Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.922
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 626(8000): 799-807, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38326615

RESUMO

Linking variants from genome-wide association studies (GWAS) to underlying mechanisms of disease remains a challenge1-3. For some diseases, a successful strategy has been to look for cases in which multiple GWAS loci contain genes that act in the same biological pathway1-6. However, our knowledge of which genes act in which pathways is incomplete, particularly for cell-type-specific pathways or understudied genes. Here we introduce a method to connect GWAS variants to functions. This method links variants to genes using epigenomics data, links genes to pathways de novo using Perturb-seq and integrates these data to identify convergence of GWAS loci onto pathways. We apply this approach to study the role of endothelial cells in genetic risk for coronary artery disease (CAD), and discover 43 CAD GWAS signals that converge on the cerebral cavernous malformation (CCM) signalling pathway. Two regulators of this pathway, CCM2 and TLNRD1, are each linked to a CAD risk variant, regulate other CAD risk genes and affect atheroprotective processes in endothelial cells. These results suggest a model whereby CAD risk is driven in part by the convergence of causal genes onto a particular transcriptional pathway in endothelial cells. They highlight shared genes between common and rare vascular diseases (CAD and CCM), and identify TLNRD1 as a new, previously uncharacterized member of the CCM signalling pathway. This approach will be widely useful for linking variants to functions for other common polygenic diseases.


Assuntos
Doença da Artéria Coronariana , Células Endoteliais , Estudo de Associação Genômica Ampla , Hemangioma Cavernoso do Sistema Nervoso Central , Humanos , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/patologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Predisposição Genética para Doença/genética , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Hemangioma Cavernoso do Sistema Nervoso Central/patologia , Polimorfismo de Nucleotídeo Único , Epigenômica , Transdução de Sinais/genética , Herança Multifatorial
2.
Nature ; 594(7862): 271-276, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33910229

RESUMO

Vascular malformations are thought to be monogenic disorders that result in dysregulated growth of blood vessels. In the brain, cerebral cavernous malformations (CCMs) arise owing to inactivation of the endothelial CCM protein complex, which is required to dampen the activity of the kinase MEKK31-4. Environmental factors can explain differences in the natural history of CCMs between individuals5, but why single CCMs often exhibit sudden, rapid growth, culminating in strokes or seizures, is unknown. Here we show that growth of CCMs requires increased signalling through the phosphatidylinositol-3-kinase (PI3K)-mTOR pathway as well as loss of function of the CCM complex. We identify somatic gain-of-function mutations in PIK3CA and loss-of-function mutations in the CCM complex in the same cells in a majority of human CCMs. Using mouse models, we show that growth of CCMs requires both PI3K gain of function and CCM loss of function in endothelial cells, and that both CCM loss of function and increased expression of the transcription factor KLF4 (a downstream effector of MEKK3) augment mTOR signalling in endothelial cells. Consistent with these findings, the mTORC1 inhibitor rapamycin effectively blocks the formation of CCMs in mouse models. We establish a three-hit mechanism analogous to cancer, in which aggressive vascular malformations arise through the loss of vascular 'suppressor genes' that constrain vessel growth and gain of a vascular 'oncogene' that stimulates excess vessel growth. These findings suggest that aggressive CCMs could be treated using clinically approved mTORC1 inhibitors.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/genética , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Hemangioma Cavernoso do Sistema Nervoso Central/patologia , Mutação , Neoplasias/genética , Animais , Animais Recém-Nascidos , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Mutação com Ganho de Função , Hemangioma Cavernoso do Sistema Nervoso Central/irrigação sanguínea , Hemangioma Cavernoso do Sistema Nervoso Central/metabolismo , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/metabolismo , Mutação com Perda de Função , MAP Quinase Quinase Quinase 3/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Neoplasias/irrigação sanguínea , Neoplasias/patologia , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo
3.
Circ Res ; 135(4): e94-e113, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-38957991

RESUMO

BACKGROUND: Cerebral vascular malformations (CCMs) are primarily found within the brain, where they result in increased risk for stroke, seizures, and focal neurological deficits. The unique feature of the brain vasculature is the blood-brain barrier formed by the brain neurovascular unit. Recent studies suggest that loss of CCM genes causes disruptions of blood-brain barrier integrity as the inciting events for CCM development. CCM lesions are proposed to be initially derived from a single clonal expansion of a subset of angiogenic venous capillary endothelial cells (ECs) and respective resident endothelial progenitor cells (EPCs). However, the critical signaling events in the subclass of brain ECs/EPCs for CCM lesion initiation and progression are unclear. METHODS: Brain EC-specific CCM3-deficient (Pdcd10BECKO) mice were generated by crossing Pdcd10fl/fl mice with Mfsd2a-CreERT2 mice. Single-cell RNA-sequencing analyses were performed by the chromium single-cell platform (10× genomics). Cell clusters were annotated into EC subtypes based on visual inspection and GO analyses. Cerebral vessels were visualized by 2-photon in vivo imaging and tissue immunofluorescence analyses. Regulation of mTOR (mechanistic target of rapamycin) signaling by CCM3 and Cav1 (caveolin-1) was performed by cell biology and biochemical approaches. RESULTS: Single-cell RNA-sequencing analyses from P10 Pdcd10BECKO mice harboring visible CCM lesions identified upregulated CCM lesion signature and mitotic EC clusters but decreased blood-brain barrier-associated EC clusters. However, a unique EPC cluster with high expression levels of stem cell markers enriched with mTOR signaling was identified from early stages of the P6 Pdcd10BECKO brain. Indeed, mTOR signaling was upregulated in both mouse and human CCM lesions. Genetic deficiency of Raptor (regulatory-associated protein of mTOR), but not of Rictor (rapamycin-insensitive companion of mTOR), prevented CCM lesion formation in the Pdcd10BECKO model. Importantly, the mTORC1 (mTOR complex 1) pharmacological inhibitor rapamycin suppressed EPC proliferation and ameliorated CCM pathogenesis in Pdcd10BECKO mice. Mechanistic studies suggested that Cav1/caveolae increased in CCM3-depleted EPC-mediated intracellular trafficking and complex formation of the mTORC1 signaling proteins. CONCLUSIONS: CCM3 is critical for maintaining blood-brain barrier integrity and CCM3 loss-induced mTORC1 signaling in brain EPCs initiates and facilitates CCM pathogenesis.


Assuntos
Células Progenitoras Endoteliais , Hemangioma Cavernoso do Sistema Nervoso Central , Alvo Mecanístico do Complexo 1 de Rapamicina , Transdução de Sinais , Animais , Hemangioma Cavernoso do Sistema Nervoso Central/metabolismo , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Hemangioma Cavernoso do Sistema Nervoso Central/patologia , Camundongos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/irrigação sanguínea , Camundongos Knockout , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/genética , Camundongos Endogâmicos C57BL , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética
4.
Arterioscler Thromb Vasc Biol ; 44(6): 1246-1264, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38660801

RESUMO

BACKGROUND: Heterogeneity in the severity of cerebral cavernous malformations (CCMs) disease, including brain bleedings and thrombosis that cause neurological disabilities in patients, suggests that environmental, genetic, or biological factors act as disease modifiers. Still, the underlying mechanisms are not entirely understood. Here, we report that mild hypoxia accelerates CCM disease by promoting angiogenesis, neuroinflammation, and vascular thrombosis in the brains of CCM mouse models. METHODS: We used genetic studies, RNA sequencing, spatial transcriptome, micro-computed tomography, fluorescence-activated cell sorting, multiplex immunofluorescence, coculture studies, and imaging techniques to reveal that sustained mild hypoxia via the CX3CR1-CX3CL1 (CX3C motif chemokine receptor 1/chemokine [CX3C motif] ligand 1) signaling pathway influences cell-specific neuroinflammatory interactions, contributing to heterogeneity in CCM severity. RESULTS: Histological and expression profiles of CCM neurovascular lesions (Slco1c1-iCreERT2;Pdcd10fl/fl; Pdcd10BECKO) in male and female mice found that sustained mild hypoxia (12% O2, 7 days) accelerates CCM disease. Our findings indicate that a small reduction in oxygen levels can significantly increase angiogenesis, neuroinflammation, and thrombosis in CCM disease by enhancing the interactions between endothelium, astrocytes, and immune cells. Our study indicates that the interactions between CX3CR1 and CX3CL1 are crucial in the maturation of CCM lesions and propensity to CCM immunothrombosis. In particular, this pathway regulates the recruitment and activation of microglia and other immune cells in CCM lesions, which leads to lesion growth and thrombosis. We found that human CX3CR1 variants are linked to lower lesion burden in familial CCMs, proving it is a genetic modifier in human disease and a potential marker for aggressiveness. Moreover, monoclonal blocking antibody against CX3CL1 or reducing 1 copy of the Cx3cr1 gene significantly reduces hypoxia-induced CCM immunothrombosis. CONCLUSIONS: Our study reveals that interactions between CX3CR1 and CX3CL1 can modify CCM neuropathology when lesions are accelerated by environmental hypoxia. Moreover, a hypoxic environment or hypoxia signaling caused by CCM disease influences the balance between neuroinflammation and neuroprotection mediated by CX3CR1-CX3CL1 signaling. These results establish CX3CR1 as a genetic marker for patient stratification and a potential predictor of CCM aggressiveness.


Assuntos
Receptor 1 de Quimiocina CX3C , Quimiocina CX3CL1 , Modelos Animais de Doenças , Hemangioma Cavernoso do Sistema Nervoso Central , Transdução de Sinais , Animais , Feminino , Humanos , Masculino , Camundongos , Quimiocina CX3CL1/metabolismo , Quimiocina CX3CL1/genética , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Hemangioma Cavernoso do Sistema Nervoso Central/metabolismo , Hemangioma Cavernoso do Sistema Nervoso Central/patologia , Hipóxia/metabolismo , Hipóxia/complicações , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Patológica/metabolismo , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Doenças Neuroinflamatórias/genética
5.
Stroke ; 55(1): 22-30, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38134268

RESUMO

BACKGROUND: Cerebral cavernous malformation with symptomatic hemorrhage (SH) are targets for novel therapies. A multisite trial-readiness project (https://www.clinicaltrials.gov; Unique identifier: NCT03652181) aimed to identify clinical, imaging, and functional changes in these patients. METHODS: We enrolled adult cerebral cavernous malformation patients from 5 high-volume centers with SH within the prior year and no planned surgery. In addition to clinical and imaging review, we assessed baseline, 1- and 2-year National Institutes of Health Stroke Scale, modified Rankin Scale, European Quality of Life 5D-3 L, and patient-reported outcome-measurement information system, Version 2.0. SH and asymptomatic change rates were adjudicated. Changes in functional scores were assessed as a marker for hemorrhage. RESULTS: One hundred twenty-three, 102, and 69 patients completed baseline, 1- and 2-year clinical assessments, respectively. There were 21 SH during 178.3 patient years of follow-up (11.8% per patient year). At baseline, 62.6% and 95.1% of patients had a modified Rankin Scale score of 1 and National Institutes of Health Stroke Scale score of 0 to 4, respectively, which improved to 75.4% (P=0.03) and 100% (P=0.06) at 2 years. At baseline, 74.8% had at least one abnormal patient-reported outcome-measurement information system, Version 2.0 domain compared with 61.2% at 2 years (P=0.004). The most common abnormal European Quality of Life 5D-3 L domains were pain (48.7%), anxiety (41.5%), and participation in usual activities (41.4%). Patients with prospective SH were more likely than those without SH to display functional decline in sleep, fatigue, and social function patient-reported outcome-measurement information system, Version 2.0 domains at 2 years. Other score changes did not differ significantly between groups at 2 years. The sensitivity of scores as an SH marker remained poor at the time interval assessed. CONCLUSIONS: We report SH rate, functional, and patient-reported outcomes in trial-eligible cerebral cavernous malformation with SH patients. Functional outcomes and patient-reported outcomes generally improved over 2 years. No score change was highly sensitive or specific for SH and could not be used as a primary end point in a trial.


Assuntos
Hemangioma Cavernoso do Sistema Nervoso Central , Acidente Vascular Cerebral , Adulto , Humanos , Hemangioma Cavernoso do Sistema Nervoso Central/complicações , Hemangioma Cavernoso do Sistema Nervoso Central/diagnóstico por imagem , Hemorragia , Estudos Prospectivos , Qualidade de Vida , Acidente Vascular Cerebral/terapia , Resultado do Tratamento
6.
Stroke ; 55(1): 31-39, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38134265

RESUMO

BACKGROUND: Quantitative susceptibility mapping (QSM) and dynamic contrast-enhanced quantitative perfusion (DCEQP) magnetic resonance imaging sequences assessing iron deposition and vascular permeability were previously correlated with new hemorrhage in cerebral cavernous malformations. We assessed their prospective changes in a multisite trial-readiness project. METHODS: Patients with cavernous malformation and symptomatic hemorrhage (SH) in the prior year, without prior or planned lesion resection or irradiation were enrolled. Mean QSM and DCEQP of the SH lesion were acquired at baseline and at 1- and 2-year follow-ups. Sensitivity and specificity of biomarker changes were analyzed in relation to predefined criteria for recurrent SH or asymptomatic change. Sample size calculations for hypothesized therapeutic effects were conducted. RESULTS: We logged 143 QSM and 130 DCEQP paired annual assessments. Annual QSM change was greater in cases with SH than in cases without SH (P=0.019). Annual QSM increase by ≥6% occurred in 7 of 7 cases (100%) with recurrent SH and in 7 of 10 cases (70%) with asymptomatic change during the same epoch and 3.82× more frequently than clinical events. DCEQP change had lower sensitivity for SH and asymptomatic change than QSM change and greater variance. A trial with the smallest sample size would detect a 30% difference in QSM annual change during 2 years of follow-up in 34 or 42 subjects (1 and 2 tailed, respectively); power, 0.8, α=0.05. CONCLUSIONS: Assessment of QSM change is feasible and sensitive to recurrent bleeding in cavernous malformations. Evaluation of an intervention on QSM percent change may be used as a time-averaged difference between 2 arms using a repeated measures analysis. DCEQP change is associated with lesser sensitivity and higher variability than QSM. These results are the basis of an application for certification by the US Food and Drug Administration of QSM as a biomarker of drug effect on bleeding in cavernous malformations. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT03652181.


Assuntos
Hemangioma Cavernoso do Sistema Nervoso Central , Hemorragia , Humanos , Estudos Prospectivos , Hemorragia/etiologia , Hemorragia/complicações , Hemangioma Cavernoso do Sistema Nervoso Central/complicações , Hemangioma Cavernoso do Sistema Nervoso Central/diagnóstico por imagem , Hemangioma Cavernoso do Sistema Nervoso Central/patologia , Biomarcadores , Imageamento por Ressonância Magnética/métodos , Hemorragia Cerebral/diagnóstico por imagem , Hemorragia Cerebral/complicações
7.
Stroke ; 55(8): 1991-2002, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38881452

RESUMO

BACKGROUND: Surgical risk assessment is intriguing for clinical decision-making of brainstem cavernous malformation (BSCM) treatment. While the BSCM grading scale, encompassing size, developmental venous anomaly, crossing axial midpoint, age, and timing of intervention, is increasingly utilized, the clinical relevance of neurological fluctuation and recurrent hemorrhage has not been incorporated. This study aimed to propose a supplementary grading scale with enhanced predictive efficacy. METHODS: Using a retrospective nationwide registry of consecutive patients with BSCMs undergoing surgery in China from March 2011 to May 2023, a new supplementary BSCM grading scale was developed from a derivative cohort of 260 patients and validated in an independent concurrent cohort of 67 patients. The primary outcome was unfavorable neurological function (modified Rankin Scale score >2) at the latest follow-up. The performance of the supplementary grading system was evaluated for discrimination, calibration, and clinical utility and further compared with its original counterpart. RESULTS: Over a follow-up of at least 6 months after surgery, the unfavorable outcomes were 31% in the overall cohort (101/327 patients). A preoperative motor deficit (odds ratio, 3.13; P=0.001), recurrent hemorrhage (odds ratio, 3.05; P<0.001), timing of intervention (odds ratio, 7.08; P<0.001), and crossing the axial midpoint (odds ratio, 2.57; P=0.006) were associated with the unfavorable outcomes and composed the initial Huashan grading variables. A supplementary BSCM grading system was subsequently developed by incorporating the Huashan grading variables into the original BSCM grading scale. The predictive capability of the supplementary scale was consistently superior to the original counterpart in either the derivative cohort (area under the receiver operating characteristic curve, 0.74 [95% CI, 0.68-0.80] for the supplementary versus 0.68 [95% CI, 0.61-0.74] for the original) or the validation cohort (0.75 [95% CI, 0.62-0.87] versus 0.64 [95% CI, 0.48-0.81]). CONCLUSIONS: This study highlights the neurological relevance of BSCM hemorrhage in surgical risk assessment. Via compositing preoperative motor function and recurrent hemorrhages, a supplementary grading scale may improve a dynamic risk assessment for clinical decisions in the management of BSCMs.


Assuntos
Hemangioma Cavernoso do Sistema Nervoso Central , Humanos , Masculino , Feminino , Adulto , Hemangioma Cavernoso do Sistema Nervoso Central/cirurgia , Estudos Retrospectivos , Pessoa de Meia-Idade , Tronco Encefálico/cirurgia , Sistema de Registros , Resultado do Tratamento , Adolescente , Adulto Jovem , Medição de Risco , China
8.
Am J Hum Genet ; 108(5): 942-950, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33891857

RESUMO

Cerebral cavernous malformations (CCMs) are vascular disorders that affect up to 0.5% of the total population. About 20% of CCMs are inherited because of familial mutations in CCM genes, including CCM1/KRIT1, CCM2/MGC4607, and CCM3/PDCD10, whereas the etiology of a majority of simplex CCM-affected individuals remains unclear. Here, we report somatic mutations of MAP3K3, PIK3CA, MAP2K7, and CCM genes in CCM lesions. In particular, somatic hotspot mutations of PIK3CA are found in 11 of 38 individuals with CCMs, and a MAP3K3 somatic mutation (c.1323C>G [p.Ile441Met]) is detected in 37.0% (34 of 92) of the simplex CCM-affected individuals. Strikingly, the MAP3K3 c.1323C>G mutation presents in 95.7% (22 of 23) of the popcorn-like lesions but only 2.5% (1 of 40) of the subacute-bleeding or multifocal lesions that are predominantly attributed to mutations in the CCM1/2/3 signaling complex. Leveraging mini-bulk sequencing, we demonstrate the enrichment of MAP3K3 c.1323C>G mutation in CCM endothelium. Mechanistically, beyond the activation of CCM1/2/3-inhibited ERK5 signaling, MEKK3 p.Ile441Met (MAP3K3 encodes MEKK3) also activates ERK1/2, JNK, and p38 pathways because of mutation-induced MEKK3 kinase activity enhancement. Collectively, we identified several somatic activating mutations in CCM endothelium, and the MAP3K3 c.1323C>G mutation defines a primary CCM subtype with distinct characteristics in signaling activation and magnetic resonance imaging appearance.


Assuntos
Hemangioma Cavernoso do Sistema Nervoso Central/genética , MAP Quinase Quinase Quinase 3/genética , Mutação , Sequência de Aminoácidos , Classe I de Fosfatidilinositol 3-Quinases/genética , Células Endoteliais/metabolismo , Mutação em Linhagem Germinativa , Hemangioma Cavernoso do Sistema Nervoso Central/patologia , Células Endoteliais da Veia Umbilical Humana , Humanos , MAP Quinase Quinase Quinase 3/metabolismo , Sistema de Sinalização das MAP Quinases , Modelos Moleculares
9.
Blood ; 140(20): 2154-2169, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-35981497

RESUMO

Cerebral cavernous malformation (CCM) is a neurovascular disease that results in various neurological symptoms. Thrombi have been reported in surgically resected CCM patient biopsies, but the molecular signatures of these thrombi remain elusive. Here, we investigated the kinetics of thrombi formation in CCM and how thrombi affect the vasculature and contribute to cerebral hypoxia. We used RNA sequencing to investigate the transcriptome of mouse brain endothelial cells with an inducible endothelial-specific Ccm3 knock-out (Ccm3-iECKO). We found that Ccm3-deficient brain endothelial cells had a higher expression of genes related to the coagulation cascade and hypoxia when compared with wild-type brain endothelial cells. Immunofluorescent assays identified key molecular signatures of thrombi such as fibrin, von Willebrand factor, and activated platelets in Ccm3-iECKO mice and human CCM biopsies. Notably, we identified polyhedrocytes in Ccm3-iECKO mice and human CCM biopsies and report it for the first time. We also found that the parenchyma surrounding CCM lesions is hypoxic and that more thrombi correlate with higher levels of hypoxia. We created an in vitro model to study CCM pathology and found that human brain endothelial cells deficient for CCM3 expressed elevated levels of plasminogen activator inhibitor-1 and had a redistribution of von Willebrand factor. With transcriptomics, comprehensive imaging, and an in vitro CCM preclinical model, this study provides experimental evidence that genes and proteins related to the coagulation cascade affect the brain vasculature and promote neurological side effects such as hypoxia in CCMs. This study supports the concept that antithrombotic therapy may be beneficial for patients with CCM.


Assuntos
Hemangioma Cavernoso do Sistema Nervoso Central , Humanos , Animais , Camundongos , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Hemangioma Cavernoso do Sistema Nervoso Central/metabolismo , Células Endoteliais/metabolismo , Proteínas Reguladoras de Apoptose/genética , Tromboinflamação , Fator de von Willebrand/metabolismo , Hipóxia/metabolismo
10.
Cell Commun Signal ; 22(1): 23, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195510

RESUMO

Cerebral cavernous malformation (CCM) is a hemorrhagic neurovascular disease with no currently available therapeutics. Prior evidence suggests that different cell types may play a role in CCM pathogenesis. The contribution of each cell type to the dysfunctional cellular crosstalk remains unclear. Herein, RNA-seq was performed on fluorescence-activated cell sorted endothelial cells (ECs), pericytes, and neuroglia from CCM lesions and non-lesional brain tissue controls. Differentially Expressed Gene (DEG), pathway and Ligand-Receptor (LR) analyses were performed to characterize the dysfunctional genes of respective cell types within CCMs. Common DEGs among all three cell types were related to inflammation and endothelial-to-mesenchymal transition (EndMT). DEG and pathway analyses supported a role of lesional ECs in dysregulated angiogenesis and increased permeability. VEGFA was particularly upregulated in pericytes. Further pathway and LR analyses identified vascular endothelial growth factor A/ vascular endothelial growth factor receptor 2 signaling in lesional ECs and pericytes that would result in increased angiogenesis. Moreover, lesional pericytes and neuroglia predominantly showed DEGs and pathways mediating the immune response. Further analyses of cell specific gene alterations in CCM endorsed potential contribution to EndMT, coagulation, and a hypoxic microenvironment. Taken together, these findings motivate mechanistic hypotheses regarding non-endothelial contributions to lesion pathobiology and may lead to novel therapeutic targets. Video Abstract.


Assuntos
Hemangioma Cavernoso do Sistema Nervoso Central , Fator A de Crescimento do Endotélio Vascular , Humanos , Fator A de Crescimento do Endotélio Vascular/genética , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Células Endoteliais , Perfilação da Expressão Gênica , Transcriptoma , Microambiente Tumoral
11.
Circ Res ; 131(11): 909-925, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36285625

RESUMO

BACKGROUND: Cerebral cavernous malformations (CCMs) are neurovascular lesions caused by loss of function mutations in 1 of 3 genes, including KRIT1 (CCM1), CCM2, and PDCD10 (CCM3). CCMs affect ≈1 out of 200 children and adults, and no pharmacologic therapy is available. CCM lesion count, size, and aggressiveness vary widely among patients of similar ages with the same mutation or even within members of the same family. However, what determines the transition from quiescent lesions into mature and active (aggressive) CCM lesions is unknown. METHODS: We use genetic, RNA-sequencing, histology, flow cytometry, and imaging techniques to report the interaction between CCM endothelium, astrocytes, leukocytes, microglia/macrophages, neutrophils (CCM endothelium, astrocytes, leukocytes, microglia/macrophages, neutrophils interaction) during the pathogenesis of CCMs in the brain tissue. RESULTS: Expression profile of astrocytes in adult mouse brains using translated mRNAs obtained from the purification of EGFP (enhanced green fluorescent protein)-tagged ribosomes (Aldh1l1-EGFP/Rpl10a) in the presence or absence of CCM lesions (Slco1c1-iCreERT2;Pdcd10fl/fl; Pdcd10BECKO) identifies a novel gene signature for neuroinflammatory astrocytes. CCM-induced reactive astrocytes have a neuroinflammatory capacity by expressing genes involved in angiogenesis, chemotaxis, hypoxia signaling, and inflammation. RNA-sequencing analysis on RNA isolated from brain endothelial cells in chronic Pdcd10BECKO mice (CCM endothelium), identified crucial genes involved in recruiting inflammatory cells and thrombus formation through chemotaxis and coagulation pathways. In addition, CCM endothelium was associated with increased expression of Nlrp3 and Il1b. Pharmacological inhibition of NLRP3 (NOD [nucleotide-binding oligomerization domain]-' LRR [leucine-rich repeat]- and pyrin domain-containing protein 3) significantly decreased inflammasome activity as assessed by quantification of a fluorescent indicator of caspase-1 activity (FAM-FLICA [carboxyfluorescein-fluorochrome-labeled inhibitors of caspases] caspase-1) in brain endothelial cells from Pdcd10BECKO in chronic stage. Importantly, our results support the hypothesis of the crosstalk between astrocytes and CCM endothelium that can trigger recruitment of inflammatory cells arising from brain parenchyma (microglia) and the peripheral immune system (leukocytes) into mature active CCM lesions that propagate lesion growth, immunothrombosis, and bleedings. Unexpectedly, partial or total loss of brain endothelial NF-κB (nuclear factor κB) activity (using Ikkbfl/fl mice) in chronic Pdcd10BECKO mice does not prevent lesion genesis or neuroinflammation. Instead, this resulted in a trend increase in the number of lesions and immunothrombosis, suggesting that therapeutic approaches designed to target inflammation through endothelial NF-κB inhibition may contribute to detrimental side effects. CONCLUSIONS: Our study reveals previously unknown links between neuroinflammatory astrocytes and inflamed CCM endothelium as contributors that trigger leukocyte recruitment and precipitate immunothrombosis in CCM lesions. However, therapeutic approaches targeting brain endothelial NF-κB activity may contribute to detrimental side effects.


Assuntos
Hemangioma Cavernoso do Sistema Nervoso Central , Animais , Camundongos , Hemangioma Cavernoso do Sistema Nervoso Central/patologia , Células Endoteliais/metabolismo , Doenças Neuroinflamatórias , NF-kappa B , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteínas Proto-Oncogênicas/genética , Inflamação/genética , Inflamação/patologia , Caspases , RNA
12.
Arterioscler Thromb Vasc Biol ; 43(6): 958-970, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37078284

RESUMO

BACKGROUND: Cerebral cavernous malformations, also known as cavernous angiomas, are blood vessel abnormalities comprised of clusters of grossly enlarged and hemorrhage-prone capillaries. The prevalence in the general population, including asymptomatic cases, is estimated to be 0.5%. Some patients develop severe symptoms, including seizures and focal neurological deficits, whereas others remain asymptomatic. The causes of this remarkable presentation heterogeneity within a primarily monogenic disease remain poorly understood. METHODS: We established a chronic mouse model of cerebral cavernous malformations, induced by postnatal ablation of Krit1 with Pdgfb-CreERT2, and examined lesion progression in these mice with T2-weighted 7T magnetic resonance imaging (MRI). We also established a modified protocol for dynamic contrast-enhanced MRI and produced quantitative maps of gadolinium tracer gadobenate dimeglumine. After terminal imaging, brain slices were stained with antibodies against microglia, astrocytes, and endothelial cells. RESULTS: These mice develop cerebral cavernous malformations lesions gradually over 4 to 5 months of age throughout the brain. Precise volumetric analysis of individual lesions revealed nonmonotonous behavior, with some lesions temporarily growing smaller. However, the cumulative lesional volume invariably increased over time and after about 2 months followed a power trend. Using dynamic contrast-enhanced MRI, we produced quantitative maps of gadolinium in the lesions, indicating a high degree of heterogeneity in lesional permeability. MRI properties of the lesions were correlated with cellular markers for endothelial cells, astrocytes, and microglia. Multivariate comparisons of MRI properties of the lesions with cellular markers for endothelial and glial cells revealed that increased cell density surrounding lesions correlates with stability, whereas denser vasculature within and surrounding the lesions may correlate with high permeability. CONCLUSIONS: Our results lay a foundation for better understanding individual lesion properties and provide a comprehensive preclinical platform for testing new drug and gene therapies for controlling cerebral cavernous malformations.


Assuntos
Hemangioma Cavernoso do Sistema Nervoso Central , Humanos , Camundongos , Animais , Hemangioma Cavernoso do Sistema Nervoso Central/diagnóstico por imagem , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Hemangioma Cavernoso do Sistema Nervoso Central/patologia , Gadolínio , Células Endoteliais/patologia , Encéfalo/patologia , Imageamento por Ressonância Magnética
13.
Brain ; 146(9): 3634-3647, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36995941

RESUMO

Cerebral cavernous malformations (CCMs) and spinal cord cavernous malformations (SCCMs) are common vascular abnormalities of the CNS that can lead to seizure, haemorrhage and other neurological deficits. Approximately 85% of patients present with sporadic (versus congenital) CCMs. Somatic mutations in MAP3K3 and PIK3CA were recently reported in patients with sporadic CCM, yet it remains unknown whether MAP3K3 mutation is sufficient to induce CCMs. Here we analysed whole-exome sequencing data for patients with CCM and found that ∼40% of them have a single, specific MAP3K3 mutation [c.1323C>G (p.Ile441Met)] but not any other known mutations in CCM-related genes. We developed a mouse model of CCM with MAP3K3I441M uniquely expressed in the endothelium of the CNS. We detected pathological phenotypes similar to those found in patients with MAP3K3I441M. The combination of in vivo imaging and genetic labelling revealed that CCMs were initiated with endothelial expansion followed by disruption of the blood-brain barrier. Experiments with our MAP3K3I441M mouse model demonstrated that CCM can be alleviated by treatment with rapamycin, the mTOR inhibitor. CCM pathogenesis has usually been attributed to acquisition of two or three distinct genetic mutations involving the genes CCM1/2/3 and/or PIK3CA. However, our results demonstrate that a single genetic hit is sufficient to cause CCMs.


Assuntos
Hemangioma Cavernoso do Sistema Nervoso Central , Proteínas Proto-Oncogênicas , Animais , Camundongos , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Mutação/genética , Fenótipo , Medula Espinal/patologia
14.
Stereotact Funct Neurosurg ; 102(1): 1-12, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37995674

RESUMO

INTRODUCTION: This study aimed to assess the impact of gamma knife radiosurgery on brainstem cavernous malformations (CMs). METHODS: A total of 85 patients (35 females; median age 41.0 years) who underwent gamma knife radiosurgery for brainstem CMs at our institute between 2006 and 2015 were enrolled in a prospective clinical observation trial. Risk factors for hemorrhagic outcomes were evaluated, and outcomes were compared across different margin doses. RESULTS: The pre-radiosurgery annual hemorrhage rate (AHR) was 32.3% (44 hemorrhages during 136.2 patient-years). The median planning target volume was 1.292 cc. The median margin and maximum doses were 15.0 and 29.2 Gy, respectively, with a median isodose line of 50.0%. The post-radiosurgery AHR was 2.7% (21 hemorrhages during 769.9 patient-years), with a rate of 5.5% within the first 2 years and 2.0% thereafter. The post-radiosurgery AHR for patients with margin doses of ≤13.0 Gy (n = 15), 14.0-15.0 Gy (n = 50), and ≥16.0 Gy (n = 20) was 5.4, 2.7, and 0.6%, respectively. Correspondingly, transient adverse radiation effects were observed in 6.7 (1/15), 10.0 (5/50), and 30.0% (6/20) of cases, respectively. An increased margin dose per 1 Gy (hazard ratio: 0.530, 95% CI: 0.341-0.826, p = 0.005) was identified as an independent protective factor against post-radiosurgery hemorrhage. Margin doses of ≥16.0 Gy were associated with improved hemorrhagic outcomes (hazard ratio: 0.343, 95% confidence interval [CI]: 0.157-0.749, p = 0.007), but an increased risk of adverse radiation effects (odds ratio: 3.006, 95% CI: 1.041-8.677, p = 0.042). CONCLUSION: The AHR of brainstem CMs decreased following radiosurgery, and our study revealed a significant dose-response relationship. Margin doses of 14-15 Gy were recommended. Further studies are required to validate our findings.


Assuntos
Hemangioma Cavernoso do Sistema Nervoso Central , Malformações Arteriovenosas Intracranianas , Radiocirurgia , Adulto , Feminino , Humanos , Tronco Encefálico/cirurgia , Seguimentos , Hemangioma Cavernoso do Sistema Nervoso Central/radioterapia , Hemangioma Cavernoso do Sistema Nervoso Central/cirurgia , Hemangioma Cavernoso do Sistema Nervoso Central/complicações , Hemorragia/complicações , Hemorragia/cirurgia , Estudos Prospectivos , Radiocirurgia/efeitos adversos , Resultado do Tratamento , Masculino
15.
Metab Brain Dis ; 39(5): 885-893, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38795261

RESUMO

Cerebral cavernous malformations (CCMs) are abnormal clusters of capillaries in the nervous system. This pilot study analyzed the cardiometabolic health status of individuals with familial CCMs caused by a rare mutation in the CCM1 gene (fCCM1). The aim was to compare plasma water T2 values from individuals with fCCM1 with values from metabolically unhealthy and healthy individuals with no known CCM mutations. This observational, cross-sectional study included 75 participants: 11 fCCM1 patients, 24 metabolically unhealthy and 40 metabolically healthy individuals. Plasma water T2, an early, global and practical marker of cardiometabolic health, was measured in the time domain using benchtop magnetic resonance relaxometry. The results were stratified by age (equal to or less than 45 vs. older than 45 years). Group means were compared using Welch's one-way ANOVA and post hoc Tukey-Kramer tests. Multivariable linear regression, with T2 as the outcome variable, was used to explore associations with age, gender, Hispanic ethnicity and fCCM1 status. In the younger age stratum, the fCCM1 group had a mean plasma water T2 value comparable to the metabolically healthy group (p = 0.6388), but higher than the unhealthy group (p < 0.0001). By contrast, in the older stratum, the mean plasma water T2 value for the fCCM1 group was comparable to the metabolically unhealthy group (p = 0.7819) and lower than the healthy group (p = 0.0005). Multivariable linear regression revealed that age and the interaction between age and fCCM1 status were significant predictors of T2, even after adjusting for gender and Hispanic ethnicity. Plasma water T2 shows potential as a biomarker for assessing the health status of individuals with fCCM1. Further research is needed to validate these preliminary observations and elucidate the association between CCMs and cardiometabolic health.


Assuntos
Hispânico ou Latino , Proteína KRIT1 , Mutação , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Estudos Transversais , Proteína KRIT1/genética , Hispânico ou Latino/genética , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Projetos Piloto , Água , Fatores Etários , Adulto Jovem , Idoso , Imageamento por Ressonância Magnética
16.
Childs Nerv Syst ; 40(7): 2215-2221, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38607549

RESUMO

BACKGROUND: Cavernous malformations (CMs), also known as cavernomas or cavernous angiomas, are vascular malformations characterized by sinusoidal spaces lined by endothelial cells. Giant CMs (GCMs) are extremely rare, with limited understanding of their presentation and management. We present a case of symptomatic GCM in a newborn and review the literature on this rare entity. CASE DESCRIPTION: A 1-month-old newborn presented with focal seizures and signs of increased intracranial pressure. Imaging revealed a massive right frontal-parietal GCM, prompting surgical resection. Histopathological examination confirmed the diagnosis of cerebral cavernous malformation. The patient recovered well postoperatively with no neurological deficits. CONCLUSIONS: GCMs are exceedingly rare in children and have not been reported in newborns until now. Symptoms typically include seizures and mass effects. Gross total resection is the standard treatment, offering favorable outcomes. Further research is needed to understand the natural history and optimal management of GCMs, particularly in newborns, emphasizing the importance of heightened clinical awareness for timely diagnosis and appropriate management.


Assuntos
Hemangioma Cavernoso do Sistema Nervoso Central , Feminino , Humanos , Masculino , Hemangioma Cavernoso do Sistema Nervoso Central/cirurgia , Hemangioma Cavernoso do Sistema Nervoso Central/diagnóstico por imagem , Hemangioma Cavernoso do Sistema Nervoso Central/patologia , Imageamento por Ressonância Magnética , Lactente
17.
Childs Nerv Syst ; 40(8): 2443-2448, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38713207

RESUMO

PURPOSE: We aimed to determine the surgical indications and postoperative outcomes among pediatric patients with lobar cerebral cavernous malformations (CCMs). METHODS: We retrospectively reviewed pediatric patients operated on for lobar CCM between March 2010 and August 2021. Indications for surgery included (1) intracranial hemorrhage, (2) symptomatic superficially located lesion, and (3) asymptomatic CCM in non-eloquent area in case of strong parental preferences. Patients presenting with seizures were assessed using Engel Epilepsy Surgery Outcome Scale. RESULTS: Twenty-one patients were included. The predominant symptoms were seizures (57.1%), headaches (33.3%), and focal neurological deficits (23.8%). Patients were qualified for surgery due to symptomatic intracranial hemorrhage (47.6%), drug-resistant epilepsy (28.6%), and focal neurological deficits (9.5%). Three patients (14.3%) were asymptomatic. A gross total resection of CCM with the surrounding hemosiderin rim was achieved in all patients. The mean follow-up was 52 months. No patient experienced surgery-related complications. In all individuals with a preoperative first episode of seizures or focal neurological deficits, the symptoms subsided. All six patients with drug-resistant epilepsy improved to Engel classes I (67%) and II (33%). CONCLUSION: Surgical removal of symptomatic lobar CCMs in properly selected candidates remains a safe option. Parental preferences may be considered a sole qualifying criterion for asymptomatic lobar CCM excision.


Assuntos
Hemangioma Cavernoso do Sistema Nervoso Central , Humanos , Feminino , Masculino , Hemangioma Cavernoso do Sistema Nervoso Central/cirurgia , Hemangioma Cavernoso do Sistema Nervoso Central/complicações , Criança , Estudos Retrospectivos , Pré-Escolar , Adolescente , Procedimentos Neurocirúrgicos/métodos , Lactente , Resultado do Tratamento
18.
Childs Nerv Syst ; 40(6): 1957-1960, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38451297

RESUMO

INTRODUCTION: Brain cavernomas or cavernous angiomas are a rare vascular malformation in the general population, even more so in pediatric patients. Their incidence in this group is less than 5% of all vascular malformations. They are typically found in the cerebral hemispheres in cortico-subcortical locations and, more rarely, in the brainstem. OBJECTIVE: To describe the diagnosis, treatment, and follow-up of a case involving a pediatric patient with a giant cavernoma in the brainstem at J.P. Garrahan Hospital. MATERIALS AND METHODS: The clinical history of the case was retrieved from the database of J.P. Garrahan Pediatric Hospital. Additionally, a literature search was conducted in high-impact factor journals using the PubMed database. CONCLUSION: Both the authors of this study and experts consulted through the literature agree that, given the eloquence of the affected area and its challenging accessibility, close monitoring and an expectant approach are advisable for such patients. Nevertheless, when the onset of the case warrants it, surgical intervention is deemed necessary in emergency situations and following the acute phase for complete resolution of the pathology.


Assuntos
Neoplasias do Tronco Encefálico , Hemangioma Cavernoso do Sistema Nervoso Central , Humanos , Neoplasias do Tronco Encefálico/diagnóstico por imagem , Neoplasias do Tronco Encefálico/cirurgia , Hemangioma Cavernoso do Sistema Nervoso Central/cirurgia , Hemangioma Cavernoso do Sistema Nervoso Central/diagnóstico por imagem , Masculino , Criança , Imageamento por Ressonância Magnética , Feminino
19.
Childs Nerv Syst ; 40(8): 2615-2618, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38639803

RESUMO

An 8-year-old boy presenting with left-angle paralysis, tremor in upper and lower extremities, and diplopia was diagnosed with hemorrhage from a mesencephalic cavernous hemangioma. He underwent hemangiomectomy through the occipital transtentorial approach 4 weeks post-hemorrhage, after which Holmes tremor (HT) markedly reduced. A year later, hemangioma has not recurred; he is now independent in his daily activities. Early intervention in the subacute stage allows for the complete removal of brainstem cavernomas (BSCs), with minimal risk of complications or sequelae. Proper timing and surgical approach for BSCs can prevent re-bleeding and improve HT after an initial hemorrhage, without any lasting negative consequences.


Assuntos
Neoplasias do Tronco Encefálico , Hemangioma Cavernoso do Sistema Nervoso Central , Tremor , Humanos , Masculino , Criança , Neoplasias do Tronco Encefálico/cirurgia , Neoplasias do Tronco Encefálico/complicações , Neoplasias do Tronco Encefálico/diagnóstico por imagem , Tremor/etiologia , Tremor/cirurgia , Hemangioma Cavernoso do Sistema Nervoso Central/cirurgia , Hemangioma Cavernoso do Sistema Nervoso Central/complicações , Hemangioma Cavernoso do Sistema Nervoso Central/diagnóstico por imagem , Hemangioma Cavernoso/cirurgia , Hemangioma Cavernoso/complicações , Hemangioma Cavernoso/diagnóstico por imagem , Procedimentos Neurocirúrgicos/métodos , Tronco Encefálico/cirurgia , Tronco Encefálico/diagnóstico por imagem
20.
Neurosurg Rev ; 47(1): 186, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38653844

RESUMO

OBJECTIVE: To determine the outcomes of stereotactic radiosurgery (SRS) for deep-seated (brainstem, basal ganglia, thalamus, cerebellar peduncle) intracranial cavernous malformations (ICMs). METHODS: A systematic review and meta-analysis was performed according to PRISMA and MOOSE guidelines. The main outcomes were comparing pre- and post-SRS hemorrhage rates, using the pooled risk ratios (RR) as the measure of effect. Additionally, the study assessed lesion volume changes and radiation-injury incidence. RESULTS: Data of 850 patients across 14 studies were included in the meta-analysis. The pooled RR of all deep-seated ICMs show a decrease in hemorrhage rate after SRS compared to pre-SRS over the total follow-up period (RR =0.13), initial 2 years (RR =0.22), and after 2 years (RR =0.07). For 9 studies that reported hemorrhage rate of the brainstem only, the pooled RR shows a decrease of hemorrhage rate after SRS compared to pre-SRS over the total follow-up period (RR =0.13), initial 2 years (RR =0.19), and after 2 years (RR =0.07). Volumetric regression was achieved in 44.25% and stability in 56.1%. The pooled incidence of symptomatic and permanent radiation injury was 9% (95% CI, 7-11) and 3% (95% CI, 0-1.9%), respectively. CONCLUSION: SRS appears effective in reducing hemorrhage rates for deep-seated ICMs. The risk of symptomatic radiation injury is low. Given the high risk of surgical morbidity, SRS is a reasonable treatment option for patients with deep-seated ICMs with at least one prior hemorrhage.


Assuntos
Hemangioma Cavernoso do Sistema Nervoso Central , Radiocirurgia , Radiocirurgia/métodos , Humanos , Hemangioma Cavernoso do Sistema Nervoso Central/cirurgia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA