO
The growth-stimulating capacity of calf serum (CS) in cell culture reaches a maximum of 10% with Balb 3T3 cells, remains at a plateau to 40% CS, and declines steeply to 100% CS. Growth capacity can be largely restored to the latter by a combination of cystine and glutamine. Glutamine is a conditionally essential amino acid that continues to function at very low concentrations to support the growth of nontransformed cells, but transformed cells require much larger concentrations to survive. These different requirements hold true over a 10-fold variation in background concentrations of CS and amino acids. The high requirement of glutamine for transformed cells applies to the development of neoplastically transformed foci. These observations have given rise to a novel protocol for cancer therapy based on the large difference in the need for glutamine between nontransformed and transformed cells. This protocol would stop the cumulative growth and survival of the transformed cells without reducing the growth rate of the nontransformed cells. The results call for studies of glutamine deprivation as a treatment for experimental cancer in rodents and clinical trials in humans.
Assuntos
Transformação Celular Neoplásica/metabolismo , Glutamina/deficiência , Neoplasias/metabolismo , Neoplasias/terapia , Animais , Células 3T3 BALB , Técnicas de Cultura de Células , Transformação Celular Neoplásica/patologia , Meios de Cultura , Glutamina/metabolismo , Camundongos , Neoplasias/patologiaRESUMO
Glutamine is the most abundant amino acid in the body, and adipose tissue is one of the glutamine-producing organs. Glutamine has important and unique metabolic functions; however, its effects in adipocytes are still unclear. 3T3-L1 adipocytes produced and secreted glutamine dependent on glutamine synthetase, but preadipocytes did not. The inhibition of glutamine synthetase by l-methionine sulfoximine (MSO) impaired the differentiation of preadipocytes to mature adipocytes, and this inhibitory effect of MSO was rescued by exogenous glutamine supplementation. Glutamine concentrations were low, and Atgl gene expression was high in epididymal white adipose tissues of fasting mice in vivo. In 3T3-L1 adipocytes, glutamine deprivation induced Atgl expression and increased glycerol concentration in culture medium. Atgl expression is regulated by FoxO1, and glutamine deprivation reduced FoxO1 phosphorylation (Ser256), indicating the activation of FoxO1. These results demonstrate that glutamine is necessary for the differentiation of preadipocytes and regulates lipolysis through FoxO1 in mature adipocytes.
Assuntos
Adipócitos/metabolismo , Diferenciação Celular/fisiologia , Glutamina/deficiência , Lipólise/fisiologia , Células 3T3-L1 , Adipócitos/citologia , Tecido Adiposo Branco/citologia , Tecido Adiposo Branco/metabolismo , Animais , Western Blotting , Diferenciação Celular/genética , Células Cultivadas , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Regulação da Expressão Gênica , Glutamato-Amônia Ligase/genética , Glutamato-Amônia Ligase/metabolismo , Glutamina/metabolismo , Lipase/genética , Lipase/metabolismo , Lipólise/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
Antibiotics rank as the most powerful weapons against bacterial infection, but their use is often limited by antibiotic-associated diarrhoea (AAD). Here, we reported that glutamine deficiency might act as a new link between clindamycin-induced dysbiosis and intestinal barrier dysfunction during AAD progression. Using a mouse model, we demonstrated that glutamine became a conditionally essential amino acid upon persistent therapeutic-dose clindamycin exposure, evidenced by a dramatic decrease in intestinal glutamine level and glutaminase expression. Mechanistically, clindamycin substantially confounded the abundance of butyrate-producing strains, leading to the deficiency of faecal butyrate which is normally a fundamental fuel for enterocytes, and in turn increased the compensatory use of glutamine. In addition to its pivotal roles in colonic epithelial cell turnover, glutamine was required for nitric oxide production in classic macrophage-driven host defence facilitating pathogen removal. Importantly, oral administration of glutamine effectively attenuated clindamycin-induced dysbiosis and restored intestinal barrier dysfunction in mice. Collectively, the present study highlighted the importance of gut microbiota in host energy homoeostasis and provided a rationale for introducing glutamine supplementation to patients receiving long-term antibiotic treatment.
Assuntos
Clindamicina/efeitos adversos , Disbiose , Glutamina/deficiência , Enteropatias , Animais , Antibacterianos/efeitos adversos , Butiratos , Diarreia/induzido quimicamente , Disbiose/induzido quimicamente , Disbiose/tratamento farmacológico , Microbioma Gastrointestinal , Enteropatias/induzido quimicamente , Enteropatias/tratamento farmacológico , CamundongosRESUMO
The metabolism of glucose and glutamine, primary carbon sources utilized by mitochondria to generate energy and macromolecules for cell growth, is directly regulated by mTORC1. We show that glucose and glutamine, by supplying carbons to the TCA cycle to produce ATP, positively feed back to mTORC1 through an AMPK-, TSC1/2-, and Rag-independent mechanism by regulating mTORC1 assembly and its lysosomal localization. We discovered that the ATP-dependent TTT-RUVBL1/2 complex was disassembled and repressed by energy depletion, resulting in its decreased interaction with mTOR. The TTT-RUVBL complex was necessary for the interaction between mTORC1 and Rag and formation of mTORC1 obligate dimers. In cancer tissues, TTT-RUVBL complex mRNAs were elevated and positively correlated with transcripts encoding proteins of anabolic metabolism and mitochondrial function-all mTORC1-regulated processes. Thus, the TTT-RUVBL1/2 complex responds to the cell's metabolic state, directly regulating the functional assembly of mTORC1 and indirectly controlling the nutrient signal from Rags to mTORC1.
Assuntos
Metabolismo Energético , Lisossomos/metabolismo , Proteínas/metabolismo , Estresse Fisiológico , ATPases Associadas a Diversas Atividades Celulares , Trifosfato de Adenosina/metabolismo , Adenilato Quinase/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Carcinoma/genética , Carcinoma/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Células Cultivadas , Ciclo do Ácido Cítrico , DNA Helicases/genética , DNA Helicases/metabolismo , Feminino , Glucose/deficiência , Glutamina/deficiência , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Knockout , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Complexos Multiproteicos , Ligação Proteica , Multimerização Proteica , Transporte Proteico , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Transdução de Sinais , Estatísticas não Paramétricas , Serina-Treonina Quinases TOR , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , Proteína 1 do Complexo Esclerose Tuberosa , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismoRESUMO
Glutamine is an essential nutrient for cancer cell survival and proliferation, yet the signaling pathways that sense glutamine levels remain uncharacterized. Here, we report that the protein phosphatase 2A (PP2A)-associated protein, α4, plays a conserved role in glutamine sensing. α4 promotes assembly of an adaptive PP2A complex containing the B55α regulatory subunit via providing the catalytic subunit upon glutamine deprivation. Moreover, B55α is specifically induced upon glutamine deprivation in a ROS-dependent manner to activate p53 and promote cell survival. B55α activates p53 through direct interaction and dephosphorylation of EDD, a negative regulator of p53. Importantly, the B55α-EDD-p53 pathway is essential for cancer cell survival and tumor growth under low glutamine conditions in vitro and in vivo. This study delineates a previously unidentified signaling pathway that senses glutamine levels as well as provides important evidence that protein phosphatase complexes are actively involved in signal transduction.
