Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 681
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38752857

RESUMO

Avian reoviruses continue to cause disease in turkeys with varied pathogenicity and tissue tropism. Turkey enteric reovirus has been identified as a causative agent of enteritis or inapparent infections in turkeys. The new emerging variants of turkey reovirus, tentatively named turkey arthritis reovirus (TARV) and turkey hepatitis reovirus (THRV), are linked to tenosynovitis/arthritis and hepatitis, respectively. Turkey arthritis and hepatitis reoviruses are causing significant economic losses to the turkey industry. These infections can lead to poor weight gain, uneven growth, poor feed conversion, increased morbidity and mortality and reduced marketability of commercial turkeys. To combat these issues, detecting and classifying the types of reoviruses in turkey populations is essential. This research aims to employ clustering methods, specifically K-means and Hierarchical clustering, to differentiate three types of turkey reoviruses and identify novel emerging variants. Additionally, it focuses on classifying variants of turkey reoviruses by leveraging various machine learning algorithms such as Support Vector Machines, Naive Bayes, Random Forest, Decision Tree, and deep learning algorithms, including convolutional neural networks (CNNs). The experiments use real turkey reovirus sequence data, allowing for robust analysis and evaluation of the proposed methods. The results indicate that machine learning methods achieve an average accuracy of 92%, F1-Macro of 93% and F1-Weighted of 92% scores in classifying reovirus types. In contrast, the CNN model demonstrates an average accuracy of 85%, F1-Macro of 71% and F1-Weighted of 84% scores in the same classification task. The superior performance of the machine learning classifiers provides valuable insights into reovirus evolution and mutation, aiding in detecting emerging variants of pathogenic TARVs and THRVs.


Assuntos
Aprendizado de Máquina , Orthoreovirus Aviário , Infecções por Reoviridae , Perus , Animais , Orthoreovirus Aviário/genética , Orthoreovirus Aviário/classificação , Orthoreovirus Aviário/patogenicidade , Perus/virologia , Infecções por Reoviridae/virologia , Doenças das Aves Domésticas/virologia , Filogenia
2.
J Virol ; 98(9): e0102824, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39194247

RESUMO

Grass carp reovirus (GCRV) is the most virulent pathogen in the genus Aquareovirus, belonging to the family Spinareoviridae. Members of the Spinareoviridae family are known to replicate and assemble in cytoplasmic inclusion bodies termed viroplasms; however, the detailed mechanism underlying GCRV viroplasm formation and its specific roles in virus infection remains largely unknown. Here, we demonstrate that GCRV viroplasms form through liquid-liquid phase separation (LLPS) of the nonstructural protein NS80 and elucidate the specific role of LLPS during reovirus infection and immune evasion. We observe that viroplasms coalesce within the cytoplasm of GCRV-infected cells. Immunofluorescence and transmission electron microscopy indicate that GCRV viroplasms are membraneless structures. Live-cell imaging and fluorescence recovery after photobleaching assay reveal that GCRV viroplasms exhibit liquid-like properties and are highly dynamic structures undergoing fusion and fission. Furthermore, by using a reagent to inhibit the LLPS process and constructing an NS80 mutant defective in LLPS, we confirm that the liquid-like properties of viroplasms are essential for recruiting viral dsRNA, viral RdRp, and viral proteins to participate in viral genome replication and virion assembly, as well as for sequestering host antiviral factors for immune evasion. Collectively, our findings provide detailed insights into reovirus viroplasm formation and reveal the specific functions of LLPS during virus infection and immune evasion, identifying potential targets for the prevention and control of this virus. IMPORTANCE: Grass carp reovirus (GCRV) poses a significant threat to the aquaculture industry, particularly in China, where grass carp is a vital commercial fish species. However, detailed information regarding how GCRV viroplasms form and their specific roles in GCRV infection remains largely unknown. We discovered that GCRV viroplasms exhibit liquid-like properties and are formed through a physico-chemical biological phenomenon known as liquid-liquid phase separation (LLPS), primarily driven by the nonstructural protein NS80. Furthermore, we confirmed that the liquid-like properties of viroplasms are essential for virus replication, assembly, and immune evasion. Our study not only contributes to a deeper understanding of GCRV infection but also sheds light on broader aspects of viroplasm biology. Given that viroplasms are a universal feature of reovirus infection, inhibiting LLPS and then blocking viroplasms formation may serve as a potential pan-reovirus inhibition strategy.


Assuntos
Carpas , Evasão da Resposta Imune , Infecções por Reoviridae , Reoviridae , Proteínas não Estruturais Virais , Replicação Viral , Reoviridae/genética , Reoviridae/fisiologia , Animais , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética , Carpas/virologia , Infecções por Reoviridae/virologia , Corpos de Inclusão Viral/metabolismo , Doenças dos Peixes/virologia , Doenças dos Peixes/imunologia , Citoplasma/virologia , Citoplasma/metabolismo , Genoma Viral , Linhagem Celular , RNA Viral/genética , Separação de Fases
3.
J Virol ; 98(6): e0030524, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38771042

RESUMO

Many functions of viral attachment proteins are established, but less is known about the biological importance of viral attachment protein encapsidation efficiency. The mammalian orthoreovirus (reovirus) σ1 attachment protein forms filamentous trimers that incorporate into pentamers of the λ2 capsid protein. Reovirus strains vary in the efficiency of σ1 encapsidation onto progeny virions, which influences viral stability during entry into cells and the efficacy of tumor cell lysis. While the role of σ1 encapsidation has been evaluated in studies using cultured cells, the contribution of attachment protein encapsidation efficiency to viral infection in animals is less clear. Polymorphisms in reovirus σ1 at residues 22 and 249 have been implicated in viral dissemination in mice and susceptibility to proteolysis in the murine intestine, respectively. To determine whether these residues contribute to σ1 encapsidation efficiency, we engineered σ1 mutant viruses with single- and double-residue substitutions at sites 22 and 249. We found that substitutions at these sites alter the encapsidation of σ1 and that reoviruses encapsidating higher amounts of σ1 bind cells more avidly and have a modest replication advantage in a cell-type-specific manner relative to low σ1-encapsidating reoviruses. Furthermore, we found that a high σ1-encapsidating reovirus replicates and disseminates more efficiently in mice relative to a low σ1-encapsidating reovirus. These findings provide evidence of a relationship between viral attachment protein encapsidation efficiency and viral replication in cell culture and animal hosts. IMPORTANCE: Viral attachment proteins can serve multiple functions during viral replication, including attachment to host cells, cell entry and disassembly, and modulation of host immune responses. The relationship between viral attachment protein encapsidation efficiency and viral replication in cells and animals is poorly understood. We engineered and characterized a panel of reoviruses that differ in the capacity to encapsidate the σ1 attachment protein. We found that strains encapsidating σ1 with higher efficiency bind cells more avidly and replicate and spread more efficiently in mice relative to those encapsidating σ1 with lower efficiency. These results highlight a function for σ1 attachment protein capsid abundance in viral replication in cells and animals, which may inform future use of reovirus as an oncolytic therapeutic.


Assuntos
Proteínas do Capsídeo , Infecções por Reoviridae , Replicação Viral , Animais , Camundongos , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Infecções por Reoviridae/virologia , Infecções por Reoviridae/metabolismo , Ligação Viral , Polimorfismo Genético , Orthoreovirus de Mamíferos/genética , Orthoreovirus de Mamíferos/fisiologia , Orthoreovirus de Mamíferos/metabolismo , Montagem de Vírus , Linhagem Celular , Capsídeo/metabolismo , Humanos
4.
BMC Genomics ; 25(1): 715, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39048939

RESUMO

BF/C2 is a crucial molecule in the coagulation complement cascade pathway and plays a significant role in the immune response of grass carp through the classical, alternative, and lectin pathways during GCRV infection. In vivo experiments demonstrated that the mRNA expression levels of BF/C2 (A, B) in grass carp positively correlated with GCRV viral replication at various stages of infection. Excessive inflammation leading to death coincided with peak levels of BF/C2 (A, B) mRNA expression and GCRV viral replication. Correspondingly, BF/C2 (A, B) recombinant protein, CIK cells and GCRV co-incubation experiments yielded similar findings. Therefore, 3 h (incubation period) and 9 h (death period) were selected as critical points for this study. Transcriptome sequencing analysis revealed significant differences in the expression of BF/C2A and BF/C2B during different stages of CIK infection with GCRV and compared to the blank control group (PBS). Specifically, the BF/C2A_3 and BF/C2A_9 groups exhibited 2729 and 2228 differentially expressed genes (DEGs), respectively, with 1436 upregulated and 1293 downregulated in the former, and 1324 upregulated and 904 downregulated in the latter. The BF/C2B_3 and BF/C2B_9 groups showed 2303 and 1547 DEGs, respectively, with 1368 upregulated and 935 downregulated in the former, and 818 upregulated and 729 downregulated in the latter. KEGG functional enrichment analysis of these DEGs identified shared pathways between BF/C2A and PBS groups at 3 and 9 h, including the C-type lectin receptor signaling pathway, protein processing in the endoplasmic reticulum, Toll-like receptor signaling pathway, Salmonella infection, apoptosis, tight junction, and adipocytokine signaling pathway. Additionally, the BF/C2B groups at 3 and 9 h shared pathways related to protein processing in the endoplasmic reticulum, glycolysis/gluconeogenesis, and biosynthesis of amino acids. The mRNA levels of these DEGs were validated in cellular models, confirming consistency with the sequencing results. In addition, the mRNA expression levels of these candidate genes (mapk1, il1b, rela, nfkbiab, akt3a, hyou1, hsp90b1, dnajc3a et al.) in the head kidney, kidney, liver and spleen of grass carp immune tissue were significantly different from those of the control group by BF/C2 (A, B) protein injection in vivo. These candidate genes play an important role in the response of BF/C2 (A, B) to GCRV infection and it also further confirmed that BF/C2 (A, B) of grass carp plays an important role in coping with GCRV infection.


Assuntos
Carpas , Doenças dos Peixes , Proteínas de Peixes , Infecções por Reoviridae , Reoviridae , Animais , Carpas/genética , Carpas/virologia , Carpas/imunologia , Doenças dos Peixes/virologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/genética , Infecções por Reoviridae/veterinária , Infecções por Reoviridae/imunologia , Infecções por Reoviridae/genética , Infecções por Reoviridae/virologia , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Reoviridae/fisiologia , Perfilação da Expressão Gênica , Transcriptoma , Replicação Viral , Regulação da Expressão Gênica
5.
J Gen Virol ; 105(9)2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39319430

RESUMO

Fruit bats serve as an important reservoir for many zoonotic pathogens, including Nipah virus, Hendra virus, Marburg virus and Lyssavirus. To gain a deeper insight into the virological characteristics, pathogenicity and zoonotic potential of bat-borne viruses, recovery of infectious viruses from field samples is important. Here, we report the isolation and characterization of a mammalian orthoreovirus (MRV) from a large flying fox (Pteropus vampyrus) in Indonesia, which is the first detection of MRV in Southeast Asia. MRV was recovered from faecal samples of three different P. vampyrus in Central Java. Nucleotide sequence analysis revealed that the genome of the three MRV isolates shared more than 99% nucleotide sequence identity. We tentatively named one isolated strain as MRV12-52 for further analysis and characterization. Among 10 genome segments, MRV12-52 S1 and S4, which encode the cell-attachment protein and outer capsid protein, had 93.6 and 95.1% nucleotide sequence identities with known MRV strains, respectively. Meanwhile, the remaining genome segments of MRV12-52 were divergent with 72.9-80.7 % nucleotide sequence identities. Based on the nucleotide sequence of the S1 segment, MRV12-52 was grouped into serotype 2, and phylogenetic analysis demonstrated evidence of past reassortment events. In vitro characterization of MRV12-52 showed that the virus efficiently replicated in BHK-21, HEK293T and A549 cells. In addition, experimental infection of laboratory mice with MRV12-52 caused severe pneumonia with 75% mortality. This study highlights the presence of pathogenic MRV in Indonesia, which could serve as a potential animal and public health concern.


Assuntos
Quirópteros , Fezes , Genoma Viral , Orthoreovirus de Mamíferos , Filogenia , Infecções por Reoviridae , Animais , Quirópteros/virologia , Indonésia , Infecções por Reoviridae/virologia , Infecções por Reoviridae/veterinária , Camundongos , Fezes/virologia , Orthoreovirus de Mamíferos/genética , Orthoreovirus de Mamíferos/isolamento & purificação , Orthoreovirus de Mamíferos/classificação , Humanos , Análise de Sequência de DNA
6.
J Virol ; 97(1): e0144222, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36541803

RESUMO

Pathological effects of apoptosis associated with viral infections of the central nervous system are an important cause of morbidity and mortality. Reovirus is a neurotropic virus that causes apoptosis in neurons, leading to lethal encephalitis in newborn mice. Reovirus-induced encephalitis is diminished in mice with germ line ablation of NF-κB subunit p50. It is not known whether the proapoptotic function of NF-κB is mediated by neural-cell-intrinsic (neural-intrinsic) processes, NF-κB-regulated cytokine production by inflammatory cells, or a combination of both. To determine the contribution of cell type-specific NF-κB signaling in reovirus-induced neuronal injury, we established mice that lack NF-κB p65 expression in neural cells using the Cre/loxP recombination system. Following intracranial inoculation of reovirus, 50% of wild-type (WT) mice succumbed to infection, whereas more than 90% of mice lacking neural cell NF-κB p65 (Nsp65-/-) survived. While viral loads in brains of WT and Nsp65-/- mice were comparable, histological analysis revealed that reovirus antigen-positive areas in the brains of WT mice displayed increased immunoreactivity for cleaved caspase-3, a marker of apoptosis, relative to Nsp65-/- mice. These data suggest that neural-intrinsic NF-κB-dependent factors are essential mediators of reovirus neurovirulence. RNA sequencing analysis of reovirus-infected brain cortices of WT and Nsp65-/- mice suggests that NF-κB activation in neuronal cells upregulates genes involved in innate immunity, inflammation, and cell death following reovirus infection. A better understanding of the contribution of cell type-specific NF-κB-dependent signaling to viral neuropathogenesis could inform development of new therapeutics that target and protect highly vulnerable cell populations. IMPORTANCE Viral encephalitis contributes to illness and death in children and adults worldwide and has limited treatment options. Identifying common host factors upregulated by neurotropic viruses can enhance an understanding of virus-induced neuropathogenesis and aid in development of therapeutics. Although many neurotropic viruses activate NF-κB during infection, mechanisms by which NF-κB regulates viral neuropathogenesis and contributes to viral encephalitis are not well understood. We established mice in which NF-κB expression is ablated in neural tissue to study the function of NF-κB in reovirus neurovirulence and identify genes activated by NF-κB in response to reovirus infection in the central nervous system. Encephalitis following reovirus infection was dampened in mice lacking neural cell NF-κB. Reovirus induced a chemokine profile in the brain that was dependent on NF-κB signaling and was similar to chemokine profiles elicited by other neurotropic viruses. These data suggest common underlying mechanisms of encephalitis caused by neurotropic viruses and potentially shared therapeutic targets.


Assuntos
Encefalite Viral , Neurônios , Infecções por Reoviridae , Reoviridae , Animais , Camundongos , Apoptose/genética , Apoptose/imunologia , Quimiocinas/imunologia , Encefalite Viral/imunologia , Encefalite Viral/virologia , Neurônios/imunologia , NF-kappa B/genética , NF-kappa B/metabolismo , Reoviridae/imunologia , Reoviridae/patogenicidade , Infecções por Reoviridae/imunologia , Infecções por Reoviridae/virologia , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/imunologia
7.
Fish Shellfish Immunol ; 153: 109861, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39216711

RESUMO

This study explored the key molecules and signal pathways in the pathogenesis of grass carp reovirus (GCRV). Using immunoprecipitation mass spectrometry and Co-IP validation, the protein CiANXA4 was identified which interacts indirectly with CiLGP2. CiANXA4 encodes 321 amino acids, including 4 ANX domains. To explore the role of CiANXA4 in the anti-GCRV immune response, we used overexpression and siRNA knockdown in cells. The results showed that overexpression of the CiANXA4 gene significantly increased the mRNA content of vp2 and vp7 in GCRV-infected cells, and the virus titer greatly increased. Knockdown of CiANXA4 significantly inhibited the mRNA levels of vp2 and vp7, and the protein levels of viral protein VP7 also significantly decreased. This suggests that CiANXA4 promotes viral proliferation. Further, we demonstrate that the ANX3 and ANX4 domains are key domains that limit CiANXA4 function by constructing domain-deletion mutants. Finally, we investigated the relationship between CiLGP2 and CiANXA4. RT-PCR and Western blot results showed that CiLGP2 mRNA and protein expression levels were not affected by CiANXA4 overexpression. In contrast, overexpression of CiLGP2 resulted in significant reductions in CiANXA4 mRNA and protein levels. This suggests that the function of CiANXA4 is restricted by CiLGP2, and CiANXA4 is a downstream molecule of CiLGP2. These results reveal that CiANXA4 plays a critical role in the anti-GCRV innate immune response of grass carp, and provides new targets and strategies to develop antiviral drugs and improve disease resistance in grass carp.


Assuntos
Carpas , Doenças dos Peixes , Proteínas de Peixes , Imunidade Inata , Infecções por Reoviridae , Reoviridae , Animais , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Carpas/genética , Carpas/imunologia , Infecções por Reoviridae/imunologia , Infecções por Reoviridae/veterinária , Infecções por Reoviridae/virologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/química , Reoviridae/fisiologia , Imunidade Inata/genética , Regulação da Expressão Gênica/imunologia , Replicação Viral
8.
Avian Pathol ; 53(5): 400-407, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38629680

RESUMO

Avian reovirus (ARV) has been continuously affecting the poultry industry in Pennsylvania (PA) in recent years. This report provides our diagnostic investigation on monitoring ARV field variants from broiler chickens in Pennsylvania. Genomic characterization findings of 72 ARV field isolates obtained from broiler cases during the last 6 years indicated that six distinct cluster variant strains (genotype I-VI), which were genetically diverse and distant from the vaccine and vaccine-related field strains, continuously circulated in PA poultry. Most of the variants clustered within genotype V (24/72, 33.3%), followed by genotype II (16/72, 22.2%), genotype IV (13/72, 18.1%), genotype III (13/72, 18.1%), genotype VI (05/72, 6.94%), and genotype I (1/72, 1.38%). The amino acid identity between 72 field variants and the vaccine strains (1133, 1733, 2408, 2177) varied from 45.3% to 99.7%, while the difference in amino acid counts ranged from 1-164. Among the field variants, the amino acid identity and count difference ranged from 43.3% to 100% and 0 to 170, respectively. Variants within genotype V had maximum amino acid identity (94.7-100%), whereas none of the variants within genotypes II and VI were alike. These findings indicate the continuing occurrence of multiple ARV genotypes in the environment.


Assuntos
Galinhas , Genótipo , Orthoreovirus Aviário , Filogenia , Doenças das Aves Domésticas , Infecções por Reoviridae , Animais , Galinhas/virologia , Orthoreovirus Aviário/genética , Orthoreovirus Aviário/isolamento & purificação , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/epidemiologia , Pennsylvania/epidemiologia , Infecções por Reoviridae/veterinária , Infecções por Reoviridae/virologia , Infecções por Reoviridae/epidemiologia , Variação Genética
9.
J Invertebr Pathol ; 204: 108092, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38479455

RESUMO

Reovirus designated as Mud crab reovirus (MCRV) is associated with the mass mortalities of mud crabs resulting in significant economic loss to crab and shrimp-mud crab polyculture farmers in the Nagayalanka, Krishna district, Andhra Pradesh. The 100 % chronic mass mortalities have been attributed to the outbreak of Mud crab reovirus (MCRV) in the polyculture farms. The moribund crabs showed autotomy, discoloration of carapace, loss of appetite, slow movement and loose gills. Histopathological observations of the infected mud crabs showed an atrophied hepatopancreas, complete degeneration of tissues along with viral inclusions in hepatopancreas, gills and muscles. Further analysis using Transmission electron microscopy (TEM), showed that the viral particles had a diameter of 70 nm and exhibited a non-enveloped, icosahedral shape arranged in a crystalline manner. The virus mainly infects the connective tissue of hepatopancreas, gills, muscle and develops in the cytoplasm. RT-PCR reconfirmed the presence of reovirus in the hepatopancreas of spontaneously infected mud crab Scylla serrata. The current study shows the importance of monitoring the MCRV prevalence in polyculture farms to minimize its spread and precautionary measures can be taken by screening the brooders from the crab hatchery and stocking of wild crabs without screening should be avoided in order to prevent MCRV outbreak.


Assuntos
Aquicultura , Braquiúros , Reoviridae , Animais , Índia/epidemiologia , Braquiúros/virologia , Reoviridae/ultraestrutura , Reoviridae/isolamento & purificação , Surtos de Doenças , Infecções por Reoviridae/virologia , Infecções por Reoviridae/epidemiologia , Incidência , Hepatopâncreas/virologia , Hepatopâncreas/patologia
10.
J Fish Dis ; 47(6): e13939, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38481093

RESUMO

The relationship of histopathological changes and the infection of Piscine orthoreovirus 2 (PRV-2) was investigated in coho salmon that were suffering from the erythrocytic inclusion body syndrome (EIBS). Immunohistochemical observations revealed abundant σ1 protein of PRV-2 in the spongy layer of the ventricle of the heart, where severe myocarditis was observed. In the spleen, the virus protein was detected in many erythrocytes, some of which were spherical-shaped and apparently dead. The number of erythrocytes was decreased in the spleen compared to the apparently healthy fish. The virus protein was also detected in some erythrocytes in blood vessels. The viral protein was often detected in many macrophages ingesting erythrocytes or dead cell debris in the spleen or in the kidney sinusoids. Large amounts of the viral genomic segment L2 were also detected in these organs by RT-qPCR. Many necrotic foci were found in the liver, although the virus protein was not detected in the hepatocytes. These results suggest that the primary targets of PRV-2 are myocardial cells and erythrocytes and that clinical symptoms such as anaemia or jaundice and histopathological changes such as myocarditis in EIBS-affected coho salmon are caused by PRV-2 infection.


Assuntos
Doenças dos Peixes , Oncorhynchus kisutch , Orthoreovirus , Infecções por Reoviridae , Animais , Doenças dos Peixes/virologia , Doenças dos Peixes/patologia , Infecções por Reoviridae/veterinária , Infecções por Reoviridae/virologia , Infecções por Reoviridae/patologia , Orthoreovirus/fisiologia , Oncorhynchus kisutch/virologia , Eritrócitos/virologia , Eritrócitos/patologia , Baço/virologia , Baço/patologia
11.
J Fish Dis ; 47(9): e13978, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38840479

RESUMO

Piscine orthoreovirus-1 (PRV-1) is a prevalent agent in Atlantic salmon (Salmo salar) and the causative agent of heart and skeletal muscle inflammation (HSMI), an important disease in farmed Atlantic salmon. Investigations into the introduction and dissemination routes of PRV-1 in a field setting have been limited. This study aimed to better understand PRV-1 infections and HSMI-associated mortality under field conditions. We tracked introduction and spread of PRV-1 over one production cycle in a geographically isolated region in Norwegian aquaculture. From five sites, a total of 32 virus isolates were sequenced and genogrouped. The results indicated multiple introductions of PRV-1 to the area, but also revealed a high level of genetic homogeneity among the virus variants. The variants differed from that of the previous production cycle at two out of three sites investigated, suggesting that synchronized fallowing can be a useful tool for preventing dissemination of PRV-1 between generations of fish. Exposure to PRV-1 at the freshwater stage was identified as a potential source of introduction. A low level of HSMI-associated mortality was observed at all sites, with the onset of mortality showing some variation across PRV-1 genogroups. However, the study highlighted the complexity of associating viral genogroups with mortality in a field setting. Overall, this study contributes valuable insights into PRV-1 dynamics in a real-world aquaculture setting, offering potential strategies for disease management and prevention.


Assuntos
Aquicultura , Doenças dos Peixes , Orthoreovirus , Infecções por Reoviridae , Salmo salar , Animais , Doenças dos Peixes/virologia , Doenças dos Peixes/mortalidade , Salmo salar/virologia , Noruega , Orthoreovirus/genética , Orthoreovirus/isolamento & purificação , Orthoreovirus/fisiologia , Infecções por Reoviridae/veterinária , Infecções por Reoviridae/virologia , Filogenia
12.
BMC Biol ; 21(1): 116, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37217976

RESUMO

Canadian policymakers are interested in determining whether farmed Atlantic salmon, frequently infected with Piscine orthoreovirus (PRV), may threaten wild salmon populations in the Pacific Northwest. A relevant work has been published in BMC Biology by Polinksi and colleagues, but their conclusion that PRV has a negligible impact on the energy expenditure and respiratory performance of sockeye salmon is disputed by Mordecai and colleagues, whose re-analysis is presented in a correspondence article. So, what is the true effect and what should follow this unresolved dispute? We suggest a 'registered multi-lab replication with adversaries'.


Assuntos
Infecções por Reoviridae , Animais , Infecções por Reoviridae/virologia , Dissidências e Disputas , Canadá , Salmão
13.
J Virol ; 96(8): e0005522, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35353001

RESUMO

Engagement of host receptors is essential for viruses to enter target cells and initiate infection. Expression patterns of receptors in turn dictate host range, tissue tropism, and disease pathogenesis during infection. Mammalian orthoreovirus (reovirus) displays serotype-dependent patterns of tropism in the murine central nervous system (CNS) that are dictated by the viral attachment protein σ1. However, the receptor that mediates reovirus CNS tropism is unknown. Two proteinaceous receptors have been identified for reovirus, junctional adhesion molecule A (JAM-A) and Nogo-66 receptor 1 (NgR1). Engagement of JAM-A is required for reovirus hematogenous dissemination but is dispensable for neural spread and infection of the CNS. To determine whether NgR1 functions in reovirus neuropathogenesis, we compared virus replication and disease in wild-type (WT) and NgR1-/- mice. Genetic ablation of NgR1 did not alter reovirus replication in the intestine or transmission to the brain following peroral inoculation. Viral titers in neural tissues following intramuscular inoculation, which provides access to neural dissemination routes, also were comparable in WT and NgR1-/- mice, suggesting that NgR1 is dispensable for reovirus neural spread to the CNS. The absence of NgR1 also did not alter reovirus replication, neural tropism, and virulence following direct intracranial inoculation. In agreement with these findings, we found that the human but not the murine homolog of NgR1 functions as a receptor and confers efficient reovirus binding and infection of nonsusceptible cells in vitro. Thus, neither JAM-A nor NgR1 is required for reovirus CNS tropism in mice, suggesting that other unidentified receptors support this function. IMPORTANCE Viruses engage diverse molecules on host cell surfaces to navigate barriers, gain cell entry, and establish infection. Despite discovery of several reovirus receptors, host factors responsible for reovirus neurotropism are unknown. Human NgR1 functions as a reovirus receptor in vitro and is expressed in CNS neurons in a pattern overlapping reovirus tropism. We used mice lacking NgR1 to test whether NgR1 functions as a reovirus neural receptor. Following different routes of inoculation, we found that murine NgR1 is dispensable for reovirus dissemination to the CNS, tropism and replication in the brain, and resultant disease. Concordantly, expression of human but not murine NgR1 confers reovirus binding and infection of nonsusceptible cells in vitro. These results highlight species-specific use of alternate receptors by reovirus. A detailed understanding of species- and tissue-specific factors that dictate viral tropism will inform development of antiviral interventions and targeted gene delivery and therapeutic viral vectors.


Assuntos
Receptor Nogo 1 , Reoviridae , Animais , Molécula A de Adesão Juncional/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptor Nogo 1/genética , Receptor Nogo 1/metabolismo , Reoviridae/metabolismo , Infecções por Reoviridae/virologia
14.
J Virol ; 96(8): e0033122, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35380459

RESUMO

The reovirus attachment protein σ1 mediates cell attachment and receptor binding and is thought to undergo conformational changes during viral disassembly. σ1 is a trimeric filamentous protein with an α-helical coiled-coil tail, a triple-ß-spiral body, and a globular head. At the trimer interface, the head domain features an unusual and conserved aspartic acid cluster, which forms the only significant intratrimer interactions in the head and must be protonated to allow trimer formation. To define the role of pH on σ1 stability and conformation, we tested its domains over a wide range of pH values. We show that all domains of σ1 are remarkably thermostable, even at the low pH of the stomach. We determined the optimal pH for stability to be between pHs 5 and 6, a value close to the pH of the endosome and of the jejunum. The σ1 head is stable at acidic and neutral pH but detrimerizes at basic pH. When Asp345 in the aspartic acid cluster is mutated to asparagine (D345N), the σ1 head loses stability at low pH and is more prone to detrimerize. Although the D345N mutation does not affect σ1 binding affinity for the JAM-A receptor, the overall binding stoichiometry is reduced by one-third. The additional replacement of the neighboring His349 with alanine disrupts inner trimer surface interactions, leading to a less thermostable and monomeric σ1 D345N head that fails to bind the JAM-A receptor. When the body is expressed together with the head domain, the thermostability is restored and the stoichiometry of the binding to JAM-A receptor is preserved. Our results confirm a fundamental role of the aspartic acid cluster as a pH-dependent molecular switch controlling trimerization and enhancing thermostability of σ1, which represent essential requirements to accomplish reovirus infection and entry and might be common mechanisms among other enteric viruses. IMPORTANCE Enteric viruses withstand the highly acidic environment of the stomach during transmission, and many of them use low pH as a trigger for conformational changes associated with entry. For many nonenveloped viruses, the structural basis of these effects is not clear. We have investigated the stability of the reovirus attachment protein σ1 over a range of pHs and find it to be remarkably thermostable, especially at low pH. We identify a role for the aspartic acid cluster in maintaining σ1 thermostability, trimeric organization, and binding to JAM-A receptor especially at the gastric pH reovirus has to withstand while passing the stomach. The understanding of monomer-trimer dynamics within σ1 enhances our knowledge of reovirus entry and has implications for stability and transmission of other enteric viruses.


Assuntos
Ácido Aspártico , Reoviridae , Proteínas não Estruturais Virais , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Polímeros/química , Estabilidade Proteica , Reoviridae/genética , Reoviridae/metabolismo , Infecções por Reoviridae/virologia , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
15.
J Virol ; 96(2): e0187921, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34757847

RESUMO

Although a broad range of viruses cause myocarditis, the mechanisms that underlie viral myocarditis are poorly understood. Here, we report that the M2 gene is a determinant of reovirus myocarditis. The M2 gene encodes outer capsid protein µ1, which mediates host membrane penetration during reovirus entry. We infected newborn C57BL/6 mice with reovirus strain type 1 Lang (T1L) or a reassortant reovirus in which the M2 gene from strain type 3 Dearing (T3D) was substituted into the T1L genetic background (T1L/T3DM2). T1L was nonlethal in wild-type mice, whereas more than 90% of mice succumbed to T1L/T3DM2 infection. T1L/T3DM2 produced higher viral loads than T1L at the site of inoculation. In secondary organs, T1L/T3DM2 was detected with more rapid kinetics and reached higher peak titers than T1L. We found that hearts from T1L/T3DM2-infected mice were grossly abnormal, with large lesions indicative of substantial inflammatory infiltrate. Lesions in T1L/T3DM2-infected mice contained necrotic cardiomyocytes with pyknotic debris, as well as extensive lymphocyte and histiocyte infiltration. In contrast, T1L induced the formation of small purulent lesions in a small subset of animals, consistent with T1L being mildly myocarditic. Finally, more activated caspase-3-positive cells were observed in hearts from animals infected with T1L/T3DM2 than T1L. Together, our findings indicate that substitution of the T3D M2 allele into an otherwise T1L genetic background is sufficient to change a nonlethal infection into a lethal infection. Our results further indicate that T3D M2 enhances T1L replication and dissemination in vivo, which potentiates the capacity of reovirus to cause myocarditis. IMPORTANCE Reovirus is a nonenveloped virus with a segmented double-stranded RNA genome that serves as a model for studying viral myocarditis. The mechanisms by which reovirus drives myocarditis development are not fully elucidated. We found that substituting the M2 gene from strain type 3 Dearing (T3D) into an otherwise type 1 Lang (T1L) genetic background (T1L/T3DM2) was sufficient to convert the nonlethal T1L strain into a lethal infection in neonatal C57BL/6 mice. T1L/T3DM2 disseminated more efficiently and reached higher maximum titers than T1L in all organs tested, including the heart. T1L is mildly myocarditic and induced small areas of cardiac inflammation in a subset of mice. In contrast, hearts from mice infected with T1L/T3DM2 contained extensive cardiac inflammatory infiltration and more activated caspase-3-positive cells, which is indicative of apoptosis. Together, our findings identify the reovirus M2 gene as a new determinant of reovirus-induced myocarditis.


Assuntos
Proteínas do Capsídeo/metabolismo , Orthoreovirus Mamífero 3/patogenicidade , Miocardite/virologia , Infecções por Reoviridae/virologia , Animais , Animais Recém-Nascidos , Proteínas do Capsídeo/genética , Inflamação , Orthoreovirus Mamífero 3/genética , Orthoreovirus Mamífero 3/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Miocardite/mortalidade , Miocardite/patologia , Orthoreovirus de Mamíferos/genética , Orthoreovirus de Mamíferos/metabolismo , Orthoreovirus de Mamíferos/patogenicidade , Infecções por Reoviridae/mortalidade , Infecções por Reoviridae/patologia , Carga Viral , Virulência , Replicação Viral
16.
J Virol ; 95(4)2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33208448

RESUMO

Mammalian orthoreovirus (reovirus) spreads from the site of infection to every organ system in the body via the blood. However, mechanisms that underlie reovirus hematogenous spread remain undefined. Nonstructural protein σ1s is a critical determinant of reovirus bloodstream dissemination that is required for efficient viral replication in many types of cultured cells. Here, we used the specificity of the σ1s protein for promoting hematogenous spread as a platform to uncover a role for lymphatic type 1 interferon (IFN-1) responses in limiting reovirus systemic dissemination. We found that replication of a σ1s-deficient reovirus was restored to wild-type levels in cells with defective interferon-α receptor (IFNAR1) signaling. Reovirus spreads systemically following oral inoculation of neonatal mice, whereas the σ1s-null virus remains localized to the intestine. We found that σ1s enables reovirus spread in the presence of a functional IFN-1 response, as the σ1s-deficient reovirus disseminated comparably to wild-type virus in IFNAR1-/- mice. Lymphatics are hypothesized to mediate reovirus spread from the intestine to the bloodstream. IFNAR1 deletion from cells expressing lymphatic vessel endothelium receptor 1 (LYVE-1), a marker for lymphatic endothelial cells, enabled the σ1s-deficient reovirus to disseminate systemically. Together, our findings indicate that IFN-1 responses in lymphatics limit reovirus dissemination. Our data further suggest that the lymphatics are an important conduit for reovirus hematogenous spread.IMPORTANCE Type 1 interferons (IFN-1) are critical host responses to viral infection. However, the contribution of IFN-1 responses to control of viruses in specific cell and tissue types is not fully defined. Here, we identify IFN-1 responses in lymphatics as important for limiting reovirus dissemination. We found that nonstructural protein σ1s enhances reovirus resistance to IFN-1 responses, as a reovirus mutant lacking σ1s was more sensitive to IFN-1 than wild-type virus. In neonatal mice, σ1s is required for reovirus systemic spread. We used tissue-specific IFNAR1 deletion in combination with the IFN-1-sensitive σ1s-null reovirus as a tool to test how IFN-1 responses in lymphatics affect reovirus systemic spread. Deletion of IFNAR1 in lymphatic cells using Cre-lox technology enabled dissemination of the IFN-1-sensitive σ1s-deficient reovirus. Together, our results indicate that IFN-1 responses in lymphatics are critical for controlling reovirus systemic spread.


Assuntos
Células Endoteliais/imunologia , Interferon Tipo I/imunologia , Orthoreovirus de Mamíferos/fisiologia , Receptor de Interferon alfa e beta/imunologia , Infecções por Reoviridae , Proteínas não Estruturais Virais/imunologia , Animais , Animais Recém-Nascidos , Células Endoteliais/citologia , Fibroblastos , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções por Reoviridae/imunologia , Infecções por Reoviridae/virologia
17.
PLoS Pathog ; 16(9): e1008803, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32956403

RESUMO

The Dearing isolate of Mammalian orthoreovirus (T3D) is a prominent model of virus-host relationships and a candidate oncolytic virotherapy. Closely related laboratory strains of T3D, originating from the same ancestral T3D isolate, were recently found to exhibit significantly different oncolytic properties. Specifically, the T3DPL strain had faster replication kinetics in a panel of cancer cells and improved tumor regression in an in vivo melanoma model, relative to T3DTD. In this study, we discover that T3DPL and T3DTD also differentially activate host signalling pathways and downstream gene transcription. At equivalent infectious dose, T3DTD induces higher IRF3 phosphorylation and expression of type I IFNs and IFN-stimulated genes (ISGs) than T3DPL. Using mono-reassortants with intermediate replication kinetics and pharmacological inhibitors of reovirus replication, IFN responses were found to inversely correlate with kinetics of virus replication. In other words, slow-replicating T3D strains induce more IFN signalling than fast-replicating T3D strains. Paradoxically, during co-infections by T3DPL and T3DTD, there was still high IRF3 phosphorylation indicating a phenodominant effect by the slow-replicating T3DTD. Using silencing and knock-out of RIG-I to impede IFN, we found that IFN induction does not affect the first round of reovirus replication but does prevent cell-cell spread in a paracrine fashion. Accordingly, during co-infections, T3DPL continues to replicate robustly despite activation of IFN by T3DTD. Using gene expression analysis, we discovered that reovirus can also induce a subset of genes in a RIG-I and IFN-independent manner; these genes were induced more by T3DPL than T3DTD. Polymorphisms in reovirus σ3 viral protein were found to control activation of RIG-I/ IFN-independent genes. Altogether, the study reveals that single amino acid polymorphisms in reovirus genomes can have large impact on host gene expression, by both changing replication kinetics and by modifying viral protein activity, such that two closely related T3D strains can induce opposite cytokine landscapes.


Assuntos
Proteínas do Capsídeo/metabolismo , Interferons/metabolismo , Polimorfismo Genético , RNA de Cadeia Dupla/metabolismo , Proteínas de Ligação a RNA/metabolismo , Receptores do Ácido Retinoico/metabolismo , Infecções por Reoviridae/virologia , Replicação Viral , Proteínas do Capsídeo/genética , Citocinas , Humanos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Orthoreovirus de Mamíferos/fisiologia , RNA de Cadeia Dupla/genética , RNA Viral/genética , RNA Viral/metabolismo , Proteínas de Ligação a RNA/genética , Receptores do Ácido Retinoico/genética , Infecções por Reoviridae/genética , Infecções por Reoviridae/metabolismo , Transdução de Sinais
18.
J Med Virol ; 94(2): 771-775, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34708881

RESUMO

Pteropine orthoreovirus (PRV) is an emerging zoonotic respiratory virus that can be transmitted from bats to humans. In Malaysia, aside from PRV2P (Pulau virus) being isolated from Pteropus hypomelanus sampled in Tioman Island, PRV3M (Melaka virus), PRV4K (Kampar virus), and PRV7S (Sikamat virus) were all isolated from samples of patients who reported having a disease spectrum from acute respiratory distress to influenza-like illness and sometimes even with enteric symptoms such as diarrhea and abdominal pain. Screening of sera collected from human volunteers on Tioman Island in 2001-2002 demonstrated that 12.8% (14/109) were positive for PRV2P and PRV3M. Taking all these together, we aim to investigate the serological prevalence of PRV (including PRV4K and PRV7S) among Tioman Island inhabitants again with the assumption that the seroprevalence rate will remain nearly similar to the above reported if human exposure to bats is still happening in the island. Using sera collected from human volunteers on the same island in 2017, we demonstrated seroprevalence of 17.8% (28/157) against PRV2P and PRV3M, respectively. Seropositivity of 11.4% among Tioman Island inhabitants against PRV4K and PRV7S, respectively, was described in this study. In addition, the seroprevalence of 89.5% (17/19), 73.6% (14/19), 63.0% (12/19), and 73.6% (14/19) against PRV2P, PRV3M, PRV4K, and PRV7S, respectively, were observed among pteropid bats in the island. We revealed that the seroprevalence of PRV among island inhabitants remains nearly similar after nearly two decades, suggesting that potential spill-over events in bat-human interface areas in the Tioman Island. We are unclear whether such spillover was directly from bats to humans, as suspected for the PRV3M human cases, or from an intermediate host(s) yet to be identified. There is a high possibility of the viruses circulating among the bats as demonstrated by high seroprevalence against PRV in the bats.


Assuntos
Quirópteros/virologia , Orthoreovirus/genética , Orthoreovirus/fisiologia , Infecções por Reoviridae/veterinária , Zoonoses/transmissão , Adolescente , Adulto , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Quirópteros/sangue , Feminino , Voluntários Saudáveis , Humanos , Malásia , Masculino , Pessoa de Meia-Idade , Infecções por Reoviridae/virologia , Estudos Soroepidemiológicos , Adulto Jovem , Zoonoses/sangue , Zoonoses/virologia
19.
J Gen Virol ; 102(12)2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34870577

RESUMO

Middle Point orbivirus (MPOV) is an Australian arbovirus, belongs to the Yunnan orbivirus species found in China. First detected and reported from Beatrice Hill, Northern Territory (NT), MPOV has to date, only been exclusively reported from the NT, Australia. Whilst genetic characterization of MPOV has been previously described, only restricted to sequence information for segments 2 and 3 coding core protein VP2 and outer capsid protein VP3, respectively. This study presents for the first time nearly full-length genome sequences of MPOV, which represent 24 isolates collected over a span of more than 20 years from 1997 to 2018. Whilst the majority of isolates were sampled at Beatrice Hill, NT where MPOV is most frequently isolated, this report also describes the first two isolations of MPOV from Queensland (QLD), Australia. One of which is the first non-bovine isolate obtained from the mosquito vector Aedes vittiger. We further compared these MPOV sequences with known sequences of the Yunnan orbivirus and other known orbivirus sequences of mosquito origin found in Australia. The phylogenetic analyses indicate the Australian MPOV sequences are more closely related to each other than other known sequences of Yunnan orbivirus. Furthermore, MPOV sequences are closely related to sequences from the Indonesian isolate JKT-8650. The clustering of Australian sequences in the phylogenetic tree suggests the monophyletic lineage of MPOV circulating in Australia. Further, ongoing surveillance is required to assess the existence and prevalence of this or other yet undetected lineages of MPOV and other orbiviruses in Australia.


Assuntos
Genoma Viral/genética , Orbivirus/genética , Filogenia , Aedes/virologia , Animais , Austrália , Bovinos/virologia , Mosquitos Vetores/virologia , Orbivirus/classificação , Orbivirus/isolamento & purificação , Infecções por Reoviridae/transmissão , Infecções por Reoviridae/veterinária , Infecções por Reoviridae/virologia , Especificidade da Espécie , Proteínas Virais/genética
20.
Environ Microbiol ; 23(1): 431-447, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33201573

RESUMO

Gut microbiota could facilitate host to defense diseases, but fish-microbiota interactions during viral infection and the underlying mechanism are poorly understood. We examined interactions and responses of gut microbiota to grass carp reovirus (GCRV) infection in Ctenopharyngodon idellus, which is the most important aquaculture fish worldwide. We found that GCRV infection group with serious haemorrhagic symptoms (G7s) showed considerably different gut microbiota, especially with an abnormally high abundance of gram-negative anaerobic Cetobacterium somerae. It also showed the lowest (p < 0.05) alpha-diversity but with much higher ecological process of homogenizing dispersal (28.8%), confirming a dysbiosis of the gut microbiota after viral infection. Interestingly, signaling pathways of NOD-like receptors (NLRs), toll-like receptors (TLRs), and lipopolysaccharide (LPS) stimulation genes were significantly (q-value < 0.01) enriched in G7s, which also significantly (p < 0.01) correlated with the core gut microbial genera of Cetobacterium and Acinetobacter. The results suggested that an expansion of C. somerae initiated by GCRV could aggravate host inflammatory reactions through the LPS-related NLRs and TLRs pathways. This study advances our understanding of the interplay between fish immunity and gut microbiota challenged by viruses; it also sheds new insights for ecological defense of fish diseases with the help of gut microbiota.


Assuntos
Carpas/microbiologia , Carpas/virologia , Doenças dos Peixes/virologia , Microbioma Gastrointestinal , Orthoreovirus Mamífero 3/fisiologia , Infecções por Reoviridae/veterinária , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Doenças dos Peixes/microbiologia , Fusobactérias , Interações Hospedeiro-Patógeno , Orthoreovirus Mamífero 3/classificação , Orthoreovirus Mamífero 3/genética , Orthoreovirus Mamífero 3/isolamento & purificação , Infecções por Reoviridae/microbiologia , Infecções por Reoviridae/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA