Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 240
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34413211

RESUMO

The global spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the associated disease COVID-19, requires therapeutic interventions that can be rapidly identified and translated to clinical care. Traditional drug discovery methods have a >90% failure rate and can take 10 to 15 y from target identification to clinical use. In contrast, drug repurposing can significantly accelerate translation. We developed a quantitative high-throughput screen to identify efficacious agents against SARS-CoV-2. From a library of 1,425 US Food and Drug Administration (FDA)-approved compounds and clinical candidates, we identified 17 hits that inhibited SARS-CoV-2 infection and analyzed their antiviral activity across multiple cell lines, including lymph node carcinoma of the prostate (LNCaP) cells and a physiologically relevant model of alveolar epithelial type 2 cells (iAEC2s). Additionally, we found that inhibitors of the Ras/Raf/MEK/ERK signaling pathway exacerbate SARS-CoV-2 infection in vitro. Notably, we discovered that lactoferrin, a glycoprotein found in secretory fluids including mammalian milk, inhibits SARS-CoV-2 infection in the nanomolar range in all cell models with multiple modes of action, including blockage of virus attachment to cellular heparan sulfate and enhancement of interferon responses. Given its safety profile, lactoferrin is a readily translatable therapeutic option for the management of COVID-19.


Assuntos
Antivirais/farmacologia , Fatores Imunológicos/farmacologia , Lactoferrina/farmacologia , SARS-CoV-2/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Células CACO-2 , Linhagem Celular Tumoral , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Descoberta de Drogas , Reposicionamento de Medicamentos/métodos , Células Epiteliais , Heparitina Sulfato/antagonistas & inibidores , Heparitina Sulfato/imunologia , Heparitina Sulfato/metabolismo , Hepatócitos , Ensaios de Triagem em Larga Escala , Humanos , SARS-CoV-2/crescimento & desenvolvimento , SARS-CoV-2/patogenicidade , Células Vero , Tratamento Farmacológico da COVID-19
2.
J Gen Virol ; 103(2)2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35191823

RESUMO

Arboviruses are medically important arthropod-borne viruses that cause a range of diseases in humans from febrile illness to arthritis, encephalitis and hemorrhagic fever. Given their transmission cycles, these viruses face the challenge of replicating in evolutionarily divergent organisms that can include ticks, flies, mosquitoes, birds, rodents, reptiles and primates. Furthermore, their cell attachment receptor utilization may be affected by the opposing needs for generating high and sustained serum viremia in vertebrates such that virus particles are efficiently collected during a hematophagous arthropod blood meal but they must also bind sufficiently to cellular structures on divergent organisms such that productive infection can be initiated and viremia generated. Sulfated polysaccharides of the glycosaminoglycan (GAG) groups, primarily heparan sulfate (HS), have been identified as cell attachment moieties for many arboviruses. Original identification of GAG binding as a phenotype of arboviruses appeared to involve this attribute arising solely as a consequence of adaptation of virus isolates to growth in cell culture. However, more recently, naturally circulating strains of at least one arbovirus, eastern equine encephalitis, have been shown to bind HS efficiently and the GAG binding phenotype continues to be associated with arbovirus infection in published studies. If GAGs are attachment receptors for many naturally circulating arboviruses, this could lead to development of broad-spectrum antiviral therapies through blocking of the virus-GAG interaction. This review summarizes the available data for GAG/HS binding as a phenotype of naturally circulating arbovirus strains emphasizing the importance of avoiding tissue culture amplification and artifactual phenotypes during their isolation.


Assuntos
Infecções por Arbovirus/virologia , Arbovírus/imunologia , Heparitina Sulfato/imunologia , Animais , Humanos
3.
J Clin Apher ; 37(1): 13-18, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34698404

RESUMO

BACKGROUND: Small fiber neuropathy (SFN) can be associated with autoantibodies, including those of IgM class with specificity for the trisulfated heparan disaccharide (TS-HDS) antigen. We hypothesized that, as an IgM autoantibody-mediated disorder, TS-HDS-associated SFN symptoms may be reduced with therapeutic plasma exchange (TPE). STUDY METHODS: This was an observational analysis of all patients referred for TPE from 2018 to 2020 following laboratory confirmation of SFN with TS-HDS autoantibodies; a loading course of 3 to 5 procedures over 2 weeks was completed, with some patients returning for monthly procedures. The following data were collected: demographics, symptoms and duration, TS-HDS levels, skin biopsy results, reported responses to TPE, and TPE-associated adverse events. RESULTS: Of the 17 subjects, 12 (71%) were female and the mean age was 57.5 years (range 27-94). The most common reported symptom was lower extremity paresthesia (88% of subjects). The mean number of TPE procedures completed per subject was 9 (range 3-18), with 71% (12/17) reporting symptomatic improvement or slowed disease progression. About 15% of procedures were associated with an adverse event, with vasovagal reactions being the most common; 53% of patients had at least one adverse event. CONCLUSIONS: Given a reported symptomatic response rate of more than 70%, TPE may be a treatment option for individuals with autoimmune-mediated SFN associated with increased titers of TS-HDS IgM autoantibodies. Since TPE-associated adverse events appear common in this population, close monitoring during procedures is warranted.


