Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 374
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Biochem J ; 480(14): 1097-1107, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37401540

RESUMO

Matrix metalloproteinase-9 (MMP-9) is an endopeptidase that remodels the extracellular matrix. MMP-9 has been implicated in several diseases including neurodegeneration, arthritis, cardiovascular diseases, fibrosis and several types of cancer, resulting in a high demand for MMP-9 inhibitors for therapeutic purposes. For such drug design efforts, large amounts of MMP-9 are required. Yet, the catalytic domain of MMP-9 (MMP-9Cat) is an intrinsically unstable enzyme that tends to auto-cleave within minutes, making it difficult to use in drug design experiments and other biophysical studies. We set our goal to design MMP-9Cat variant that is active but stable to auto-cleavage. For this purpose, we first identified potential auto-cleavage sites on MMP-9Cat using mass spectroscopy and then eliminated the auto-cleavage site by predicting mutations that minimize auto-cleavage potential without reducing enzyme stability. Four computationally designed MMP-9Cat variants were experimentally constructed and evaluated for auto-cleavage and enzyme activity. Our best variant, Des2, with 2 mutations, was as active as the wild-type enzyme but did not exhibit auto-cleavage after 7 days of incubation at 37°C. This MMP-9Cat variant, with an identical with MMP-9Cat WT active site, is an ideal candidate for drug design experiments targeting MMP-9 and enzyme crystallization experiments. The developed strategy for MMP-9CAT stabilization could be applied to redesign other proteases to improve their stability for various biotechnological applications.


Assuntos
Endopeptidases , Metaloproteinase 9 da Matriz , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Endopeptidases/metabolismo , Espectrometria de Massas , Domínio Catalítico , Inibidores de Metaloproteinases de Matriz/farmacologia , Inibidores de Metaloproteinases de Matriz/química
2.
Bioorg Med Chem ; 85: 117289, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37094433

RESUMO

Matrix metalloproteinases (MMPs) are involved in various cellular events in physiology and pathophysiology through endopeptidases activity. The expression levels and activities of most MMPs remain minimal in the normal conditions, whereas some MMPs are significantly activated in pathological conditions such as cancer and neovascularization. Hence, MMPs are considered as both diagnostic markers and potential targets for therapeutic agents. Twenty-three known human MMPs share a similar active site structure with a zinc-binding motif, resulting in lack of specificity. Therefore, the enhancement of target specificity is a primary goal for the development of specific MMP inhibitors. MMP-14 regulates VEGFA/VEGFR2-system through cleavage of the non-functional VEGFR1 in vascular angiogenesis. In this study, we developed a fluorescence-based enzymatic assay using a specific MMP-14 substrate generated from VEGFR1 cleavage site. This well optimized assay was used as a primary screen method to identify MMP-14 specific inhibitors from 1,200 Prestwick FDA-approved drug library. Of ten initial hits, two compounds showed IC50 values below 30 µM, which were further validated by direct binding analysis using surface plasmon resonance (SPR). Clioquinol and chloroxine, both of which contain a quinoline structure, were identified as MMP-14 inhibitors. Five analogs were tested, four of which were found to be completely devoid of inhibitory activity. Clioquinol exhibited selectivity towards MMP-14, as it showed no inhibitory activity towards four other MMPs.


Assuntos
Clioquinol , Ensaios de Triagem em Larga Escala , Humanos , Metaloproteinase 14 da Matriz , Inibidores de Metaloproteinases de Matriz/química , Metaloproteinases da Matriz/metabolismo
3.
Int J Mol Sci ; 24(13)2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37445757

RESUMO

The specificity loop of Matrix Metalloproteinases (MMPs) is known to regulate recognition of their substrates, and the S1'-site surrounded by the loop is a unique place to address the selectivity of ligands toward each MMP. Molecular dynamics (MD) simulations of apo-MMP-13 and its complex forms with various ligands were conducted to identify the role of the specificity loop for the ligand binding to MMP-13. The MD simulations showed the dual role of T247 as a hydrogen bond donor to the ligand, as well as a contributor to the formation of the van der Waal surface area, with T245 and K249 on the S1'-site. The hydrophobic surface area mediated by T247 blocks the access of water molecules to the S1'-site of MMP-13 and stabilizes the ligand in the site. The F252 residue is flexible in order to search for the optimum location in the S1'-site of the apo-MMP-13, but once a ligand binds to the S1'-site, it can form offset π-π or edge-to-π stacking interactions with the ligand. Lastly, H222 and Y244 provide the offset π-π and π-CH(Cß) interactions on each side of the phenyl ring of the ligand, and this sandwiched interaction could be critical for the ligand binding to MMP-13.


Assuntos
Inibidores de Metaloproteinases de Matriz , Simulação de Dinâmica Molecular , Metaloproteinase 13 da Matriz/metabolismo , Ligantes , Inibidores de Metaloproteinases de Matriz/química , Metaloproteinase 2 da Matriz/metabolismo , Sítios de Ligação
4.
Int J Mol Sci ; 24(13)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37446276

RESUMO

Matrix metalloproteinase 13 plays a central role in osteoarthritis (OA), as its overexpression induces an excessive breakdown of collagen that results in an imbalance between collagen synthesis and degradation in the joint, leading to progressive articular cartilage degradation. Therefore, MMP-13 has been proposed as a key therapeutic target for OA. Here we have developed a virtual screening workflow aimed at identifying selective non-zinc-binding MMP-13 inhibitors by targeting the deep S1' pocket of MMP-13. Three ligands were found to inhibit MMP-13 in the µM range, and one of these showed selectivity over other MMPs. A structure-based analysis guided the chemical optimization of the hit compound, leading to the obtaining of a new N-acyl hydrazone-based derivative with improved inhibitory activity and selectivity for the target enzyme.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Metaloproteinase 13 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/química , Cartilagem Articular/metabolismo , Osteoartrite/tratamento farmacológico , Colágeno/uso terapêutico
5.
Int J Mol Sci ; 24(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38003553

RESUMO

Using a novel method of N-substituted succinimide ring opening, new N-hydroxybutanamide derivatives were synthesized. These compounds were evaluated for their ability to inhibit matrix metalloproteinases (MMPs) and their cytotoxicity. The iodoaniline derivative of N1-hydroxy-N4-phenylbutanediamide showed the inhibition of MMP-2, MMP-9, and MMP-14 with an IC50 of 1-1.5 µM. All the compounds exhibited low toxicity towards carcinoma cell lines HeLa and HepG2. The iodoaniline derivative was also slightly toxic to glioma cell lines A-172 and U-251 MG. Non-cancerous FetMSC and Vero cells were found to be the least sensitive to all the compounds. In vivo studies demonstrated that the iodoaniline derivative of N1-hydroxy-N4-phenylbutanediamide had low acute toxicity. In a mouse model of B16 melanoma, this compound showed both antitumor and antimetastatic effects, with a 61.5% inhibition of tumor growth and an 88.6% inhibition of metastasis. Our findings suggest that the iodoaniline derivative of N1-hydroxy-N4-phenylbutanediamide has potential as a lead structure for the development of new MMP inhibitors. Our new synthetic approach can be a cost-effective method for the synthesis of inhibitors of metalloenzymes with promising antitumor potential.


Assuntos
Antineoplásicos , Humanos , Animais , Camundongos , Chlorocebus aethiops , Antineoplásicos/química , Células Vero , Inibidores de Metaloproteinases de Matriz/química , Células HeLa , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Linhagem Celular Tumoral , Relação Estrutura-Atividade
6.
Int J Mol Sci ; 24(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37569509

RESUMO

Matrix metalloproteinases (MMPs) belong to a family of zinc-dependent proteolytic metalloenzymes. MMP-9, a member of the gelatinase B family, is characterized as one of the most intricate MMPs. The crucial involvement of MMP-9 in extracellular matrix (ECM) remodeling underscores its significant correlation with each stage of cancer pathogenesis and progression. The design and synthesis of MMP-9 inhibitors is a potentially attractive research area. Unfortunately, to date, there is no effective MMP-9 inhibitor that passes the clinical trials and is approved by the FDA. This review primarily focuses on exploring the diverse strategies employed in the design and advancement of MMP-9 inhibitors, along with their anticancer effects and selectivity. To illuminate the essential structural characteristics necessary for the future design of novel MMP-9 inhibitors, the current narrative review highlights several recently discovered MMP-9 inhibitors exhibiting notable selectivity and potency.


Assuntos
Metaloproteinase 9 da Matriz , Neoplasias , Humanos , Metaloproteinase 9 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/farmacologia , Inibidores de Metaloproteinases de Matriz/uso terapêutico , Inibidores de Metaloproteinases de Matriz/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Metaloproteinases da Matriz/química , Proteólise , Matriz Extracelular/metabolismo
7.
Mol Cell Biochem ; 477(3): 877-884, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35067781

RESUMO

Matrix metalloproteinase (MMP) and soluble epoxide hydrolase (sEH) have completely unrelated biological functions; however, their dysregulation produce similar effects on biological systems. Based on the similarity in the reported structural requirements for their inhibition, the current study aimed to identify a simultaneous inhibitor for MMP and sEH. Six compounds were identified as potential simultaneous MMP/sEH inhibitors and tested for their capacity to inhibit MMP and sEH. Inhibition of MMP and sEH activity using their endogenous and exogenous substrates was measured by liquid chromatography/mass spectrometry, spectrophotometry, and zymography. Two compounds, CTK8G1143 and ONO-4817, were identified to inhibit both MMP and sEH activity. CTK8G1143 and ONO-4817 inhibited the recombinant human sEH activity by an average of 67.4% and 55.2%, respectively. The IC50 values for CTK8G1143 and ONO-4817 to inhibit recombinant human sEH were 5.2 and 3.5 µM, respectively, whereas their maximal inhibition values were 71.4% and 42.8%, respectively. Also, MMP and sEH activity of human cardiomyocytes were simultaneously inhibited by CTK8G1143 and ONO-4817. Regarding other compounds, they showed either MMP or sEH inhibitory activity but not both. In conclusion, these two simultaneous inhibitors of MMP and sEH could provide a promising intervention for the prevention and control of several diseases, especially cardiovascular diseases.


Assuntos
Epóxido Hidrolases , Metaloproteinase 2 da Matriz/química , Inibidores de Metaloproteinases de Matriz/química , Epóxido Hidrolases/antagonistas & inibidores , Epóxido Hidrolases/química , Humanos
8.
Bioorg Med Chem Lett ; 76: 129014, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36202189

RESUMO

Starting from an already known MMP-13 inhibitor, 1, we pursued an SAR-approach focusing on optimizing interactions close to the Zn2+ binding site of the enzyme. We found the oxetane containing compound 32 (MMP-13 IC50 = 42 nM), which exhibited complete inhibition of collagenolysis in in vitro studies and an excellent selectivity profile among the MMP family. Interestingly, docking studies propose that the oxetane ring in 32 is oriented towards the Zn2+ ion for chelating the metal ion. Chelating properties of MMP13-inhibitors are often connected with non-selectivity within the enzyme family. Compound 32 demonstrates a rare example where the selectivity can be explained via combinatorial effects of interactions within the S1' loop and a chelating effect of the oxetane moiety. Furthermore, in vivo pharmacokinetic studies were performed demonstrating a concentration of 1.97 µM of 32 within the synovial fluid of the rat knee joint, which makes the compound a promising lead compound for further optimization and development for osteoarthritis.


Assuntos
Éteres Cíclicos , Inibidores de Metaloproteinases de Matriz , Ratos , Animais , Metaloproteinase 13 da Matriz/química , Metaloproteinase 13 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/química , Quelantes/farmacologia , Quelantes/química , Zinco/química
9.
Bioorg Med Chem ; 74: 117044, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36244233

RESUMO

The protease enzyme, matrix metalloproteinase-2 (MMP-2) has been a target of choice for the drug development due to its multi-façade involvement in numerous diseased conditions including cancer. To find a selective MMP-2 inhibitor several computational strategies are employed in its design and discovery. In these strategies, protein structure of MMP-2 is an inevitable part to formulate effective structure-based drug design (SBDD) of selective MMP-2 inhibitors. In the present communication, several crystal structures of MMP-2 have been analyzed with different statistical parameters and their implementations in SBDD of inhibitors are scrutinized. In addition, binding mode analyses of various classes of inhibitors are discussed to pinpoint the effective design of selective inhibitors by maximizing its interaction with the MMP-2 enzyme binding site. This may provide a crucial insight for exploring the numerous possibilities for SBDD of MMP-2 inhibitors to accelerate anticancer drug discovery efforts.


Assuntos
Metaloproteinase 2 da Matriz , Simulação de Dinâmica Molecular , Metaloproteinase 2 da Matriz/metabolismo , Simulação de Acoplamento Molecular , Inibidores de Metaloproteinases de Matriz/química , Desenho de Fármacos , Sítios de Ligação
10.
J Nat Prod ; 85(10): 2424-2432, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36122348

RESUMO

Because of the abnormal upregulation of matrix metalloproteinase (MMP) activities in tumors, MMP inhibitors (MMPIs) are validated anticancer drug candidates. We identified several MMPIs including mangiferin as an MMP-9 inhibitor with a half maximal inhibitory concentration (IC50) value of 250 nM, isosilybin as an MMP-13 inhibitor with an IC50 value of 250 nM, and isoliquiritigenin as a broad-spectrum MMPI (with IC50 values of 16 nM for MMP-1, 10 nM for MMP-2, 81 nM for MMP-3, 8 nM for MMP-7, 10 nM for MMP-9, and 14 nM for MMP-13) through studying the interactions of 6 MMPs secreted by U-2OS cells with 51 phenolic natural products on the peptide microarray platform. In addition, the inhibitory mechanisms of as-discovered MMPIs were evaluated by a molecular docking simulation. The antitumor efficiencies of MMPIs were demonstrated by both a cell scratch test and growth suppression of mouse-born OS tumors. The results of the cell scratch test suggested that isoliquiritigenin significantly inhibited the migration of U-2OS cells. In addition, administration of isoliquiritigenin significantly reduced the tumor size (by about 80%) and prolonged the survival time (by more than 70 days). This study suggests that the discovery of MMPIs from phenolic natural products is a meaningful way to screen anticancer agents.


Assuntos
Antineoplásicos , Produtos Biológicos , Neoplasias Ósseas , Osteossarcoma , Animais , Camundongos , Inibidores de Metaloproteinases de Matriz/farmacologia , Inibidores de Metaloproteinases de Matriz/química , Metaloproteinase 9 da Matriz , Metaloproteinase 13 da Matriz , Simulação de Acoplamento Molecular , Osteossarcoma/tratamento farmacológico , Metaloproteinases da Matriz/química , Antineoplásicos/farmacologia , Neoplasias Ósseas/patologia , Peptídeos
11.
Biochem J ; 478(5): 1139-1157, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33600567

RESUMO

Crosstalk of the oncogenic matrix metalloproteinase-9 (MMP9) and one of its ligands, CD44, involves cleavage of CD44 by the MMP9 catalytic domain, with the CD44-MMP9 interaction on the cell surface taking place through the MMP9 hemopexin domain (PEX). This interaction promotes cancer cell migration and invasiveness. In concert, MMP9-processed CD44 induces the expression of MMP9, which degrades ECM components and facilitates growth factor release and activation, cancer cell invasiveness, and metastasis. Since both MMP9 and CD44 contribute to cancer progression, we have developed a new strategy to fully block this neoplastic process by engineering a multi-specific inhibitor that simultaneously targets CD44 and both the catalytic and PEX domains of MMP9. Using a yeast surface display technology, we first obtained a high-affinity inhibitor for the MMP9 catalytic domain, which we termed C9, by modifying a natural non-specific MMP inhibitor, N-TIMP2. We then conjugated C9 via a flexible linker to PEX, thereby creating a multi-specific inhibitor (C9-PEX) that simultaneously targets the MMP9 catalytic and PEX domains and CD44. It is likely that, via its co-localization with CD44, C9-PEX may compete with MMP9 localization on the cell surface, thereby inhibiting MMP9 catalytic activity, reducing MMP9 cellular levels, interfering with MMP9 homodimerization, and reducing the activation of downstream MAPK/ERK pathway signaling. The developed platform could be extended to other oncogenic MMPs as well as to other important target proteins, thereby offering great promise for creating novel multi-specific therapeutics for cancer and other diseases.


Assuntos
Hemopexina/antagonistas & inibidores , Receptores de Hialuronatos/antagonistas & inibidores , Metaloproteinase 9 da Matriz/química , Inibidores de Metaloproteinases de Matriz/química , Inibidores de Metaloproteinases de Matriz/farmacologia , Movimento Celular , Proliferação de Células , Hemopexina/metabolismo , Humanos , Receptores de Hialuronatos/metabolismo , Células MCF-7 , Metaloproteinase 9 da Matriz/metabolismo , Fosforilação , Transdução de Sinais
12.
Int J Mol Sci ; 23(8)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35457257

RESUMO

Matrix metalloproteinases (MMPs) are calcium-dependent zinc-containing endopeptidases involved in multiple cellular processes. Among the MMP isoforms, MMP-9 regulates cancer invasion, rheumatoid arthritis, and osteoarthritis by degrading extracellular matrix proteins present in the tumor microenvironment and cartilage and promoting angiogenesis. Here, we identified two potent natural product inhibitors of the non-catalytic hemopexin domain of MMP-9 using a novel quantum mechanical fragment molecular orbital (FMO)-based virtual screening workflow. The workflow integrates qualitative pharmacophore modeling, quantitative binding affinity prediction, and a raw material search of natural product inhibitors with the BMDMS-NP library. In binding affinity prediction, we made a scoring function with the FMO method and applied the function to two protein targets (acetylcholinesterase and fibroblast growth factor 1 receptor) from DUD-E benchmark sets. In the two targets, the FMO method outperformed the Glide docking score and MM/PBSA methods. By applying this workflow to MMP-9, we proposed two potent natural product inhibitors (laetanine 9 and genkwanin 10) that interact with hotspot residues of the hemopexin domain of MMP-9. Laetanine 9 and genkwanin 10 bind to MMP-9 with a dissociation constant (KD) of 21.6 and 0.614 µM, respectively. Overall, we present laetanine 9 and genkwanin 10 for MMP-9 and demonstrate that the novel FMO-based workflow with a quantum mechanical approach is promising to discover potent natural product inhibitors of MMP-9, satisfying the pharmacophore model and good binding affinity.


Assuntos
Produtos Biológicos , Metaloproteinase 9 da Matriz , Acetilcolinesterase , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Hemopexina , Ligantes , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/química , Metaloproteinases da Matriz , Simulação de Acoplamento Molecular
13.
Molecules ; 27(11)2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35684529

RESUMO

Keratoconus (KC) is a serious disease that can affect people of any race or nationality, although the exact etiology and pathogenic mechanism are still unknown. In this study, thirty-two FDA-approved ophthalmic drugs were exposed to virtual screening using docking studies against both the MMP-2 and MMP-9 proteins to find the most promising inhibitors as a proposed computational mechanism to treat keratoconus. Matrix metalloproteinases (MMPs) are zinc-dependent proteases, and MMP inhibitors (MMPIs) are usually designed to interact with zinc ion in the catalytic (CAT) domain, thus interfering with enzymatic activity. In our research work, the FDA-approved ophthalmic medications will be investigated as MMPIs, to explore if they can be repurposed for KC treatment. The obtained findings of the docking study suggest that atenolol and ampicillin are able to accommodate into the active sites of MMP-2 and MMP-9. Additionally, both exhibited binding modes similar to inhibitors used as references, with an ability to bind to the zinc of the CAT. Molecular dynamic simulations and the MM-GBSA binding free-energy calculations revealed their stable binding over the course of 50 ns. An additional pharmacophoric study was carried out on MMP-9 (PDB ID: 1GKC) using the co-crystallized ligand as a reference for the future design and screening of the MMP-9 inhibitors. These promising results open the door to further biological research to confirm such theoretical results.


Assuntos
Ceratocone , Metaloproteinase 2 da Matriz , Humanos , Ceratocone/tratamento farmacológico , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/química , Inibidores de Metaloproteinases de Matriz/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Zinco/química
14.
PLoS Comput Biol ; 16(4): e1007779, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32339164

RESUMO

Antibodies are capable of potently and specifically binding individual antigens and, in some cases, disrupting their functions. The key challenge in generating antibody-based inhibitors is the lack of fundamental information relating sequences of antibodies to their unique properties as inhibitors. We develop a pipeline, Antibody Sequence Analysis Pipeline using Statistical testing and Machine Learning (ASAP-SML), to identify features that distinguish one set of antibody sequences from antibody sequences in a reference set. The pipeline extracts feature fingerprints from sequences. The fingerprints represent germline, CDR canonical structure, isoelectric point and frequent positional motifs. Machine learning and statistical significance testing techniques are applied to antibody sequences and extracted feature fingerprints to identify distinguishing feature values and combinations thereof. To demonstrate how it works, we applied the pipeline on sets of antibody sequences known to bind or inhibit the activities of matrix metalloproteinases (MMPs), a family of zinc-dependent enzymes that promote cancer progression and undesired inflammation under pathological conditions, against reference datasets that do not bind or inhibit MMPs. ASAP-SML identifies features and combinations of feature values found in the MMP-targeting sets that are distinct from those in the reference sets.


Assuntos
Anticorpos , Biologia Computacional/métodos , Aprendizado de Máquina , Análise de Sequência de Proteína/métodos , Software , Algoritmos , Anticorpos/química , Anticorpos/metabolismo , Bases de Dados de Proteínas , Humanos , Inibidores de Metaloproteinases de Matriz/química , Inibidores de Metaloproteinases de Matriz/metabolismo , Metaloproteinases da Matriz/química , Metaloproteinases da Matriz/metabolismo
15.
Bioorg Med Chem Lett ; 33: 127726, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33316406

RESUMO

Fluorescence imaging is a noninvasive technique for cancer diagnosis. Dendrimers are regularly branched macromolecules with highly controllable size and structure that are a potent multifunctional nanoparticle. Anionic-terminal polyamidoamine (PAMAM) dendrimers were previously found to be accumulated in the lymph node, which is one of the main routes of tumor metastasis. In this study, we designed and synthesized a dendrimeric imaging probe for lymph node-resident tumor cell imaging. A matrix metalloproteinase-2 (MMP-2)-responsive fluorescence peptide probe and a tumor-homing peptide were conjugated to the carboxy-terminal dendrimer. The dendrimeric imaging probe treatment showed fluorescence signals inside some tumor cells (e.g., human fibrosarcoma HT-1080 and breast cancer 4T1 cells), depending on the MMP activity, but not in macrophage-like RAW264 cells.


Assuntos
Dendrímeros/farmacologia , Corantes Fluorescentes/farmacologia , Linfonodos/diagnóstico por imagem , Inibidores de Metaloproteinases de Matriz/farmacologia , Metaloproteinases da Matriz/metabolismo , Neoplasias/diagnóstico por imagem , Peptídeos/farmacologia , Animais , Linhagem Celular Tumoral , Dendrímeros/síntese química , Dendrímeros/química , Relação Dose-Resposta a Droga , Desenho de Fármacos , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Humanos , Linfonodos/metabolismo , Inibidores de Metaloproteinases de Matriz/síntese química , Inibidores de Metaloproteinases de Matriz/química , Camundongos , Estrutura Molecular , Imagem Óptica , Peptídeos/síntese química , Peptídeos/química , Relação Estrutura-Atividade
16.
Nanotechnology ; 32(45)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34352746

RESUMO

Purpose. To overcome the insufficiency of conventional photodynamic therapy (PDT) for treating metastatic melanoma, the combination of smart nanoparticles and PDT with immunotherapy was used to achieve a higher efficiency by accumulating more photosensitizers in tumor areas and triggering stronger immune responses against tumors after PDT.Methods. In this study, we designed a nanoliposome co-encapsulation of chlorin E6 (Ce6) and SB-3CT to realize significant antitumoral proliferation and metastasis efficacy after laser irradiation in A375 cells. The morphology, size distribution, and loading efficiency of Ce6-SB3CT@Liposome (Lip-SC) were characterized. The reactive oxygen species (ROS) generation and cytotoxicity were evaluated in A375 cells, and the mechanisms of natural killer (NK) cell-mediated killing were assessed.Results. Lip-SC showed good stability and was well-dispersed with a diameter of approximately 140 nm in phosphate-buffered saline. The nanoliposomes could accumulate in tumor areas and induce apoptosis in cancer cells upon 660 nm light irradiation, which could trigger an immune response and induce the expression of NK group 2 member D (NKG2D) ligands. The subsequently released SB-3CT could further activate NK cells effectively and strengthen the immune system by inhibiting the shedding of soluble NKG2D ligands.Discussion. Taken together, the synergistic effects of SB-3CT on nanoliposomes for Ce6-mediated PDT were analyzed in detail to provide a new platform for future anti-melanoma treatment.


Assuntos
Clorofilídeos/administração & dosagem , Inibidores de Metaloproteinases de Matriz/administração & dosagem , Melanoma/terapia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Fotoquimioterapia/métodos , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Clorofilídeos/química , Clorofilídeos/farmacologia , Feminino , Humanos , Imunoterapia , Células Matadoras Naturais/metabolismo , Lipossomos , Masculino , Inibidores de Metaloproteinases de Matriz/química , Inibidores de Metaloproteinases de Matriz/farmacologia , Melanoma/metabolismo , Camundongos , Nanopartículas , Espécies Reativas de Oxigênio/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Bioorg Chem ; 115: 105155, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34303036

RESUMO

Matrix metalloproteinases (MMPs) are an important factor in cancer progression and metastasis, especially gelatinases MMP-2 and MMP-9. A simple methodology for their detection and monitoring is highly desirable. Molecular probes have been very widely and successfully applied to study the activity of MMPs in cellular processes in vitro. We thus synthesized a small compound library of MMP-2 and MMP-9 binding probes based on drug molecules and endowed with free amine groups for the functionalization of transducer surfaces. In this study, we combined experimental results obtained by a kinetic fluorogenic peptide substrate cleavage assay with molecular modeling studies in order to assess the ability of the probe to bind to their target enzymes. The synthesized biphenyl substituted lysine derivatives showed IC50-values in the low nanomolar concentration range against MMP-2 (ligands 3a-d: 3 nM to 8 µM, ligands 4a-d: 45 nM to 350 µM) and low micromolar range against MMP-9 (ligands 3a-d: 350 nM to 60 µM, ligands 4a-d: 5 µM to 600 µM), with a selectivity up to more than 160-fold for MMP-2. The experimental results correlated well with molecular modelling with FleXAID and X-score functions. We showed that in our compound series, the side chain remained far away from the S1' cavity and the ligand for all the docked minima. Ligands 4a-d with their free amine group on the side chain may thus be bound to transducer surfaces for the fabrication of sensors, while retaining their activity against their target enzymes.


Assuntos
Compostos de Bifenilo/química , Lisina/análogos & derivados , Metaloproteinase 2 da Matriz/química , Metaloproteinase 9 da Matriz/química , Inibidores de Metaloproteinases de Matriz/química , Sítios de Ligação , Desenho de Fármacos , Humanos , Cinética , Lisina/metabolismo , Lisina/farmacologia , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/metabolismo , Simulação de Acoplamento Molecular , Ligação Proteica , Relação Estrutura-Atividade
18.
J Enzyme Inhib Med Chem ; 36(1): 819-830, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33757387

RESUMO

Compounds containg catechol or bisphosphonate were tested as inhibitors of the zinc metalloproteases, thermolysin (TLN), pseudolysin (PLN) and aureolysin (ALN) which are bacterial virulence factors, and the human matrix metalloproteases MMP-9 and -14. Inhibition of virulence is a putative strategy in the development of antibacterial drugs, but the inhibitors should not interfere with human enzymes. Docking indicated that the inhibitors bound MMP-9 and MMP-14 with the phenyl, biphenyl, chlorophenyl, nitrophenyl or methoxyphenyl ringsystem in the S1'-subpocket, while these ringsystems entered the S2'- or S1 -subpockets or a region involving amino acids in the S1'- and S2'-subpockets of the bacterial enzymes. An arginine conserved among the bacterial enzymes seemed to hinder entrance deeply into the S1'-subpocket. Only the bisphosphonate containing compound RC2 bound stronger to PLN and TLN than to MMP-9 and MMP-14. Docking indicated that the reason was that the conserved arginine (R203 in TLN and R198 in PLN) interacts with phosphate groups of RC2.


Assuntos
Antibacterianos/farmacologia , Catecóis/farmacologia , Difosfonatos/farmacologia , Inibidores de Metaloproteinases de Matriz/farmacologia , Metaloendopeptidases/antagonistas & inibidores , Antibacterianos/síntese química , Antibacterianos/química , Bactérias/enzimologia , Catecóis/síntese química , Catecóis/química , Difosfonatos/síntese química , Difosfonatos/química , Humanos , Inibidores de Metaloproteinases de Matriz/síntese química , Inibidores de Metaloproteinases de Matriz/química , Metaloendopeptidases/metabolismo , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Células THP-1
19.
Chem Pharm Bull (Tokyo) ; 69(10): 1017-1028, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34602570

RESUMO

Celecoxib, a nonsteroidal anti-inflammatory drug, has been reported to have antitumor and antimetastatic activities, and it has potential for application in cancer treatments. The expression of matrix metalloproteinase (MMP)-2/9 is strongly correlated with cancer malignancy, and inhibition of these MMPs is believed to be effective in improving the antitumor and antimetastatic effects of drugs. We have previously revealed that UTX-121, which converted the sulfonamide of celecoxib to methyl ester, has more potent MMP-2/9 inhibitory activity than celecoxib. Based on these findings, we identified compounds with improved MMP inhibitory activity through a structure-activity relationship (SAR) study, using UTX-121 as a lead compound. Among them, compounds 9c and 10c, in which the methyl group of the p-tolyl group was substituted for Cl or F, showed significantly higher antitumor activity than UTX-121, and suppressed the expression of MMP-2/9 and activation of pro MMP-2. Our findings suggest that compounds 9c and 10c may be potent lead compounds for the development of more effective antitumor drugs targeting MMP.


Assuntos
Antineoplásicos/farmacologia , Desenvolvimento de Medicamentos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Inibidores de Metaloproteinases de Matriz/síntese química , Inibidores de Metaloproteinases de Matriz/química , Estrutura Molecular , Relação Estrutura-Atividade
20.
Int J Mol Sci ; 22(18)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34576138

RESUMO

Osteoarthritis is a degenerative disease, often resulting in chronic joint pain and commonly affecting elderly people. Current treatments with anti-inflammatory drugs are palliative, making the discovery of new treatments necessary. The inhibition of matrix metalloproteinase MMP-13 is a validated strategy to prevent the progression of this common joint disorder. We recently described polybrominated benzotriazole derivatives with nanomolar inhibitory activity and a promising selectivity profile against this collagenase. In this work, we have extended the study in order to explore the influence of bromine atoms and the nature of the S1' heterocyclic interacting moiety on the solubility/selectivity balance of this type of compound. Drug target interactions have been assessed through a combination of molecular modeling studies and NMR experiments. Compound 9a has been identified as a water-soluble and highly potent inhibitor with activity in MG-63 human osteosarcoma cells.


Assuntos
Desenho de Fármacos , Inibidores de Metaloproteinases de Matriz/farmacologia , Osteossarcoma/patologia , Água/química , Linhagem Celular Tumoral , Química Click , Humanos , Concentração Inibidora 50 , Espectroscopia de Ressonância Magnética , Metaloproteinase 13 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/síntese química , Inibidores de Metaloproteinases de Matriz/química , Modelos Moleculares , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA