RESUMO
Survival motor neuron protein (SMN), which is linked to spinal muscular atrophy, is a key component of the Gemin complex, which is essential for the assembly of small nuclear RNA-protein complexes (snRNPs). After initial snRNP assembly in the cytoplasm, both snRNPs and SMN migrate to the nucleus and associate with Cajal bodies, where final snRNP maturation occurs. It is assumed that SMN must be free from the Cajal bodies for continuous snRNP biogenesis. Previous observation of the SMN granules docked in the Cajal bodies suggests the existence of a separation mechanism. However, the precise processes that regulate the spatial separation of SMN complexes from Cajal bodies remain unclear. Here, we have employed a super-resolution microscope alongside the ß-carboline alkaloid harmine, which disrupts the Cajal body in a reversible manner. Upon removal of harmine, SMN and Coilin first appear as small interconnected condensates. The SMN condensates mature into spheroidal structures encircled by Coilin, eventually segregating into distinct condensates. Expression of a multimerization-deficient SMN mutant leads to enlarged, atypical Cajal bodies in which SMN is unable to segregate into separate condensates. These findings underscore the importance of multimerization in facilitating the segregation of SMN from Coilin within Cajal bodies.
Assuntos
Corpos Enovelados , Harmina , Corpos Enovelados/metabolismo , Humanos , Harmina/farmacologia , Multimerização Proteica , Células HeLa , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Proteínas do Complexo SMN/metabolismo , Proteínas do Complexo SMN/genética , Proteínas Nucleares/metabolismoRESUMO
Pathological cardiac hypertrophy, a common feature in various cardiovascular diseases, can be more effectively managed through combination therapies using natural compounds. Harmine, a ß-carboline alkaloid found in plants, possesses numerous pharmacological functions, including alleviating cardiac hypertrophy. Similarly, Selenomethionine (SE), a primary organic selenium source, has been shown to mitigate cardiac autophagy and alleviate injury. To explores the therapeutic potential of combining Harmine with SE to treat cardiac hypertrophy. The synergistic effects of SE and harmine against cardiac hypertrophy were assessed in vitro with angiotensin II (AngII)-induced hypertrophy and in vivo using a Myh6R404Q mouse model. Co-administration of SE and harmine significantly reduced hypertrophy-related markers, outperforming monotherapies. Transcriptomic and metabolic profiling revealed substantial alterations in key metabolic and signalling pathways, particularly those involved in energy metabolism. Notably, the combination therapy led to a marked reduction in the activity of key glycolytic enzymes. Importantly, the addition of the glycolysis inhibitor 2-deoxy-D-glucose (2-DG) did not further potentiate these effects, suggesting that the antihypertrophic action is predominantly mediated through glycolytic inhibition. These findings highlight the potential of SE and harmine as a promising combination therapy for the treatment of cardiac hypertrophy.
Assuntos
Cardiomegalia , Glicólise , Harmina , Selenometionina , Animais , Harmina/farmacologia , Cardiomegalia/metabolismo , Cardiomegalia/tratamento farmacológico , Cardiomegalia/patologia , Cardiomegalia/induzido quimicamente , Glicólise/efeitos dos fármacos , Camundongos , Selenometionina/farmacologia , Masculino , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Angiotensina II , Sinergismo Farmacológico , Transdução de Sinais/efeitos dos fármacosRESUMO
IMPORTANCE: This study highlights the crucial role RNA processing plays in regulating viral gene expression and replication. By targeting SR kinases, we identified harmine as a potent inhibitor of HIV-1 as well as coronavirus (HCoV-229E and multiple SARS-CoV-2 variants) replication. Harmine inhibits HIV-1 protein expression and reduces accumulation of HIV-1 RNAs in both cell lines and primary CD4+ T cells. Harmine also suppresses coronavirus replication post-viral entry by preferentially reducing coronavirus sub-genomic RNA accumulation. By focusing on host factors rather than viral targets, our study offers a novel approach to combating viral infections that is effective against a range of unrelated viruses. Moreover, at doses required to inhibit virus replication, harmine had limited toxicity and minimal effect on the host transcriptome. These findings support the viability of targeting host cellular processes as a means of developing broad-spectrum anti-virals.
Assuntos
Antivirais , Coronavirus , HIV-1 , Harmina , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , Coronavirus/efeitos dos fármacos , Coronavirus/fisiologia , Infecções por Coronavirus/tratamento farmacológico , Harmina/farmacologia , Harmina/uso terapêutico , HIV-1/efeitos dos fármacos , HIV-1/fisiologia , Replicação Viral/efeitos dos fármacosRESUMO
BACKGROUND: DYRK1a (dual-specificity tyrosine phosphorylation-regulated kinase 1a) contributes to the control of cycling cells, including cardiomyocytes. However, the effects of inhibition of DYRK1a on cardiac function and cycling cardiomyocytes after myocardial infarction (MI) remain unknown. METHODS: We investigated the impacts of pharmacological inhibition and conditional genetic ablation of DYRK1a on endogenous cardiomyocyte cycling and left ventricular systolic function in ischemia-reperfusion (I/R) MI using αMHC-MerDreMer-Ki67p-RoxedCre::Rox-Lox-tdTomato-eGFP (RLTG) (denoted αDKRC::RLTG) and αMHC-Cre::Fucci2aR::DYRK1aflox/flox mice. RESULTS: We observed that harmine, an inhibitor of DYRK1a, improved left ventricular ejection fraction (39.5±1.6% and 29.1±1.6%, harmine versus placebo, respectively), 2 weeks after I/R MI. Harmine also increased cardiomyocyte cycling after I/R MI in αDKRC::RLTG mice, 10.8±1.5 versus 24.3±2.6 enhanced Green Fluorescent Protein (eGFP)+ cardiomyocytes, placebo versus harmine, respectively, P=1.0×10-3. The effects of harmine on left ventricular ejection fraction were attenuated in αDKRC::DTA mice that expressed an inducible diphtheria toxin in adult cycling cardiomyocytes. The conditional cardiomyocyte-specific genetic ablation of DYRK1a in αMHC-Cre::Fucci2aR::DYRK1aflox/flox (denoted DYRK1a k/o) mice caused cardiomyocyte hyperplasia at baseline (210±28 versus 126±5 cardiomyocytes per 40× field, DYRK1a k/o versus controls, respectively, P=1.7×10-2) without changes in cardiac function compared with controls, or compensatory changes in the expression of other DYRK isoforms. After I/R MI, DYRK1a k/o mice had improved left ventricular function (left ventricular ejection fraction 41.8±2.2% and 26.4±0.8%, DYRK1a k/o versus control, respectively, P=3.7×10-2). RNAseq of cardiomyocytes isolated from αMHC-Cre::Fucci2aR::DYRK1aflox/flox and αMHC-Cre::Fucci2aR mice after I/R MI or Sham surgeries identified enrichment in mitotic cell cycle genes in αMHC-Cre::Fucci2aR::DYRK1aflox/flox compared with αMHC-Cre::Fucci2aR. CONCLUSIONS: The pharmacological inhibition or cardiomyocyte-specific ablation of DYRK1a caused baseline hyperplasia and improved cardiac function after I/R MI, with an increase in cell cycle gene expression, suggesting the inhibition of DYRK1a may serve as a therapeutic target to treat MI.
Assuntos
Infarto do Miocárdio , Miócitos Cardíacos , Animais , Modelos Animais de Doenças , Harmina/metabolismo , Harmina/farmacologia , Hiperplasia/metabolismo , Camundongos , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Volume Sistólico , Função Ventricular EsquerdaRESUMO
BACKGROUND: As antimicrobial resistance (AMR) has become a global health crisis, new strategies against AMR infection are urgently needed. Quorum sensing (QS), responsible for bacterial communication and pathogenicity, is among the targets for anti-virulence drugs that thrive as one of the promising treatments against AMR infection. METHODS: We identified a natural compound, Harmine, through virtual screening based on three QS receptors of Pseudomonas aeruginosa (P. aeruginosa) and explored the effect of Harmine on QS-controlled and pathogenicity-related phenotypes including pyocyanin production, exocellular protease excretion, biofilm formation, and twitching motility of P. aeruginosa PA14. The protective effect of Harmine on Caenorhabditis elegans (C. elegans) and mice infection models was determined and the synergistic effect of Harmine combined with common antibiotics was explored. The underlaying mechanism of Harmine's QS inhibitory effect was illustrated by molecular docking analysis, transcriptomic analysis, and target verification assay. RESULTS: In vitro results suggested that Harmine possessed QS inhibitory effects on pyocyanin production, exocellular protease excretion, biofilm formation, and twitching motility of P. aeruginosa PA14, and in vivo results displayed Harmine's protective effect on C. elegans and mice infection models. Intriguingly, Harmine increased susceptibility of both PA14 and clinical isolates of P. aeruginosa to polymyxin B and kanamycin when used in combination. Moreover, Harmine down-regulated a series of QS controlled genes associated with pathogenicity and the underlying mechanism may have involved competitively antagonizing autoinducers' receptors LasR, RhlR, and PqsR. CONCLUSIONS: This study shed light on the anti-virulence potential of Harmine against QS targets, suggesting the possible use of Harmine and its derivates as anti-virulence compounds.
Assuntos
Antibacterianos , Biofilmes , Caenorhabditis elegans , Harmina , Infecções por Pseudomonas , Pseudomonas aeruginosa , Percepção de Quorum , Percepção de Quorum/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/patogenicidade , Pseudomonas aeruginosa/genética , Animais , Harmina/farmacologia , Caenorhabditis elegans/microbiologia , Camundongos , Virulência/efeitos dos fármacos , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Simulação de Acoplamento Molecular , Testes de Sensibilidade Microbiana , Piocianina , Modelos Animais de Doenças , Farmacorresistência Bacteriana/efeitos dos fármacos , FemininoRESUMO
Although cancer and malaria are not etiologically nor pathophysiologically connected, due to their similarities successful repurposing of antimalarial drugs for cancer and vice-versa is known and used in clinical settings and drug research and discovery. With the growing resistance of cancer cells and Plasmodium to the known drugs, there is an urgent need to discover new chemotypes and enrich anticancer and antimalarial drug portfolios. In this paper, we present the design and synthesis of harmiprims, hybrids composed of harmine, an alkaloid of the ß-carboline type bearing anticancer and antiplasmodial activities, and primaquine, 8-aminoquinoline antimalarial drug with low antiproliferative activity, covalently bound via triazole or urea. Evaluation of their antiproliferative activities in vitro revealed that N-9 substituted triazole-type harmiprime was the most selective compound against MCF-7, whereas C1-substituted ureido-type hybrid was the most active compound against all cell lines tested. On the other hand, dimeric harmiprime was not toxic at all. Although spectrophotometric studies and thermal denaturation experiments indicated binding of harmiprims to the ds-DNA groove, cell localization showed that harmiprims do not enter cell nucleus nor mitochondria, thus no inhibition of DNA-related processes can be expected. Cell cycle analysis revealed that C1-substituted ureido-type hybrid induced a G1 arrest and reduced the number of cells in the S phase after 24 h, persisting at 48 h, albeit with a less significant increase in G1, possibly due to adaptive cellular responses. In contrast, N-9 substituted triazole-type harmiprime exhibited less pronounced effects on the cell cycle, particularly after 48 h, which is consistent with its moderate activity against the MCF-7 cell line. On the other hand, screening of their antiplasmodial activities against the erythrocytic, hepatic, and gametocytic stages of the Plasmodium life cycle showed that dimeric harmiprime exerts powerful triple-stage antiplasmodial activity, while computational analysis showed its binding within the ATP binding site of PfHsp90.
Assuntos
Antimaláricos , Antineoplásicos , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Harmina , Antimaláricos/farmacologia , Antimaláricos/química , Antimaláricos/síntese química , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Harmina/farmacologia , Harmina/química , Harmina/síntese química , Proliferação de Células/efeitos dos fármacos , Relação Estrutura-Atividade , Plasmodium falciparum/efeitos dos fármacos , Estrutura Molecular , Descoberta de Drogas , Relação Dose-Resposta a Droga , Linhagem Celular Tumoral , Testes de Sensibilidade ParasitáriaRESUMO
BACKGROUND: The present study aimed to elucidate the potential anticancer activity and mechanism of P. harmala's alkaloid extract, harmine (HAR), and harmaline (HAL) in HCT-116 colorectal cancer cells. METHODS AND RESULTS: P. harmala's alkaloid was extracted from harmala seeds. HCT-116 cells were treated with P. harmala's alkaloid extract, HAR and HAL. Cytotoxicity was determined by MTT assay, apoptotic activity detected via flow cytometry and acridine orange (AO)/ethidium bromide (EB) dual staining, and cell cycle distribution analyzed with flow cytometry. The mRNA expression of Bcl-2-associated X protein (Bax) and glycogen synthase kinase-3 beta (GSK3ß) was measured by real-time PCR. Furthermore, the expression of Bax, Bcl-2, GSK3ß and p53 proteins, were determined by western blotting. The findings indicated that, P. harmala's alkaloids extract, HAR and HAL were significantly cytotoxic toward HCT116 cells after 24 and 48 h of treatment. We showed that P. harmala's alkaloid extract induce apoptosis and cell cycle arrest at G2 phase in the HCT116 cell line. Downregulation of GSK3ß and Bcl-2 and upregulation of Bax and p53 were observed. CONCLUSION: The findings of this study indicate that the P. harmala's alkaloid extract has anticancer activity and may be further investigated to develop future anticancer chemotherapeutic agents.
Assuntos
Apoptose , Neoplasias do Colo , Glicogênio Sintase Quinase 3 beta , Harmina , Peganum , Sementes , Humanos , Peganum/química , Células HCT116 , Apoptose/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Sementes/química , Harmina/farmacologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Proteína X Associada a bcl-2/metabolismo , Proteína X Associada a bcl-2/genética , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Alcaloides/farmacologia , Harmalina/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proliferação de Células/efeitos dos fármacosRESUMO
his comprehensive review is designed to evaluate the anticancer properties of ß-carbolines derived from medicinal plants, with the ultimate goal of assessing their suitability and potential in cancer treatment, management, and prevention. An exhaustive literature survey was conducted on a wide array of ß-carbolines including, but not limited to, harmaline, harmine, harmicine, harman, harmol, harmalol, pinoline, tetrahydroharmine, tryptoline, cordysinin C, cordysinin D, norharmane, and perlolyrine. Various analytical techniques were employed to identify and screen these compounds, followed by a detailed analysis of their anticancer mechanisms. Natural ß-carbolines such as harmaline and harmine have shown promising inhibitory effects on the growth of cancer cells, as evidenced by multiple inâ vitro and inâ vivo studies. Synthetically derived ß-carbolines also displayed noteworthy anticancer, neuroprotective, and cognitive-enhancing effects. The current body of research emphasizes the potential of ß-carbolines as a unique source of bioactive compounds for cancer treatment. The diverse range of ß-carbolines derived from medicinal plants can offer valuable insights into the development of new therapeutic strategies for cancer management and prevention.
Assuntos
Alcaloides , Plantas Medicinais , Harmina/farmacologia , Harmalina/farmacologia , Carbolinas/farmacologia , Alcaloides/farmacologiaRESUMO
Multitarget-directed ligands (MTDLs) have recently attracted significant interest due to their superior effectiveness in multifactorial Alzheimer's disease (AD). Combined inhibition of two important AD targets, glycogen synthase kinase-3ß (GSK-3ß) and dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A), may be a breakthrough in the treatment of AD. Based on our previous work, we have designed and synthesized a series of novel harmine derivatives, investigated their inhibition of GSK-3ß and DYRK1A, and evaluated a variety of biological activities. The results of the experiments showed that most of these compounds exhibited good activity against GSK-3ß and DYRK1A in vitro. ZLQH-5 was selected as the best compound due to the most potent inhibitory effect against GSK-3ß and DYRK1A. Molecular docking studies demonstrated that ZLQH-5 could form stable interactions with the ATP binding pocket of GSK-3ß and DYRK1A. In addition, ZLQH-5 showed low cytotoxicity against SH-SY5Y and HL-7702, good blood-brain barrier permeability, and favorable pharmacokinetic properties. More importantly, ZLQH-5 also attenuated the tau hyperphosphorylation in the okadaic acid SH-SY5Y cell model. These results indicated that ZLQH-5 could be a promising dual-target drug candidate for the treatment of AD.
Assuntos
Doença de Alzheimer , Neuroblastoma , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Glicogênio Sintase Quinase 3 beta , Harmina/farmacologia , Harmina/uso terapêutico , Proteínas tau/metabolismo , Proteínas tau/uso terapêutico , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , FosforilaçãoRESUMO
Anaplastic thyroid carcinoma (ATC) is an extremely difficult disease to tackle, with an overall patient survival of only a few months. The currently used therapeutic drugs, such as kinase inhibitors or immune checkpoint inhibitors, can prolong patient survival but fail to eradicate the tumor. In addition, the onset of drug resistance and adverse side-effects over time drastically reduce the chances of treatment. We recently showed that Twist1, a transcription factor involved in the epithelial mesenchymal transition (EMT), was strongly upregulated in ATC, and we wondered whether it might represent a therapeutic target in ATC patients. To investigate this hypothesis, the effects of harmine, a ß-carboline alkaloid shown to induce degradation of the Twist1 protein and to possess antitumoral activity in different cancer types, were evaluated on two ATC-derived cell lines, BHT-101 and CAL-62. The results obtained demonstrated that, in both cell lines, harmine reduced the level of Twist1 protein and reverted the EMT, as suggested by the augmentation of E-cadherin and decrease in fibronectin expression. The drug also inhibited cell proliferation and migration in a dose-dependent manner and significantly reduced the anchorage-independent growth of both ATC cell lines. Harmine was also capable of inducing apoptosis in BHT-101 cells, but not in CAL-62 ones. Finally, the activation of PI3K/Akt signaling, but not that of the MAPK, was drastically reduced in treated cells. Overall, these in vitro data suggest that harmine could represent a new therapeutic option for ATC treatment.
Assuntos
Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Humanos , Harmina/farmacologia , Carcinoma Anaplásico da Tireoide/tratamento farmacológico , Proteína 1 Relacionada a Twist/genética , Fosfatidilinositol 3-Quinases , Neoplasias da Glândula Tireoide/tratamento farmacológicoRESUMO
Herpes simplex virus (HSV) infections are highly widespread among humans, producing symptoms ranging from ulcerative lesions to severe diseases such as blindness and life-threatening encephalitis. At present, there are no vaccines available, and some existing antiviral treatments can be ineffective or lead to adverse effects. As a result, there is a need for new anti-HSV drugs. In this report, the in vitro anti-HSV effect of 9,9'-norharmane dimer (nHo-dimer), which belongs to the ß-carboline (ßC) alkaloid family, was evaluated. The dimer exhibited no virucidal properties and did not impede either the attachment or penetration steps of viral particles. The antiviral effect was only exerted under the constant presence of the dimer in the incubation media, and the mechanism of action was found to involve later events of virus infection. Analysis of fluorescence lifetime imaging data showed that the nHo-dimer internalized well into the cells when present in the extracellular incubation medium, with a preferential accumulation into perinuclear organelles including mitochondria. After washing the host cells with fresh medium free of nHo-dimer, the signal decreased, suggesting the partial release of the compound from the cells. This agrees with the observation that the antiviral effect is solely manifested when the alkaloid is consistently present in the incubation media.
Assuntos
Antivirais , Antivirais/farmacologia , Antivirais/química , Chlorocebus aethiops , Humanos , Células Vero , Animais , Simplexvirus/efeitos dos fármacos , Simplexvirus/fisiologia , Herpes Simples/tratamento farmacológico , Herpes Simples/virologia , Carbolinas/farmacologia , Carbolinas/química , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 1/fisiologia , Harmina/farmacologia , Harmina/química , Harmina/análogos & derivadosRESUMO
Actinic keratosis is a pre-malignant skin disease caused by excessive exposure to ultraviolet light. The present studies further defined the biology of a novel combination of isovanillin, curcumin, and harmine in actinic keratosis cells in vitro . An oral formulation (GZ17-6.02) and topical preparation (GZ21T) comprised of the same fixed, stoichiometric ratio have been developed. Together, the three active ingredients killed actinic keratosis cells more effectively than any of its component parts as either individual agents or when combined in pairs. The three active ingredients caused greater levels of DNA damage than any of its component parts as either individual agents or when combined in pairs. As a single agent, compared to isolated components, GZ17-6.02/GZ21T caused significantly greater activation of PKR-like endoplasmic reticulum kinase, the AMP-dependent protein kinase, and ULK1 and significantly reduced the activities of mTORC1, AKT, and YAP. Knockdown of the autophagy-regulatory proteins ULK1, Beclin1, or ATG5 significantly reduced the lethality of GZ17-6.02/GZ21T alone. Expression of an activated mammalian target of rapamycin mutant suppressed autophagosome formation and autophagic flux and reduced tumor cell killing. Blockade of both autophagy and death receptor signaling abolished drug-induced actinic keratosis cell death. Our data demonstrate that the unique combination of isovanillin, curcumin, and harmine represents a novel therapeutic with the potential to treat actinic keratosis in a manner different from the individual components or pairs of the components.
Assuntos
Antineoplásicos , Curcumina , Ceratose Actínica , Humanos , Curcumina/farmacologia , Harmina/farmacologia , Morte CelularRESUMO
Breast cancer remains a serious threaten to the women's health, discovery of potent treatment would help to improve the outcomes of breast cancer patients. Harmine extracted from Peganum harmala L , has been reported to exert tumor suppressive activity in several malignancies. Our objective was to demonstrate the effects of harmine on the malignant phenotypes of breast cancer cells. Breast cancer cell lines (MDA-MB-231, SKBR3, and MCF-7) and human normal breast cell line MCF-10A were employed in the present study. The MTT and colony formation assays were applied to the detection of cell viability and proliferation. Wound healing and transwell assays were performed to evaluate the alterations of cell migration and invasion after harmine treatment. Flow cytometry was applied to assess the effect of harmine in inducing cell apoptosis. Furthermore, western blotting assay was used to detect the biomarkers of epithelial-mesenchymal transition and phosphatidylinositol 3 kinase (PI3K) signaling pathway. The tumorigenesis ability was detected by subcutaneous implantation. Harmine dose-dependently suppressed the viability and proliferative capacity of breast cancer cells. Flow cytometry showed that harmine induced apoptosis in MCF-7 and MDA-MB-231 cells. In addition, harmine effectively inhibited the migration and invasion abilities of breast cancer cells. Western blotting indicated harmine significantly promoted E-cadherin and PTEN expression, while suppressed N-cadherin, vimentin, PI3K, p-mTOR, and AKT levels. Interfering the PTEN expression by siRNA partly rescued the activity of PI3K signaling pathway. Moreover, harmine injection also suppressed the tumorigenesis of breast cancer cells. Our results suggested that Hermine could suppress multiple malignant phenotypes and inhibit PI3K signaling, which supports that harmine might be a potential tumor-suppressive natural compound against breast cancer.
Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Harmina/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Apoptose , Carcinogênese , Fenótipo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Movimento CelularRESUMO
In this study, a series of potential ligands for the treatment of AD were synthesised and characterised as novel harmine derivatives modified at position 9 with benzyl piperazinyl. In vitro studies revealed that the majority of the derivatives exhibited moderate to potent inhibition against hAChE and Aß1 - 42 aggregation. Notably, compounds 13 and 17d displayed potent drug - likeness and ADMET properties, demonstrating remarkable inhibitory activities towards AChE (IC50 = 58.76 nM and 89.38 nM, respectively) as well as Aß aggregation (IC50 = 9.31 µM and 13.82 µM, respectively). More importantly, compounds 13 and 17d showed exceptional neuroprotective effects against Aß1 - 42-induced SH - SY5Y damage, while maintaining low toxicity in SH - SY5Y cells. Further exploration of the mechanism through kinetic studies and molecular modelling confirmed that compound 13 could interact with both the CAS and the PAS of AChE. These findings suggested that harmine derivatives hold great potential as dual - targeted candidates for treating AD.
Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Humanos , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides , Acetilcolinesterase/metabolismo , Harmina/farmacologia , Harmina/uso terapêutico , Inibidores da Colinesterase/farmacologia , Cinética , Desenho de Fármacos , Relação Estrutura-Atividade , Fármacos Neuroprotetores/farmacologiaRESUMO
Liver fibrosis is a major consequence of chronic liver disease, where excess extracellular matrix is deposited, due caused by the activation of hepatic stellate cells (HSCs). The suppression of collagen production in HSCs is therefore regarded as a therapeutic target of liver fibrosis. The present study investigated effects of harmine, which is a ß-carboline alkaloid and known as an inhibitor of dual-specificity tyrosine-regulated kinases (DYRKs), on the production of collagen in HSCs. LX-2 cells, a human HSC cell line, were treated with harmine (0-10 µM) for 48 h in the presence or absence of TGF-ß1 (5 ng/ml). The expression of collagen type I α1 (COL1A1) and DYRK isoforms was investigated by Western blotting, quantitative RT-PCR, or immunofluorescence. The influence of knockdown of each DYRK isoform on the COL1A1 expression was further investigated. The expression of COL1A1 was markedly increased by treating with TGF-ß1 for 48 h in LX-2 cells. Harmine (10 µM) significantly inhibited the increased expression of COL1A1. LX-2 cells expressed mRNAs of DYRK1A, DYRK1B, DYRK2, and DYRK4, although the expression of DYRK4 was much lower than the others. Knockdown of DYRK1B, but not DYRK1A or DYRK2, with siRNA significantly suppressed TGF-ß1-induced increase in COL1A1 expression. These results suggest that harmine suppresses COL1A1 expression via inhibiting DYRK1B in HSCs and therefore might be effective for the treatment of liver fibrosis.
Assuntos
Cadeia alfa 1 do Colágeno Tipo I , Harmina , Células Estreladas do Fígado , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases , Fator de Crescimento Transformador beta1 , Cadeia alfa 1 do Colágeno Tipo I/antagonistas & inibidores , Cadeia alfa 1 do Colágeno Tipo I/biossíntese , Harmina/farmacologia , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Humanos , Cirrose Hepática/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Quinases DyrkRESUMO
To further improve the anti-tumor activity of Harmine (HM), we took the hybridization approach and synthesized harmine derivatives-furoxan hybrids containing nitric oxide (NO) releasing parts by connecting NO donors with anti-tumor active fragments to harmine. Then, the synthesized compounds were evaluated for their in vitro cytotoxicity against five human cancer cell lines. Among them, compound 10 was found to have the strongest antiproliferative activity against HepG2 (IC50 = 1.79 µM). In addition, compound 10 produced high levels of NO in vitro, verifying that the release of NO was closely correlated to the antiproliferative activity. In addition, Compound 10 also showed good plasma stability. Finally, we also preliminarily investigated the acute toxicity of compound 10 in mice and assessed the absorption of compound 10 by Caco-2 cell permeability assay. In brief, the remarkable biological characteristics of the new harmine derivatives-furoxan hybrids may make them promising candidates for human cancer intervention.
Assuntos
Antineoplásicos , Harmina , Animais , Antineoplásicos/farmacologia , Apoptose , Células CACO-2 , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Harmina/farmacologia , Humanos , Camundongos , Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico/farmacologia , Relação Estrutura-AtividadeRESUMO
Overexpression of histone deacetylases (HDACs) are observed in different types of cancers, but histone deacetylase inhibitors (HDACIs) have not shown significant efficacy as monotherapy against solid tumors. Recently, studies demonstrated that it is promising to combine HDACIs with DNA damage agents to improve DNA damage level to gain better effect on treating solid tumor. Harmine has been demonstrated to cause DNA damage by intercalating DNA. Therefore, we designed a series of harmine-based inhibitors targeting HDAC and DNA with multi-target strategy, the most potential compound 27 could bind to DNA and cause DNA damage. Furthermore 27 caused cells apoptosis through p53 signaling pathway, and exhibited significant anti-proliferation effects against HCT-116 cells (IC50 = 1.41 µM). As a DNA damage agent, 27 displayed low toxicity in normal cells. Compound 27 was demonstrated as a dual inhibitor targeting HDAC (HDAC1 IC50 = 0.022 µM and HDAC6 IC50 = 0.45 µM) and DNA, and had the potential in the treatment of solid tumor.
Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , DNA , Harmina/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Neoplasias/tratamento farmacológicoRESUMO
Harmine is a ß-carboline alkaloid isolated from Banisteria caapi and Peganum harmala L with various pharmacological activities, including antioxidant, anti-inflammatory, antitumor, anti-depressant, and anti-leishmanial capabilities. Nevertheless, the pharmacological effect of harmine on cardiomyocytes and heart muscle has not been reported. Here we found a protective effect of harmine on cardiac hypertrophy in spontaneously hypertensive rats in vivo. Further, harmine could inhibit the phenotypes of norepinephrine-induced hypertrophy in human embryonic stem cell-derived cardiomyocytes in vitro. It reduced the enlarged cell surface area, reversed the increased calcium handling and contractility, and downregulated expression of hypertrophy-related genes in norepinephrine-induced hypertrophy of human cardiomyocytes derived from embryonic stem cells. We further showed that one of the potential underlying mechanism by which harmine alleviates cardiac hypertrophy relied on inhibition of NF-κB phosphorylation and the stimulated inflammatory cytokines in pathological ventricular remodeling. Our data suggest that harmine is a promising therapeutic agent for cardiac hypertrophy independent of blood pressure modulation and could be a promising addition of current medications for cardiac hypertrophy.
Assuntos
Cardiomegalia/tratamento farmacológico , Harmina/farmacologia , Substâncias Protetoras/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Administração Oral , Animais , Banisteriopsis/química , Cardiomegalia/induzido quimicamente , Cardiomegalia/patologia , Relação Dose-Resposta a Droga , Harmina/administração & dosagem , Estrutura Molecular , Miócitos Cardíacos/efeitos dos fármacos , Norepinefrina/antagonistas & inibidores , Peganum/química , Substâncias Protetoras/administração & dosagem , Ratos , Ratos Wistar , Bibliotecas de Moléculas Pequenas/administração & dosagem , Relação Estrutura-AtividadeRESUMO
Ayahuasca is a psychoactive and psychedelic decoct composed mainly of Banisteriopsis caapi and Psychotria viridis plant species. The beverage is rich in alkaloids and it is ritualistically used by several indigenous communities of South America as a natural medicine. There are also reports in the literature indicating the prophylaxis potential of Ayahuasca alkaloids against internal parasites. In the present study, Ayahuasca exhibited moderate inâ vitro activity against Trypanosoma cruzi trypomastigotes (IC50 95.78â µg/mL) compared to the reference drug benznidazole (IC50 2.03â µg/mL). The ß-carboline alkaloid harmine (HRE), isolated from B.â caapi, was considered active against the trypomastigotes forms (IC50 6.37), and the tryptamine N, N-dimethyltryptamine (DMT), isolated from P.â viridis was also moderately active with IC50 of 21.02â µg/mL. Regarding the inâ vivo evaluations, no collateral effects were observed. The HRE alone demonstrated the highest trypanocidal activity in a dose-responsive manner (10 and 100â mg/kg). The Ayahuasca and the association between HRE and DMT worsened the parasitaemia, suggesting a modulation of the immunological response during the T.â cruzi infection, especially by increasing total Immunoglobulin (IgG) and IgG1 antibody levels. The inâ silico molecular docking revealed HRE binding with low energy at two sites of the Trypanothione reductase enzyme (TR), which are absent in humans, and thus considered a promissory target for drug discovery. In conclusion, Ayahuasca compounds seem to not be toxic at the concentrations of the inâ vivo evaluations and can promote trypanocidal effect in multi targets, including control of parasitaemia, immunological modulation and TR enzymatic inhibition, which might benefit the treatments of patients with Chagas' disease. Moreover, the present study also provides scientific information to support the prophylactic potential of Ayahuasca against internal parasites.
Assuntos
Alcaloides , Banisteriopsis , Doença de Chagas , Alucinógenos , Humanos , Banisteriopsis/química , Alucinógenos/farmacologia , Harmina/farmacologia , Simulação de Acoplamento Molecular , N,N-Dimetiltriptamina/farmacologia , Carbolinas , Triptaminas , Doença de Chagas/tratamento farmacológico , Imunoglobulina G , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêuticoRESUMO
Banisteriopsis caapi is used to prepare the psychoactive beverage ayahuasca, and both have therapeutic potential for the treatment of many central nervous system (CNS) conditions. This study aimed to isolate new bioactive compounds from B. caapi extract and evaluate their biological activity, and that of the known ß-carboline components of the plant (harmine, harmaline, and tetrahydroharmine), in BV-2 microglial cells, the in vivo activation of which is implicated in the physiopathology of CNS disorders. B. caapi extract was fractionated using semipreparative liquid chromatography (HPLC-DAD) and the exact masses ([M + H]+m/z) of the compounds in the 5 isolated fractions were determined by high-resolution LC-MS/MS: F1 (174.0918 and 233.1289), F2 (353.1722), F3 (304.3001), F4 (188.1081), and F5 (205.0785). Harmine (75.5-302 µM) significantly decreased cell viability after 2 h of treatment and increased the number of necrotic cells and production of reactive oxygen species at equal or lower concentrations after 24 h. F4 did not impact viability but was also cytotoxic after 24 h. Most treatments reduced proinflammatory cytokine production (IL-2, IL-6, IL-17, and/or TNF), especially harmaline and F5 at 2.5 µM and higher concentrations, tetrahydroharmine (9.3 µM and higher), and F5 (10.7 µM and higher). The results suggest that the compounds found in B. caapi extract have anti-inflammatory potential that could be explored for the development of treatments for neurodegenerative diseases.