Assuntos
Glutamina/deficiência , Proteína Fosfatase 2/metabolismo , Subunidades Proteicas/metabolismo , Estresse Fisiológico , Proteína Supressora de Tumor p53/metabolismo , Adaptação Fisiológica , Proteínas Adaptadoras de Transdução de Sinal , Animais , Domínio Catalítico , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Expressão Gênica , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Camundongos , Camundongos Nus , Chaperonas Moleculares , Células NIH 3T3 , Transplante de Neoplasias , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Multimerização Proteica , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/fisiologia , Subunidades Proteicas/genética , Subunidades Proteicas/fisiologia , RNA Interferente Pequeno/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Ativação Transcricional , Carga Tumoral , Ubiquitina-Proteína Ligases/metabolismoRESUMO
Glutamate is involved in a variety of metabolic pathways. We reviewed the literature on genetic defects of enzymes that directly metabolise glutamate, leading to inborn errors of glutamate metabolism. Seventeen genetic defects of glutamate metabolising enzymes have been reported, of which three were only recently identified. These 17 defects affect the inter-conversion of glutamine and glutamate, amino acid metabolism, ammonia detoxification, and glutathione metabolism. We provide an overview of the clinical and biochemical phenotypes of these rare defects in an effort to ease their recognition. By categorising these by biochemical pathway, we aim to create insight into the contributing role of deviant glutamate and glutamine levels to the pathophysiology. For those disorders involving the inter-conversion of glutamine and glutamate, these deviant levels are postulated to play a pivotal pathophysiologic role. For the other IEM however-with the exception of urea cycle defects-abnormal glutamate and glutamine concentrations were rarely reported. To create insight into the clinical consequences of disturbed glutamate metabolism-rather than individual glutamate and glutamine levels-the prevalence of phenotypic abnormalities within the 17 IEM was compared to their prevalence within all Mendelian disorders and subsequently all disorders with metabolic abnormalities notated in the Human Phenotype Ontology (HPO) database. For this, a hierarchical database of all phenotypic abnormalities of the 17 defects in glutamate metabolism based on HPO was created. A neurologic phenotypic spectrum of developmental delay, ataxia, seizures, and hypotonia are common in the inborn errors of enzymes in glutamate metabolism. Additionally, ophthalmologic and skin abnormalities are often present, suggesting that disturbed glutamate homeostasis affects tissues of ectodermal origin: brain, eye, and skin. Reporting glutamate and glutamine concentrations in patients with inborn errors of glutamate metabolism would provide additional insight into the pathophysiology.
Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/enzimologia , Glutamatos/metabolismo , Glutamina/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/fisiopatologia , Bases de Dados Factuais , Deficiências Nutricionais/etiologia , Glutamatos/deficiência , Glutamina/deficiência , HumanosRESUMO
Autophagy is commonly described as a cell survival mechanism and has been implicated in chemo- and radioresistance of cancer cells. Whether ionizing radiation induced autophagy triggers tumor cell survival or cell death still remains unclear. In this study the autophagy related proteins Beclin1 and ATG7 were tested as potential targets to sensitize colorectal carcinoma cells to ionizing radiation under normoxic, hypoxic and starvation conditions. Colony formation, apoptosis and cell cycle analysis revealed that knockdown of Beclin1 or ATG7 does not enhance radiosensitivity in HCT-116 cells. Furthermore, ATG7 knockdown led to an increased survival fraction under oxygen and glutamine starvation, indicating that ionizing radiation indeed induces autophagy which, however, leads to cell death finally. These results highlight that inhibition of autophagic pathways does not generally increase therapy success but may also lead to an unfavorable outcome especially under amino acid and oxygen restriction.
Assuntos
Apoptose/efeitos da radiação , Autofagia/efeitos da radiação , Neoplasias Colorretais/patologia , Radiação Ionizante , Proteína 7 Relacionada à Autofagia/metabolismo , Proteína Beclina-1/metabolismo , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Glutamina/deficiência , Humanos , Oxigênio/farmacologiaRESUMO
BACKGROUND: Tumourigenic cells modify metabolic pathways in order to facilitate increased proliferation and cell survival resulting in glucose- and glutamine addiction. Previous research indicated that glutamine deprivation resulted in potential differential activity targeting tumourigenic cells more prominently. This is ascribed to tumourigenic cells utilising increased glutamine quantities for enhanced glycolysis- and glutaminolysis. In this study, the effects exerted by glutamine deprivation on reactive oxygen species (ROS) production, mitochondrial membrane potential, cell proliferation and cell death in breast tumourigenic cell lines (MCF-7, MDA-MB-231, BT-20) and a non-tumourigenic breast cell line (MCF-10A) were investigated. RESULTS: Spectrophotometry demonstrated that glutamine deprivation resulted in decreased cell growth in a time-dependent manner. MCF-7 cell growth was decreased to 61% after 96 h of glutamine deprivation; MDA-MB-231 cell growth was decreased to 78% cell growth after 96 h of glutamine deprivation, MCF-10A cell growth was decreased 89% after 96 h of glutamine deprivation and BT-20 cell growth decreased to 86% after 24 h of glutamine deprivation and remained unchanged until 96 h of glutamine deprivation. Glutamine deprivation resulted in oxidative stress where superoxide levels were significantly elevated after 96 h in the MCF-7- and MDA-MB-231 cell lines. Time-dependent production of hydrogen peroxide was accompanied by aberrant mitochondrial membrane potential. The effects of ROS and mitochondrial membrane potential were more prominently observed in the MCF-7 cell line when compared to the MDA-MB-231-, MCF-10A- and BT-20 cell lines. Cell cycle progression revealed that glutamine deprivation resulted in a significant increase in the S-phase after 72 h of glutamine deprivation in the MCF-7 cell line. Apoptosis induction resulted in a decrease in viable cells in all cell lines following glutamine deprivation. In the MCF-7 cells, 87.61% of viable cells were present after 24 h of glutamine deprivation. CONCLUSION: This study demonstrates that glutamine deprivation resulted in decreased cell proliferation, time-dependent- and cell line-dependent ROS generation, aberrant mitochondrial membrane potential and disrupted cell cycle progression. In addition, the estrogen receptor positive MCF-7 cell line was more prominently affected. This study contributes to knowledge regarding the sensitivity of breast cancer cells and non-tumorigenic cells to glutamine deprivation.
Assuntos
Neoplasias da Mama/patologia , Proliferação de Células , Sobrevivência Celular , Glutamina/deficiência , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Apoptose , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Glutamina/metabolismo , Humanos , EspectrofotometriaRESUMO
Tumor cells dependence on glutamine offers a rationale for their elimination via targeting of glutamine metabolism. The aim of this work was to investigate how glutamine deprivation affects the cellular response to conventionally used anticancer drugs. To answer this question, neuroblastoma cells were pre-incubated in a glutamine-free medium and treated with cisplatin or etoposide. Obtained results revealed that glutamine withdrawal affected cellular response to therapeutic drugs in a different manner. Glutamine deprivation suppressed etoposide-induced, but markedly stimulated cisplatin-induced apoptosis. Suppression of etoposide-induced cell death correlated with a downregulation of p53 expression, which, among other functions, regulates the expression of death receptor 5, one of the activators of caspase-8. In contrast, stimulation of cisplatin-induced cell death involved reactive oxygen species-mediated downregulation of FLIP-S, an inhibitor of caspase-8. As a result, the activity of caspase-8 was stimulated causing cleavage of the pro-apoptotic protein Bid, which is involved in the permeabilization of the outer mitochondrial membrane and the release of pro-apoptotic factors, such as cytochrome c from mitochondria. Thus, suppression of glutamine metabolism can sensitize tumor cells to treatment and could be utilized for anti-cancer therapy. However, it should be done cautiously, since adverse effects may occur when combined with an inappropriate therapeutic drug.
Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Glutamina/deficiência , Neurônios/efeitos dos fármacos , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/genética , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/genética , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Caspase 8/genética , Caspase 8/metabolismo , Linhagem Celular Tumoral , Cisplatino/farmacologia , Meios de Cultura/química , Citocromos c/metabolismo , Etoposídeo/farmacologia , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Espécies Reativas de Oxigênio/agonistas , Espécies Reativas de Oxigênio/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismoRESUMO
The antitumor activity of activated CD8+ T cells in the tumor microenvironment seems to be limited due to their being metabolically unfit. This metabolic unfitness is closely associated with T-cell exhaustion and impairment of memory formation, which are barriers to successful antitumor adoptive immunotherapy. We therefore assessed the role of glutamine metabolism in the antitumor activity of CD8+ T cells using a tumor-inoculated mouse model. The adoptive transfer of tumor-specific CD8+ T cells cultured under glutamine-restricted (dGln) conditions or CD8+ T cells treated with specific inhibitors of glutamine metabolism efficiently eliminated tumors and led to better survival of tumor-inoculated mice than with cells cultured under control (Ctrl) conditions. The decreased expression of PD-1 and increased Ki67 positivity among tumor-infiltrating CD8+ T cells cultured under dGln conditions suggested that the inhibition of glutamine metabolism prevents CD8+ T-cell exhaustion in vivo. Furthermore, the transferred CD8+ T cells cultured under dGln conditions expanded more efficiently against secondary OVA stimulation than did CD8+ T cells under Ctrl conditions. We found that the expression of a pro-survival factor and memory T cell-related transcription factors was significantly higher in CD8+ T cells cultured under dGln conditions than in those cultured under Ctrl conditions. Given these findings, our study uncovered an important role of glutamine metabolism in the antitumor activity of CD8+ T cells. The novel adoptive transfer of tumor-specific CD8+ T cells cultured in glutamine-restricted conditions may be a promising approach to improve the efficacy of cell-based adoptive immunotherapy.
Assuntos
Linfócitos T CD8-Positivos/transplante , Glutamina/deficiência , Timoma/terapia , Neoplasias do Timo/terapia , Animais , Linfócitos T CD8-Positivos/metabolismo , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Meios de Cultura/química , Humanos , Imunoterapia Adotiva/métodos , Camundongos , Timoma/imunologia , Timoma/metabolismo , Neoplasias do Timo/imunologia , Neoplasias do Timo/metabolismo , Microambiente Tumoral , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Glutamine, a well-established oncometabolite, anaplerotically fuels mitochondrial energy metabolism and modulates activity of mammalian/mechanistic target of rapamycin complexes (mTOR). Currently, mTOR inhibitors are in clinical use for certain types of cancer but with limited success. Since glutamine is essential for growth of many cancers, we reasoned that glutamine deprivation under conditions of mTOR inhibition should be more detrimental to cancer cell survival. However, our results show that when cells are deprived of glutamine concomitant with mTOR inhibition, hepatocarcinoma cells elicit an adaptive response which aids in their survival due to enhanced autophagic flux. Moreover, inhibition of mTOR promotes Akt ubiquitination and its proteasomal degradation however we show that Akt degradation is abrogated by increased autophagy following glutamine withdrawal. Under conditions of glutamine deficiency and mTOR inhibition, the enhanced stability of Akt protein may provide survival cues to cancer cells. Thus, our data uncovers a novel molecular link between glutamine metabolism, autophagy and stability of Akt with cancer cell survival.
Assuntos
Glutamina/deficiência , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Camundongos , Células NIH 3T3 , Neoplasias/patologia , Inibidores de Proteínas Quinases/uso terapêutico , Estabilidade Proteica , Proteólise/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Ubiquitinação/efeitos dos fármacosRESUMO
T cell subsets differ in their metabolic requirements, and further insight into such differences might be harnessed to selectively promote regulatory T cells (Tregs) for therapies in autoimmunity and transplantation. We found that Gln restriction during human T cell activation favored CD4 T cells with high expression of the Treg transcription factor FOXP3. This resulted from shrinking numbers and reduced proliferation of activated FOXP3(lo/-)CD4 T cells while FOXP3(hi)CD4 T cell numbers increased. This gain was abolished by blocking Gln synthetase, an enzyme that responds to Gln and purine/pyrimidine deficiencies. The shift toward FOXP3(hi)CD4 T cells under Gln restriction was recapitulated with inhibitors of Gln-dependent pyrimidine and purine syntheses that together closely mimicked declining cell numbers and cell cycles, and by small interfering RNA knockdown of the respective rate-limiting Gln-consuming enzymes CAD and PPAT. FOXP3(hi)-enriched CD25(hi)CD4 T cells from these cultures inhibited proliferation, but they also produced effector cytokines, including IL-17A. The latter was largely confined to CTLA-4(hi)-expressing FOXP3(hi)-enriched CD25(hi)CD4 T cells that suppressed proliferation more weakly than did CTLA-4(lo/-)CD25(hi)FOXP3(hi)-enriched T cells. A causal link between high IL-17A production and impaired suppression of proliferation could not be demonstrated, however. Collectively, these results reveal a Gln synthetase-dependent increase and resilience of FOXP3(hi) cells under Gln restriction, and they demonstrate that impaired Gln-dependent nucleotide synthesis promotes FOXP3(hi) cells with regulator properties. It remains to be investigated to what extent the concomitant retention of IL-17A-producing CD4 T cells may limit the therapeutic potential of Tregs enriched through targeting these pathways in vivo.
Assuntos
Linfócitos T CD4-Positivos/imunologia , Fatores de Transcrição Forkhead/genética , Glutamina/metabolismo , Ativação Linfocitária , Purinas/biossíntese , Pirimidinas/biossíntese , Linfócitos T CD4-Positivos/fisiologia , Proliferação de Células , Citocinas/biossíntese , Citocinas/imunologia , Regulação da Expressão Gênica , Glutamato-Amônia Ligase/antagonistas & inibidores , Glutamato-Amônia Ligase/metabolismo , Glutamina/biossíntese , Glutamina/deficiência , Humanos , Interleucina-17/biossíntese , Leucócitos Mononucleares/imunologiaRESUMO
In recent years the number of disorders known to affect amino acid synthesis has grown rapidly. Nor is it just the number of disorders that has increased: the associated clinical phenotypes have also expanded spectacularly, primarily due to the advances of next generation sequencing diagnostics. In contrast to the "classical" inborn errors of metabolism in catabolic pathways, in which elevated levels of metabolites are easily detected in body fluids, synthesis defects present with low values of metabolites or, confusingly, even completely normal levels of amino acids. This makes the biochemical diagnosis of this relatively new group of metabolic diseases challenging. Defects in the synthesis pathways of serine metabolism, glutamine, proline and, recently, asparagine have all been reported. Although these amino acid synthesis defects are in unrelated metabolic pathways, they do share many clinical features. In children the central nervous system is primarily affected, giving rise to (congenital) microcephaly, early onset seizures and varying degrees of mental disability. The brain abnormalities are accompanied by skin disorders such as cutis laxa in defects of proline synthesis, collodion-like skin and ichthyosis in serine deficiency, and necrolytic erythema in glutamine deficiency. Hypomyelination with accompanying loss of brain volume and gyration defects can be observed on brain MRI in all synthesis disorders. In adults with defects in serine or proline synthesis, spastic paraplegia and several forms of polyneuropathy with or without intellectual disability appear to be the major symptoms in these late-presenting forms of amino acid disorders. This review provides a comprehensive overview of the disorders in amino acid synthesis.
Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/genética , Aminoácidos/deficiência , Sequenciamento de Nucleotídeos em Larga Escala , Anormalidades Múltiplas/genética , Aminoácidos/biossíntese , Animais , Asparagina/deficiência , Encefalopatias/genética , Sistema Nervoso Central/metabolismo , Retardo do Crescimento Fetal/genética , Glutamina/deficiência , Humanos , Ictiose/genética , Deformidades Congênitas dos Membros/genética , Doenças Metabólicas/genética , Camundongos , Microcefalia/genética , Prolina/deficiência , Serina/deficiênciaRESUMO
Bioassay for amino acid quantification is an important technology for a variety of fields, which allows for easy, inexpensive, and high-throughput analyses. Here, we describe a novel translation-dependent bioassay for the quantification of amino acids. For this, the gene encoding firefly luciferase was introduced into Lactococcus lactis auxotrophic to Glu, His, Ile, Leu, Pro, Val, and Arg. After a preculture where luciferase expression was repressed, the cells were mixed with analytes, synthetic medium, and an inducer for luciferase expression. Luminescence response to the target amino acid appeared just after mixing, and linear standard curves for these amino acids were obtained during 15-60-min incubation periods. The rapid quantification of amino acids has neither been reported in previous works on bioassays nor is it theoretically feasible with conventional methods, which require incubation times of more than 4 h to allow for the growth of the microbe used. In contrast, our assay was shown to depend on protein translation, rather than on cell growth. Furthermore, replacement of the luciferase gene with that of the green fluorescent protein (GFP) or ß-galactosidase allowed for fluorescent and colorimetric detection of the amino acids, respectively. Significantly, when a Gln-auxotrophic Escherichia coli mutant was created and transformed by a luciferase expression plasmid, a linear standard curve for Gln was observed in 15 min. These results demonstrate that this methodology can provide versatile bioassays by adopting various combinations of marker genes and host strains according to the analytes and experimental circumstances.