Assuntos
Heparitina Sulfato/imunologia , Imunoglobulina M , Troca Plasmática , Neuropatia de Pequenas Fibras/imunologia , Neuropatia de Pequenas Fibras/terapia , Adulto , Idoso , Idoso de 80 Anos ou mais , Dissacarídeos/imunologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
4.
Nat Methods ; 15(11): 889-899, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30377379

RESUMO

Heparan sulfate (HS) is a complex linear polysaccharide that modulates a wide range of biological functions. Elucidating the structure-function relationship of HS has been challenging. Here we report the generation of an HS-mutant mouse lung endothelial cell library by systematic deletion of HS genes expressed in the cell. We used this library to (1) determine that the strictly defined fine structure of HS, not its overall degree of sulfation, is more important for FGF2-FGFR1 signaling; (2) define the epitope features of commonly used anti-HS phage display antibodies; and (3) delineate the fine inter-regulation networks by which HS genes modify HS and chain length in mammalian cells at a cell-type-specific level. Our mutant-cell library will allow robust and systematic interrogation of the roles and related structures of HS in a cellular context.


Assuntos
Anticorpos/imunologia , Endotélio Vascular/metabolismo , Epitopos/imunologia , Heparitina Sulfato/química , Heparitina Sulfato/imunologia , Pulmão/metabolismo , Mutação , Animais , Especificidade de Anticorpos , Células Cultivadas , Endotélio Vascular/citologia , Endotélio Vascular/imunologia , Heparitina Sulfato/genética , Heparitina Sulfato/metabolismo , Pulmão/citologia , Pulmão/imunologia , Camundongos Endogâmicos C57BL , Biblioteca de Peptídeos , Transdução de Sinais , Relação Estrutura-Atividade , Enxofre/química
5.
Glycoconj J ; 37(4): 445-455, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32468289

RESUMO

Heparan sulfate (HS) is a linear polysaccharide with high structural diversity. Different HS epitopes have been detected and localized using single chain variable fragment (scFv) antibodies from a 'single pot' phage display library containing a randomized complementarity determining region of the heavy chain (CDR3). In this study, we created a new library containing anti-HS scFvs that all harbor a dp-38 heavy chain segment where the CDR3 region was engineered to contain the XBBXBX heparin binding consensus site (X = any amino acid, B = R, K or H). The library contained ~1.73 × 106 unique antibodies and was biopanned against HS from several sources. The selected antibodies were sequenced and chemically/immunohistologically characterized. A number of 67 anti-HS scFv antibodies were selected, of which 31 contained a XBBXBX CDR3 sequence. There was a clear preference for glycine at the first and proline at the fourth position of the CDR3. The sequence GZZP(R/K)X (Z = R, K or H, but may also contain N, S, or Q) was unusually overrepresented. Selected antibodies reacted with HS/heparin, but not with other glycosaminoglycans. Antibodies reacted differentially with respect to N-, 2-O, or 6-O-desulfated heparin preparations, and showed distinct topologies of HS epitopes in rat kidney sections. The library may be instrumental in the selection of a large pool of HS epitope-specific antibodies, and - since all antibodies differ only in their 6 amino acid CDR region - may be a tool for a rational design of antibodies recognizing specific HS sulfation patterns.


Assuntos
Heparitina Sulfato/imunologia , Biblioteca de Peptídeos , Anticorpos de Cadeia Única/imunologia , Anticorpos de Domínio Único/química , Animais , Sítios de Ligação , Bioprospecção , Ensaio de Imunoadsorção Enzimática , Epitopos/química , Epitopos/imunologia , Heparina/metabolismo , Heparitina Sulfato/metabolismo , Rim/imunologia , Rim/metabolismo , Masculino , Ratos Wistar , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/metabolismo , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/metabolismo
6.
Adv Exp Med Biol ; 1221: 461-470, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32274722

RESUMO

Heparanase regulates multiple biological activities that enhance tumor growth and metastatic spread. Heparanase cleaves and degrades heparan sulfate (HS), a key structural component of the extracellular matrix that serves as a barrier to cell invasion and also as a reservoir for cytokines and growth factors critical for tumor growth and metastasis. For this reason, heparanase is an attractive target for the development of novel anti-cancer therapies. Pixatimod (PG545), a heparanase inhibitor, has shown promising results in the treatment of multiple tumor types. PG545 offers a diversity of mechanisms of action in tumor therapy that include angiogenic inhibition, inhibition of growth factor release, inhibition of tumor cell migration, tumor cell apoptosis, activation of ER stress response, dysregulation of autophagy, and NK cell activation. Further investigation into the role that heparanase and its inhibitors play in tumor therapy can lead to the development of effective tumor therapies.


Assuntos
Glucuronidase/antagonistas & inibidores , Heparitina Sulfato/imunologia , Heparitina Sulfato/farmacologia , Neoplasias/tratamento farmacológico , Saponinas/imunologia , Saponinas/farmacologia , Humanos , Neoplasias/enzimologia , Neoplasias/imunologia , Neoplasias/patologia
7.
Immunity ; 33(5): 817-29, 2010 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-21093315

RESUMO

Heparan sulfate can bind several adhesion molecules involved in lymphocyte trafficking. However, the in vivo function of endothelial heparan sulfate in lymphocyte homing and stimulation of the immune response has not been elucidated. Here, we generated mutant mice deficient in the enzyme Ext1, which is required for heparan sulfate synthesis, in a Tek-dependent and inducible manner. Chemokine presentation was diminished in the mutant mice, causing the lack of appropriate integrin-mediated adhesion, and resulted in a marked decrease in lymphocyte sticking to high endothelial venules and in recruitment of resident dendritic cells through lymphatic vessels to the lymph nodes. As a consequence, mutant mice displayed a severe impairment in lymphocyte homing and a compromised contact hypersensitivity response. By contrast, lymphocyte rolling was increased because of loss of electrostatic repulsion by heparan sulfate. These results demonstrate critical roles of endothelial heparan sulfate in immune surveillance and immune response generation.


Assuntos
Quimiocinas/imunologia , Células Dendríticas/imunologia , Heparitina Sulfato/imunologia , Linfonodos/imunologia , Linfócitos/imunologia , Animais , Adesão Celular/imunologia , Quimiocinas/metabolismo , Células Dendríticas/metabolismo , Endotélio Vascular/imunologia , Heparitina Sulfato/metabolismo , Integrinas/imunologia , Linfonodos/metabolismo , Linfócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , N-Acetilglucosaminiltransferases/deficiência , Vênulas/imunologia , Vênulas/metabolismo
8.
Rheumatology (Oxford) ; 56(8): 1407-1416, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28460084

RESUMO

Objective: The aim was to investigate the association between autoantibodies (autoAbs) and neuropsychiatric (NP) involvement in patients with SLE and to evaluate whether any autoAb or a combination of these autoAbs could indicate the underlying pathogenic process. Methods: Using a multiplexed protein array for 94 antigens, we compared the serum autoAb profiles of 69 NPSLE patients, 203 SLE patients without NP involvement (non-NPSLE) and 51 healthy controls. Furthermore, we compared the profiles of NPSLE patients with clinical inflammatory (n = 38) and ischaemic (n = 31) NP involvement. Results: In total, 75 IgG and 47 IgM autoAbs were associated with SLE patients in comparison with healthy controls. Comparing NPSLE with non-NPSLE and healthy control sera, 9 IgG (amyloid, cardiolipin, glycoprotein 2, glycoprotein 210, heparin, heparan sulphate, histone H2A, prothrombin protein and vimentin) and 12 IgM (amyloid, cardiolipin, centromere protein A, collagen II, histones H2A and H2B, heparan sulphate, heparin, mitochondrial 2, nuclear Mi-2, nucleoporin 62 and vimentin) autoAbs were present at significantly different levels in NPSLE. The combination of IgG autoAbs against heparan sulphate, histone H2B and vimentin could differentiate NPSLE from non-NPSLE (area under the curve 0.845, 99.97% CI: 0.756, 0.933; P < 0.0001). Compared with non-NPSLE, four IgG and seven IgM autoAbs were significantly associated with inflammatory NPSLE. In ischaemic NPSLE, three IgG and three IgM autoAbs were significantly different from non-NPSLE patients. Conclusion: In our cohort, the presence of high levels of anti-heparan sulphate and anti-histone H2B combined with low levels of anti-vimentin IgG autoAbs is highly suggestive of NPSLE. These results need to be validated in external cohorts.


Assuntos
Autoanticorpos/sangue , Vasculite Associada ao Lúpus do Sistema Nervoso Central/diagnóstico , Adulto , Autoanticorpos/imunologia , Biomarcadores/sangue , Estudos de Casos e Controles , Feminino , Heparitina Sulfato/imunologia , Histonas/imunologia , Humanos , Imunoglobulina G/imunologia , Vasculite Associada ao Lúpus do Sistema Nervoso Central/imunologia , Masculino , Pessoa de Meia-Idade , Análise Serial de Proteínas , Vimentina/imunologia
9.
Lupus ; 26(8): 815-824, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28420046

RESUMO

Background The purpose of this study was to evaluate the features of heparan sulfate proteoglycans (HSPGs) as agrins of the glomerular basement membrane (GBM) and circulating anti-heparan sulfate (HS) antibodies in lupus nephritis, comparing titers among the following groups: lupus nephritis (LN), non-renal lupus, non-lupus nephritis, and healthy controls. Methods The stage of nephritis was determined based on the kidney biopsy. Alcian blue staining and immunohistochemical (IHC) staining for agrin were performed for histological evaluation of GBM HSPGs in normal glomeruli, non-lupus membranous glomerulonephritis (MGN), and lupus MGN. The results were used for measurement of the serum anti-HS antibody titers using an enzyme-linked immunosorbent assay (ELISA) in the following groups: 38 healthy controls, 38 non-lupus nephritis, 37 non-renal lupus, and 38 LN. Results Glomerulus HSPGs were stained bluish-green along the GBM with Alcian blue. However, IHC staining against agrin was almost completely negative in the lupus MGN group compared with the normal and non-lupus MGN groups, which showed brown staining of GBM. A higher level of anti-HS IgG was detected in LN compared with other groups, respectively. Higher titers were associated with the presence of SLE and nephritis. A higher degree of proteinuria normalized to glomerular filtration rate (eGFR) was observed in association with higher anti-HS antibody titers in LN. Conclusion This study demonstrated a functional loss of GBM HSPGs and higher levels of circulating anti-HS antibodies as a characteristic feature of lupus nephritis, suggesting their involvement in the pathogenesis of lupus nephritis and proteinuria.


Assuntos
Proteoglicanas de Heparan Sulfato/metabolismo , Heparitina Sulfato/imunologia , Imunoglobulina G/imunologia , Nefrite Lúpica/imunologia , Adulto , Membrana Basal/metabolismo , Estudos de Casos e Controles , Ensaio de Imunoadsorção Enzimática , Feminino , Taxa de Filtração Glomerular , Glomerulonefrite Membranosa/imunologia , Humanos , Glomérulos Renais/imunologia , Glomérulos Renais/metabolismo , Lúpus Eritematoso Sistêmico/complicações , Lúpus Eritematoso Sistêmico/imunologia , Nefrite Lúpica/fisiopatologia , Masculino , Pessoa de Meia-Idade , Nefrite/imunologia , Proteinúria/etiologia , Proteinúria/imunologia , Adulto Jovem
10.
Proc Natl Acad Sci U S A ; 111(22): 8173-8, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24835176

RESUMO

Identification of carbohydrate sequences that determine affinity to specific chemokines is a critical step for strategies to interfere with chemokine-mediated leukocyte trafficking. Here, we first characterized the development of allergic asthma in Tie2-dependent and inducible Ext1-knockout (Tie2-Ext1(iKO)) mice. We showed that heparan sulfate is essential for leukocyte recruitment in the peribronchial region and bronchoalveolar lavage fluid (BALF), and is crucial for induction of airway hyperresponsiveness. Our glycan microarray showed a unique affinity profile of chemokine CCL20 to substructures of heparin and heparin-like oligo/di/monosaccharides. Among them, we identified a synthetic and not naturally occurring monosaccharide, 2,4-O-di-sulfated iduronic acid (Di-S-IdoA), as a potential inhibitor for CCL20-heparan sulfate interaction. Mice injected with Di-S-IdoA via tail vain or nasal inhalation showed attenuated leukocyte recruitment into inflammatory sites and BALF. These results demonstrate a critical role of chemokine-heparan sulfate interaction in the asthma development and Di-S-IdoA as a potential drug for asthma treatment.


Assuntos
Asma/tratamento farmacológico , Ácido Idurônico/farmacologia , Sulfatos/farmacologia , Linfócitos T/efeitos dos fármacos , Animais , Asma/imunologia , Líquido da Lavagem Broncoalveolar/imunologia , Sequência de Carboidratos , Quimiocina CCL20/imunologia , Quimiocina CCL20/metabolismo , Quimiotaxia/imunologia , Modelos Animais de Doenças , Eosinófilos/citologia , Eosinófilos/efeitos dos fármacos , Eosinófilos/imunologia , Heparitina Sulfato/imunologia , Heparitina Sulfato/metabolismo , Ácido Idurônico/síntese química , Pulmão/imunologia , Camundongos , Camundongos Knockout , N-Acetilglucosaminiltransferases/genética , Ovalbumina/imunologia , Ovalbumina/farmacologia , Polissacarídeos/imunologia , Polissacarídeos/metabolismo , Receptor TIE-2/genética , Sulfatos/síntese química , Linfócitos T/citologia , Linfócitos T/imunologia
11.
Nat Rev Immunol ; 6(9): 633-43, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16917509

RESUMO

The polysaccharide heparan sulphate is ubiquitously expressed as a proteoglycan in extracellular matrices and on cell surfaces. Heparan sulphate has marked sequence diversity that allows it to specifically interact with many proteins. This Review focuses on the multiple roles of heparan sulphate in inflammatory responses and, in particular, on its participation in almost every stage of leukocyte transmigration through the blood-vessel wall. Heparan sulphate is involved in the initial adhesion of leukocytes to the inflamed endothelium, the subsequent chemokine-mediated transmigration through the vessel wall and the establishment of both acute and chronic inflammatory reactions.


Assuntos
Heparitina Sulfato/imunologia , Heparitina Sulfato/metabolismo , Animais , Membrana Basal/irrigação sanguínea , Membrana Basal/metabolismo , Adesão Celular , Quimiocinas/imunologia , Quimiocinas/metabolismo , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Inflamação/terapia , Proteoglicanas/imunologia , Proteoglicanas/metabolismo
12.
Biochem Biophys Res Commun ; 469(4): 878-83, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26713365

RESUMO

To explore possible roles of heparanase in cancer-host crosstalk, we examined whether heparanase influences expression of inflammatory chemokines in colorectal cancer cells. Murine colorectal carcinoma cells incubated with heparanase upregulated MCP-1, KC, and RANTES genes and released MCP-1 and KC proteins. Heparanase-dependent production of IL-8 was detected in two human colorectal carcinoma cell lines. Addition of a heparanase inhibitor Heparastatin (SF4) did not influence MCP-1 production, while both latent and mature forms of heparanase augmented MCP-1 release, suggesting that heparanase catalytic activity was dispensable for MCP-1 production. In contrast, addition of heparin to the medium suppressed MCP-1 release in a dose-dependent manner. Similarly, targeted suppression of Ext1 by RNAi significantly suppressed cell surface expression of heparan sulfate and MCP-1 production in colon 26 cells. Taken together, it is concluded that colon 26 cells transduce the heparanase-mediated signal through heparan sulfate binding. We propose a novel function for heparanase independent of its endoglycosidase activity, namely as a stimulant for chemokine production.


Assuntos
Quimiocinas/imunologia , Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/imunologia , Glucuronidase/imunologia , Heparitina Sulfato/imunologia , Inflamassomos/imunologia , Catálise , Linhagem Celular Tumoral , Ativação Enzimática , Humanos
13.
Blood ; 124(19): 2937-47, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25202142

RESUMO

The glycosyltransferase gene, Ext1, is essential for heparan sulfate production. Induced deletion of Ext1 selectively in Mx1-expressing bone marrow (BM) stromal cells, a known population of skeletal stem/progenitor cells, in adult mice resulted in marked changes in hematopoietic stem and progenitor cell (HSPC) localization. HSPC egressed from BM to spleen after Ext1 deletion. This was associated with altered signaling in the stromal cells and with reduced vascular cell adhesion molecule 1 production by them. Further, pharmacologic inhibition of heparan sulfate mobilized qualitatively more potent and quantitatively more HSPC from the BM than granulocyte colony-stimulating factor alone, including in a setting of granulocyte colony-stimulating factor resistance. The reduced presence of endogenous HSPC after Ext1 deletion was associated with engraftment of transfused HSPC without any toxic conditioning of the host. Therefore, inhibiting heparan sulfate production may provide a means for avoiding the toxicities of radiation or chemotherapy in HSPC transplantation for nonmalignant conditions.


Assuntos
Mobilização de Células-Tronco Hematopoéticas/métodos , Transplante de Células-Tronco Hematopoéticas/métodos , Heparitina Sulfato/biossíntese , N-Acetilglucosaminiltransferases/metabolismo , Células Estromais/metabolismo , Condicionamento Pré-Transplante , Animais , Anticoagulantes/farmacologia , Ligação Competitiva/imunologia , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Experimental/metabolismo , Fator Estimulador de Colônias de Granulócitos/farmacologia , Proteínas de Fluorescência Verde/genética , Heparina/farmacologia , Heparitina Sulfato/imunologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , N-Acetilglucosaminiltransferases/imunologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Células Estromais/imunologia , Molécula 1 de Adesão de Célula Vascular/imunologia , Molécula 1 de Adesão de Célula Vascular/metabolismo
14.
J Immunol ; 192(5): 2133-42, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24493818

RESUMO

Dendritic cells (DCs) are potent APCs essential for initiating adaptive immunity. Following pathogen exposure, trafficking of DCs to lymph nodes (LNs) through afferent lymphatic vessels constitutes a crucial step in the execution of their functions. The mechanisms regulating this process are poorly understood, although the involvement of certain chemokines in this process has recently been reported. In this study, we demonstrate that genetically altering the fine structure (N-sulfation) of heparan sulfate (HS) specifically in mouse lymphatic endothelium significantly reduces DC trafficking to regional LNs in vivo. Moreover, this alteration had the unique functional consequence of reducing CD8(+) T cell proliferative responses in draining LNs in an ovalbumin immunization model. Mechanistic studies suggested that lymphatic endothelial HS regulates multiple steps during DC trafficking, including optimal presentation of chemokines on the surface of DCs, thus acting as a co-receptor that may function "in trans" to mediate chemokine receptor binding. This study not only identifies novel glycan-mediated mechanisms that regulate lymphatic DC trafficking, but it also validates the fine structure of lymphatic vascular-specific HS as a novel molecular target for strategies aiming to modulate DC behavior and/or alter pathologic T cell responses in lymph nodes.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Movimento Celular/imunologia , Células Dendríticas/imunologia , Endotélio Linfático/imunologia , Heparitina Sulfato/imunologia , Linfonodos/imunologia , Animais , Linfócitos T CD8-Positivos/citologia , Movimento Celular/genética , Quimiocinas/genética , Quimiocinas/imunologia , Células Dendríticas/citologia , Endotélio Linfático/citologia , Heparitina Sulfato/genética , Humanos , Linfonodos/citologia , Camundongos , Camundongos Transgênicos
15.
J Immunol ; 193(10): 4962-70, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25305316

RESUMO

The tight regulation of innate immunity on extracellular matrix (ECM) is a vital part of immune homeostasis throughout the human body, and disruption to this regulation in the eye is thought to contribute directly to the progression of age-related macular degeneration (AMD). The plasma complement regulator factor H (FH) is thought to be the main regulator that protects ECM against damaging complement activation. However, in the present study we demonstrate that a truncated form of FH, called FH-like protein 1 (FHL-1), is the main regulatory protein in the layer of ECM under human retina, called Bruch's membrane. Bruch's membrane is a major site of AMD disease pathogenesis and where drusen, the hallmark lesions of AMD, form. We show that FHL-1 can passively diffuse through Bruch's membrane, whereas the full sized, glycosylated, FH cannot. FHL-1 is largely bound to Bruch's membrane through interactions with heparan sulfate, and we show that the common Y402H polymorphism in the CFH gene, associated with an increased risk of AMD, reduces the binding of FHL-1 to this heparan sulfate. We also show that FHL-1 is retained in drusen whereas FH coats the periphery of the lesions, perhaps inhibiting their clearance. Our results identify a novel mechanism of complement regulation in the human eye, which highlights potential new avenues for therapeutic strategies.


Assuntos
Lâmina Basilar da Corioide/metabolismo , Proteínas Inativadoras do Complemento C3b/metabolismo , Fator H do Complemento/metabolismo , Degeneração Macular/metabolismo , Retina/metabolismo , Drusas Retinianas/metabolismo , Lâmina Basilar da Corioide/imunologia , Lâmina Basilar da Corioide/patologia , Ativação do Complemento , Proteínas Inativadoras do Complemento C3b/genética , Proteínas Inativadoras do Complemento C3b/imunologia , Fator H do Complemento/genética , Fator H do Complemento/imunologia , Matriz Extracelular/imunologia , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Regulação da Expressão Gênica , Glicosilação , Heparitina Sulfato/imunologia , Heparitina Sulfato/metabolismo , Homeostase , Humanos , Imunidade Inata , Degeneração Macular/genética , Degeneração Macular/imunologia , Degeneração Macular/patologia , Ligação Proteica , Transporte Proteico , Retina/imunologia , Retina/patologia , Drusas Retinianas/genética , Drusas Retinianas/imunologia , Drusas Retinianas/patologia , Transdução de Sinais
16.
Hepatology ; 60(2): 576-87, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24492943

RESUMO

UNLABELLED: Wnt signaling is important for cancer pathogenesis and is often up-regulated in hepatocellular carcinoma (HCC). Heparan sulfate proteoglycans (HSPGs) function as coreceptors or modulators of Wnt activation. Glypican-3 (GPC3) is an HSPG that is highly expressed in HCC, where it can attract Wnt proteins to the cell surface and promote cell proliferation. Thus, GPC3 has emerged as a candidate therapeutic target in liver cancer. While monoclonal antibodies to GPC3 are currently being evaluated in preclinical and clinical studies, none have shown an effect on Wnt signaling. Here, we first document the expression of Wnt3a, multiple Wnt receptors, and GPC3 in several HCC cell lines, and demonstrate that GPC3 enhanced the activity of Wnt3a/ß-catenin signaling in these cells. Then we report the identification of HS20, a human monoclonal antibody against GPC3, which preferentially recognized the heparan sulfate chains of GPC3, both the sulfated and nonsulfated portions. HS20 disrupted the interaction of Wnt3a and GPC3 and blocked Wnt3a/ß-catenin signaling. Moreover, HS20 inhibited Wnt3a-dependent cell proliferation in vitro and HCC xenograft growth in nude mice. In addition, HS20 had no detectable undesired toxicity in mice. Taken together, our results show that a monoclonal antibody primarily targeting the heparin sulfate chains of GPC3 inhibited Wnt/ß-catenin signaling in HCC cells and had potent antitumor activity in vivo. CONCLUSION: An antibody directed against the heparan sulfate of a proteoglycan shows efficacy in blocking Wnt signaling and HCC growth, suggesting a novel strategy for liver cancer therapy.


Assuntos
Anticorpos Monoclonais/imunologia , Carcinoma Hepatocelular/imunologia , Glipicanas/imunologia , Heparitina Sulfato/imunologia , Neoplasias Hepáticas/imunologia , Via de Sinalização Wnt/imunologia , Animais , Anticorpos Monoclonais/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Técnicas de Visualização da Superfície Celular , Feminino , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Via de Sinalização Wnt/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , beta Catenina/imunologia
17.
Org Biomol Chem ; 13(21): 6066-72, 2015 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-25952831

RESUMO

Phage display antibodies are widely used to follow heparan sulfate (HS) expression in tissues and cells. We demonstrate by ELISA, that cations alter phage display antibody binding profiles to HS and this is mediated by changes in polysaccharide conformation, demonstrated by circular dichroism spectroscopy. Native HS structures, expressed on the cell surfaces of neuroblastoma and fibroblast cells, also exhibited altered antibody binding profiles following exposure to low mM concentrations of these cations. Phage display antibodies recognise conformationally-defined HS epitopes, rather than sequence alone, as has been assumed, and resemble proteins in being sensitive to changes in both charge distribution and conformation following binding of cations to HS polysaccharides.


Assuntos
Anticorpos/imunologia , Epitopos/imunologia , Heparitina Sulfato/imunologia , Animais , Configuração de Carboidratos , Sequência de Carboidratos , Cátions/imunologia , Linhagem Celular , Ensaio de Imunoadsorção Enzimática , Epitopos/química , Heparitina Sulfato/química , Humanos , Camundongos , Biblioteca de Peptídeos
18.
Adv Exp Med Biol ; 865: 123-40, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26306447

RESUMO

Tissue and organ transplants between genetically distinct individuals are always or nearly always rejected. The universality and speed of transplant rejection distinguishes this immune response from all others. Although this distinction is incompletely understood, some efforts to shed light on transplant rejection have revealed broader insights, including a relationship between activation of complement in grafted tissues, the metabolism of heparan sulfate proteoglycan and the nature of immune and inflammatory responses that ensue. Complement activation on cell surfaces, especially on endothelial cell surfaces, causes the shedding heparan sulfate, an acidic saccharide, from the cell surface and neighboring extracellular matrix. Solubilized in this way, heparan sulfate can activate leukocytes via toll like receptor-4, triggering inflammatory responses and activating dendritic cells, which migrate to regional lymphoid organs where they spark and to some extent govern cellular immune responses. In this way local ischemia, tissue injury and infection, exert systemic impact on immunity. Whether or in what circumstances this series of events explains the distinct characteristics of the immune response to transplants is still unclear but the events offer insight into the inception of immunity under the sub-optimal conditions accompanying infection and mechanisms by which infection and tissue injury engender systemic inflammation.


Assuntos
Rejeição de Enxerto/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Heparitina Sulfato/metabolismo , Síndrome de Resposta Inflamatória Sistêmica/metabolismo , Transplante de Tecidos , Ativação do Complemento/efeitos dos fármacos , Proteínas do Sistema Complemento/efeitos dos fármacos , Proteínas do Sistema Complemento/genética , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/patologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/imunologia , Células Endoteliais/patologia , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica , Rejeição de Enxerto/genética , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/patologia , Proteoglicanas de Heparan Sulfato/imunologia , Heparitina Sulfato/imunologia , Heparitina Sulfato/farmacologia , Humanos , Leucócitos/efeitos dos fármacos , Leucócitos/imunologia , Leucócitos/patologia , Transdução de Sinais , Síndrome de Resposta Inflamatória Sistêmica/genética , Síndrome de Resposta Inflamatória Sistêmica/imunologia , Síndrome de Resposta Inflamatória Sistêmica/patologia , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia
19.
Blood ; 120(8): 1742-51, 2012 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-22791291

RESUMO

Neutrophil recruitment and extravasation at sites of inflammation provide a mechanism for host defense. We showed previously that heparan sulfate, a type of sulfated glycosaminoglycan, facilitates neutrophil recruitment based on the reduction of neutrophil infiltration in mice in which the overall sulfation of the chains was reduced by selective inactivation of N-acetylglucosamine N-deacetylase-N-sulfotransferase (Ndst1) in endothelial cells. Here we show that inactivation of uronyl 2-O-sulfotransferase in endothelial cells (Hs2st), an enzyme that acts downstream from Ndst1, results in enhanced neutrophil recruitment in several models of acute inflammation. Enhanced neutrophil infiltration resulted in part from reduced rolling velocity under flow both in vivo and in vitro, which correlated with stronger binding of neutrophil L-selectin to mutant endothelial cells. Hs2st-deficient endothelial cells also displayed a striking increase in binding of IL-8 and macrophage inflammatory protein-2. The enhanced binding of these mediators of neutrophil recruitment resulted from a change in heparan sulfate structure caused by increased N-sulfation and 6-O-sulfation of glucosamine units in response to the decrease in 2-O-sulfation of uronic acid residues. This gain-of-function phenotype provides formidable evidence demonstrating the importance of endothelial heparan sulfate in inflammation and suggests a novel enzyme target for enhancing the innate immune response.


Assuntos
Inativação Gênica , Infiltração de Neutrófilos , Neutrófilos/imunologia , Peritonite/imunologia , Sulfotransferases/genética , Sulfotransferases/imunologia , Animais , Células Cultivadas , Quimiocinas/imunologia , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Heparitina Sulfato/química , Heparitina Sulfato/imunologia , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/imunologia , Selectina L/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/citologia , Peritonite/induzido quimicamente , Peritonite/genética , Tioglicolatos
20.
Blood ; 117(12): 3382-90, 2011 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-21252093

RESUMO

Because syndecan-4 (SD-4) on effector and memory T cells inhibits T-cell activation by binding dendritic cell-associated heparan sulfate proteoglycan-integrin ligand (DC-HIL) on antigen presenting cells and because malignant cells of the cutaneous T-cell lymphoma (CTCL) subset, Sézary syndrome (SS), exhibit memory T-cell phenotype, we posited SS cells to express SD-4. Indeed, malignant T cells from patients with SS and from CTCL cell lines constitutively expressed SD-4 at high levels, in contrast to T cells from healthy volunteers and patients with other inflammatory skin diseases and to non-CTCL cell lines that did not. SS cells also bound to DC-HIL at a level higher than normal T cells activated in vitro, resulting in their inhibited proliferation to anti-CD3 antibody. SD-4 on SS cells also trapped transforming growth factor-ß1 to their cell surface, enhancing their ability to inhibit activation of syngeneic and allogeneic normal T cells. All of these inhibitory properties were dependent on overexpression of distinct heparan sulfate (HS) moieties by SD-4 on SS cells. Finally, we showed toxin-conjugated DC-HIL to abrogate the ability of SS cells to proliferate in vitro. These findings indicate that SD-4 bearing distinct HS moieties plays a pathogenic role in SS and may be targeted for treatment.


Assuntos
Heparitina Sulfato/fisiologia , Ativação Linfocitária/imunologia , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/metabolismo , Síndrome de Sézary/imunologia , Sindecana-4/genética , Linfócitos T/imunologia , Fator de Crescimento Transformador beta/metabolismo , Idoso , Idoso de 80 Anos ou mais , Membrana Celular/metabolismo , Feminino , Heparitina Sulfato/química , Heparitina Sulfato/imunologia , Heparitina Sulfato/metabolismo , Humanos , Linfoma Cutâneo de Células T/imunologia , Linfoma Cutâneo de Células T/metabolismo , Linfoma Cutâneo de Células T/patologia , Masculino , Glicoproteínas de Membrana/fisiologia , Pessoa de Meia-Idade , Ligação Proteica/imunologia , Ligação Proteica/fisiologia , Transporte Proteico , Receptores Imunológicos/imunologia , Síndrome de Sézary/genética , Síndrome de Sézary/metabolismo , Síndrome de Sézary/patologia , Sindecana-4/química , Sindecana-4/metabolismo , Linfócitos T/metabolismo , Linfócitos T/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA