Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Drug Metab Dispos ; 48(1): 1-7, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31641009

RESUMO

Methylenedioxymethamphetamine (MDMA) is a known drug of abuse and schedule 1 narcotic under the Controlled Substances Act. Previous pharmacokinetic work on MDMA used classic linearization techniques to conclude irreversible mechanism-based inhibition of CYP2D6. The current work challenges this outcome by assessing the possibility of two alternative reversible kinetic inhibition mechanisms known as the quasi-irreversible (QI) model and equilibrium model (EM). In addition, progress curve experiments were used to investigate the residual metabolism of MDMA by liver microsomes and CYP2D6 baculosomes over incubation periods up to 30 minutes. These experiments revealed activity in a terminal linear phase at the fractional rates with respect to initial turnover of 0.0354 ± 0.0089 in human liver microsomes and 0.0114 ± 0.0025 in baculosomes. Numerical model fits to percentage of remaining activity (PRA) data were consistent with progress curve modeling results, wherein an irreversible inhibition pathway was found unnecessary for good fit scoring. Both QI and EM kinetic mechanisms fit the PRA data well, although in CYP2D6 baculosomes the inclusion of an irreversible inactivation pathway did not allow for convergence to a reasonable fit. The kinetic complexity accessible to numerical modeling has been used to determine that MDMA is not an irreversible inactivator of CYP2D6, and instead follows what can be generally referred to as slowly reversible inhibition. SIGNIFICANCE STATEMENT: The work herein describes the usage of computational models to delineate between irreversible and slowly reversible time-dependent inhibition. Such models are used in the paper to analyze MDMA and classify it as a reversible time-dependent inhibitor.


Assuntos
Inibidores do Citocromo P-450 CYP2D6/farmacocinética , Citocromo P-450 CYP2D6/metabolismo , Microssomos Hepáticos/efeitos dos fármacos , Modelos Biológicos , N-Metil-3,4-Metilenodioxianfetamina/farmacocinética , Simulação por Computador , Citocromo P-450 CYP2D6/genética , Humanos , Técnicas In Vitro , Desintoxicação Metabólica Fase I , Desintoxicação Metabólica Fase II , Microssomos Hepáticos/enzimologia , Fatores de Tempo
2.
Drug Metab Dispos ; 48(11): 1113-1120, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32847865

RESUMO

Pimozide is a dopamine receptor antagonist indicated for the treatment of Tourette syndrome. Prior in vitro studies characterized N-dealkylation of pimozide to 1,3-dihydro-1-(4-piperidinyl)-2H-benzimidazol-2-one (DHPBI) via CYP3A4 and, to a lesser extent, CYP1A2 as the only notable routes of pimozide biotransformation. However, drug-drug interactions between pimozide and CYP2D6 inhibitors and CYP2D6 genotype-dependent effects have since been observed. To reconcile these incongruities between the prior in vitro and in vivo studies, we characterized two novel pimozide metabolites: 5-hydroxypimozide and 6-hydroxypimozide. Notably, 5-hydroxypimozide was the major metabolite produced by recombinant CYP2D6 (Km ∼82 nM, V max ∼0.78 pmol/min per picomoles), and DHPBI was the major metabolite produced by recombinant CYP3A4 (apparent Km ∼1300 nM, V max ∼2.6 pmol/min per picomoles). Kinetics in pooled human liver microsomes (HLMs) for the 5-hydroxylation (Km ∼2200 nM, V max ∼59 pmol/min per milligram) and N-dealkylation (Km ∼3900 nM, V max ∼600 pmol/min per milligram) reactions were also determined. Collectively, formation of DHPBI, 5-hydroxypimozide, and 6-hydroxypimozide accounted for 90% of pimozide depleted in incubations of NADPH-supplemented pooled HLMs. Studies conducted in HLMs isolated from individual donors with specific cytochrome P450 isoform protein abundances determined via mass spectrometry revealed that 5-hydroxypimozide (r 2 = 0.94) and 6-hydroxypimozide (r 2 = 0.86) formation rates were correlated with CYP2D6 abundance, whereas the DHPBI formation rate (r 2 = 0.98) was correlated with CYP3A4 abundance. Furthermore, the HLMs differed with respect to their capacity to form 5-hydroxypimozide relative to DHPBI. Collectively, these data confirm a role for CYP2D6 in pimozide clearance via 5-hydroxylation and provide an explanation for a lack of involvement when only DHPBI formation was monitored in prior in vitro studies. SIGNIFICANCE STATEMENT: Current CYP2D6 genotype-guided dosing information in the pimozide label is discordant with available knowledge regarding the primary biotransformation pathways. Herein, we characterize the CYP2D6-dependent biotransformation of pimozide to previously unidentified metabolites. In human liver microsomes, formation rates for the novel metabolites and a previously identified metabolite were determined to be a function of CYP2D6 and CYP3A4 content, respectively. These findings provide a mechanistic basis for observations of CYP2D6 genotype-dependent pimozide clearance in vivo.


Assuntos
Antipsicóticos/farmacocinética , Inibidores do Citocromo P-450 CYP2D6/farmacocinética , Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP3A/metabolismo , Pimozida/farmacocinética , Adulto , Idoso , Antipsicóticos/uso terapêutico , Biotransformação , Criança , Interações Medicamentosas , Feminino , Humanos , Masculino , Microssomos Hepáticos , Pessoa de Meia-Idade , Pimozida/uso terapêutico , Proteínas Recombinantes/metabolismo , Síndrome de Tourette/tratamento farmacológico , Adulto Jovem
3.
Drug Metab Dispos ; 48(10): 1044-1052, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32561594

RESUMO

Venlafaxine (VEN), a first-line antidepressant, and Zuojin Pill (ZJP), a common Chinese herbal medicine consisting of Rhizoma Coptidis and Fructus Evodiae, have a high likelihood of combination usage in patients with depression with gastrointestinal complications. ZJP exhibits inhibitory effects on recombinant human cytochrome P450 isoenzymes (rhP450s), especially on CYP2D6, whereas VEN undergoes extensive metabolism by CYP2D6. From this perspective, we investigated the influence of ZJP on the metabolism of VEN in vitro and in rats for the first time. In this study, ZJP significantly inhibited the metabolism of VEN in both rat liver microsomes (RLM) and human liver microsomes (HLM); meanwhile, it inhibited the O-demethylation catalytic activity of RLM, HLM, rhCYP2D6*1/*1, and rhCYP2D6*10/*10, primarily through CYP2D6, with IC50 values of 129.9, 30.5, 15.4, and 2.3 µg/ml, respectively. Furthermore, the inhibitory effects of ZJP on hepatic metabolism and pharmacokinetics of VEN could also be observed in the pharmacokinetic study of rats. The area under drug concentration-time curve0-24 hour of VEN and its major metabolite O-desmethylvenlafaxine (ODV) increased by 39.6% and 22.8%, respectively. The hepatic exposure of ODV decreased by 57.2% 2 hours after administration (P = 0.014). In conclusion, ZJP displayed inhibitory effects on hepatic metabolism and pharmacokinetics of VEN in vitro and in rats mainly through inhibition of CYP2D6 activity. The human pharmacokinetic interaction between ZJP and VEN and its associated clinical significance needed to be seriously considered. SIGNIFICANCE STATEMENT: Zuojin Pill, a commonly used Chinese herbal medicine, demonstrates significant inhibitory effects on hepatic metabolism and pharmacokinetics of venlafaxine in vitro and in rats mainly through suppression of CYP2D6 activity. The human pharmacokinetic interaction between Zuojin Pill and venlafaxine and its associated clinical significance needs to be seriously considered.


Assuntos
Antidepressivos de Segunda Geração/farmacocinética , Inibidores do Citocromo P-450 CYP2D6/farmacocinética , Medicamentos de Ervas Chinesas/farmacocinética , Interações Ervas-Drogas , Cloridrato de Venlafaxina/farmacocinética , Administração Oral , Animais , Antidepressivos de Segunda Geração/administração & dosagem , Citocromo P-450 CYP2D6/metabolismo , Inibidores do Citocromo P-450 CYP2D6/administração & dosagem , Avaliação Pré-Clínica de Medicamentos , Medicamentos de Ervas Chinesas/administração & dosagem , Humanos , Concentração Inibidora 50 , Masculino , Ratos , Proteínas Recombinantes/metabolismo , Cloridrato de Venlafaxina/administração & dosagem
4.
Biopharm Drug Dispos ; 40(5-6): 176-187, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30985942

RESUMO

We previously verified a physiologically based pharmacokinetic (PBPK) model for mirabegron in healthy subjects using the Simcyp Simulator by incorporating data on the inhibitory effect on cytochrome P450 (CYP) 2D6 and a multi-elimination pathway mediated by CYP3A4, uridine 5'-diphosphate-glucuronosyltransferase (UGT) 2B7 and butyrylcholinesterase (BChE). The aim of this study was to use this PBPK model to assess the magnitude of drug-drug interactions (DDIs) in an elderly population with severe renal impairment (sRI), which has not been evaluated in clinical trials. We first determined the system parameters, and meta-analyses of literature data suggested that the abundance of UGT2B7 and the BChE activity in an elderly population with sRI was almost equivalent to and 20% lower than that in healthy young subjects, respectively. Other parameters, such as the CYP3A4 abundance, for an sRI population were used according to those built into the Simcyp Simulator. Second, we confirmed that the PBPK model reproduced the plasma concentration-time profile for mirabegron in an sRI population (simulated area under the plasma concentration-time curve (AUC) was within 1.5-times that of the observed value). Finally, we applied the PBPK model to simulate DDIs in an sRI population. The PBPK model predicted that the AUC for mirabegron with itraconazole (a CYP3A4 inhibitor) was 4.12-times that in healthy elderly subjects administered mirabegron alone, and predicted that the proportional change in AUC for desipramine (a CYP2D6 substrate) with mirabegron was greater than that in healthy subjects. In conclusion, the PBPK model was verified for the purpose of DDI assessment in an elderly population with sRI.


Assuntos
Acetanilidas/farmacocinética , Agonistas de Receptores Adrenérgicos beta 3/farmacocinética , Modelos Biológicos , Insuficiência Renal/metabolismo , Tiazóis/farmacocinética , Acetanilidas/sangue , Adolescente , Agonistas de Receptores Adrenérgicos beta 3/sangue , Adulto , Idoso , Envelhecimento/metabolismo , Butirilcolinesterase/metabolismo , Inibidores do Citocromo P-450 CYP2D6/sangue , Inibidores do Citocromo P-450 CYP2D6/farmacocinética , Citocromo P-450 CYP3A/metabolismo , Inibidores do Citocromo P-450 CYP3A/sangue , Inibidores do Citocromo P-450 CYP3A/farmacocinética , Desipramina/sangue , Desipramina/farmacocinética , Interações Medicamentosas , Feminino , Genfibrozila/sangue , Genfibrozila/farmacocinética , Glucuronosiltransferase/metabolismo , Humanos , Itraconazol/sangue , Itraconazol/farmacocinética , Lorazepam/sangue , Lorazepam/farmacocinética , Masculino , Pessoa de Meia-Idade , Insuficiência Renal/sangue , Tiazóis/sangue , Adulto Jovem , Zidovudina/sangue , Zidovudina/farmacocinética
5.
J Clin Psychopharmacol ; 38(5): 498-501, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30102628

RESUMO

BACKGROUND: Amlodipine (AMLO) and ramipril (RAMI) belong to the most prescribed drugs in patients with hypertension, a condition also encountered in depression. Venlafaxine may worsen hypertension because of noradrenergic properties. Although of special clinical relevance, data on pharmacokinetic interactions between AMLO, RAMI, and venlafaxine (VEN) are lacking. METHODS: Two TDM databases consisting of plasma concentrations of VEN and its active metabolite O-desmethylvenlafaxine (ODVEN) were analyzed. We considered a group of patients comedicated with AMLO, VAMLO (n = 22); a group comedicated with RAMI, VRAMI (n = 20); and a 4:1 control group age matched to the VAMLO group receiving VEN without confounding medications, V0 (n = 88). Plasma concentrations of VEN, ODVEN, and active moiety, AM (VEN + ODVEN); metabolic ratio (ODVEN/VEN); and dose-adjusted plasma concentrations (C/D) were compared using nonparametric tests. RESULTS: Groups did not differ in daily VEN dose, age, or sex. The metabolic ratio (ODVEN/VEN) was lower in the AMLO group (P = 0.029), whereas the RAMI group showed lower values for ODVEN (P = 0.029). All other parameters showed no significant differences. CONCLUSIONS: Significantly lower values for the metabolic ratio in the AMLO group are unlikely to be explained by cytochrome P450 (CYP) 3A4 and weak CYP2D6 inhibition by AMLO. Other factors such as differences in CYP2D6 polymorphisms and metabolizer status may better explain the findings. Ramipril showed modest effects with changes in ODVEN concentrations that did not remain significant after dose-adjusted comparisons.


Assuntos
Anlodipino/farmacocinética , Anti-Hipertensivos/farmacocinética , Hipertensão/tratamento farmacológico , Ramipril/farmacocinética , Inibidores da Recaptação de Serotonina e Norepinefrina/farmacocinética , Cloridrato de Venlafaxina/farmacocinética , Anlodipino/administração & dosagem , Anlodipino/efeitos adversos , Anti-Hipertensivos/administração & dosagem , Anti-Hipertensivos/efeitos adversos , Inibidores do Citocromo P-450 CYP2D6/administração & dosagem , Inibidores do Citocromo P-450 CYP2D6/efeitos adversos , Inibidores do Citocromo P-450 CYP2D6/farmacocinética , Bases de Dados Factuais , Interações Medicamentosas/fisiologia , Prescrições de Medicamentos/normas , Feminino , Humanos , Hipertensão/sangue , Hipertensão/diagnóstico , Masculino , Ramipril/administração & dosagem , Ramipril/efeitos adversos , Inibidores da Recaptação de Serotonina e Norepinefrina/administração & dosagem , Inibidores da Recaptação de Serotonina e Norepinefrina/efeitos adversos , Cloridrato de Venlafaxina/administração & dosagem , Cloridrato de Venlafaxina/efeitos adversos
6.
Pharmacoepidemiol Drug Saf ; 27(6): 621-629, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29575226

RESUMO

PURPOSE: Co-prescription of paroxetine/fluoxetine (a strong CYP2D6 inhibitor) in metoprolol (a CYP2D6 substrate) users is common, but data on the clinical consequences of this drug-drug interaction are limited and inconclusive. Therefore, we assessed the effect of paroxetine/fluoxetine initiation on the existing treatment with metoprolol on the discontinuation and dose adjustment of metoprolol among elderly. METHODS: We performed a cohort study using the University of Groningen IADB.nl prescription database (www.IADB.nl). We selected all elderly (≥60 years) who had ever been prescribed metoprolol and had a first co-prescription of paroxetine/fluoxetine, citalopram (weak CYP2D6 inhibitor), or mirtazapine (negative control) from 1994 to 2015. The exposure group was metoprolol and paroxetine/fluoxetine co-prescription, and the other groups acted as controls. The outcomes were early discontinuation and dose adjustment of metoprolol. Logistic regression was applied to estimate adjusted odds ratios (OR) and 95% confidence intervals (CI). RESULTS: Combinations of metoprolol-paroxetine/fluoxetine, metoprolol-citalopram, and metoprolol-mirtazapine were started in 528, 673, and 625 patients, respectively. Compared with metoprolol-citalopram, metoprolol-paroxetine/fluoxetine was not significantly associated with the early discontinuation and dose adjustment of metoprolol (OR = 1.07, 95% CI:0.77-1.48; OR = 0.87, 95% CI:0.57-1.33, respectively). In comparison with metoprolol-mirtazapine, metoprolol-paroxetine/fluoxetine was associated with a significant 43% relative increase in early discontinuation of metoprolol (OR = 1.43, 95% CI:1.01-2.02) but no difference in the risk of dose adjustment. Stratified analysis by gender showed that women have a significantly high risk of metoprolol early discontinuation (OR = 1.62, 95% CI:1.03-2.53). CONCLUSION: Paroxetine/fluoxetine initiation in metoprolol prescriptions, especially for female older patients, is associated with the risk of early discontinuation of metoprolol.


Assuntos
Inibidores do Citocromo P-450 CYP2D6/farmacocinética , Citocromo P-450 CYP2D6/metabolismo , Fluoxetina/farmacocinética , Metoprolol/administração & dosagem , Idoso , Idoso de 80 Anos ou mais , Citalopram/administração & dosagem , Citalopram/farmacocinética , Estudos de Coortes , Inibidores do Citocromo P-450 CYP2D6/administração & dosagem , Relação Dose-Resposta a Droga , Interações Medicamentosas , Prescrições de Medicamentos/estatística & dados numéricos , Quimioterapia Combinada , Feminino , Fluoxetina/administração & dosagem , Humanos , Masculino , Metoprolol/metabolismo , Metoprolol/farmacocinética , Pessoa de Meia-Idade , Mirtazapina/administração & dosagem , Mirtazapina/farmacocinética , Países Baixos , Paroxetina
7.
Biopharm Drug Dispos ; 39(1): 3-17, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28960401

RESUMO

In recent years, physiologically based PharmacoKinetic (PBPK) modeling has received growing interest as a useful tool for the assessment of drug pharmacokinetics. It has been demonstrated to be informative and helpful to quantify the modification in drug exposure due to specific physio-pathological conditions, age, genetic polymorphisms, ethnicity and particularly drug-drug interactions (DDIs). In this paper, the prediction success of DDIs involving various cytochrome P450 isoenzyme (CYP) modulators namely ketoconazole (a competitive inhibitor of CYP3A), itraconazole (a competitive inhibitor of CYP3A), clarithromycin (a mechanism-based inhibitor of CYP3A), quinidine (a competitive inhibitor of CYP2D6), paroxetine (a mechanism-based inhibitor of CYP2D6), ciprofloxacin (a competitive inhibitor of CYP1A2), fluconazole (a competitive inhibitor of CYP2C9/2C19) and rifampicin (an inducer of CYP3A) were assessed using Simcyp® software. The aim of this report was to establish confidence in each CYP-specific modulator file so they can be used in the future for the prediction of DDIs involving new victim compounds. Our evaluation of these PBPK models suggested that they can be successfully used to evaluate DDIs in untested scenarios. The only noticeable exception concerned a quinidine inhibitor model that requires further improvement. Additionally, other important aspects such as model validation criteria were discussed.


Assuntos
Inibidores do Citocromo P-450 CYP2D6/farmacocinética , Inibidores do Citocromo P-450 CYP3A/farmacocinética , Indutores das Enzimas do Citocromo P-450/farmacocinética , Modelos Biológicos , Software , Ciprofloxacina/farmacocinética , Claritromicina/farmacocinética , Simulação por Computador , Interações Medicamentosas , Fluconazol/farmacocinética , Humanos , Itraconazol/farmacocinética , Cetoconazol/farmacocinética , Paroxetina/farmacocinética , Quinidina/farmacocinética , Rifampina/farmacocinética
8.
Bioorg Med Chem Lett ; 27(11): 2384-2388, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28416132

RESUMO

We report the discovery and hit-to-lead optimization of a structurally novel indazole series of CYP11B2 inhibitors. Benchmark compound 34 from this series displays potent inhibition of CYP11B2, high selectivity versus related steroidal and hepatic CYP targets, and lead-like physical and pharmacokinetic properties. On the basis of these and other data, the indazole series was progressed to lead optimization for further refinement.


Assuntos
Anti-Hipertensivos/farmacologia , Citocromo P-450 CYP11B2/antagonistas & inibidores , Hipertensão/tratamento farmacológico , Indazóis/farmacologia , Animais , Anti-Hipertensivos/síntese química , Anti-Hipertensivos/farmacocinética , Inibidores da Aromatase/síntese química , Inibidores da Aromatase/farmacocinética , Inibidores da Aromatase/farmacologia , Linhagem Celular , Cricetulus , Inibidores do Citocromo P-450 CYP2D6/síntese química , Inibidores do Citocromo P-450 CYP2D6/farmacocinética , Inibidores do Citocromo P-450 CYP2D6/farmacologia , Humanos , Indazóis/síntese química , Indazóis/farmacocinética , Macaca mulatta , Masculino , Ratos Sprague-Dawley , Estereoisomerismo , Esteroide 11-beta-Hidroxilase/antagonistas & inibidores
9.
Bioorg Med Chem ; 25(1): 293-304, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27865645

RESUMO

We report the discovery of a novel benzylpiperidine derivative with serotonin transporter (SERT) inhibitory activity and 5-HT1A receptor weak partial agonistic activity showing the antidepressant-like effect. The 3-methoxyphenyl group and the phenethyl group of compound 1, which has weak SERT binding activity, but potent 5-HT1A binding activity, were optimized, leading to compound 35 with potent and balanced dual SERT and 5-HT1A binding activity, but also potent CYP2D6 inhibitory activity. Replacement of the methoxy group in the left part of compound 35 with a larger alkoxy group, such as ethoxy, isopropoxy or methoxy-ethoxy group ameliorated CYP2D6 inhibition, giving SMP-304 as a candidate. SMP-304 with serotonin uptake inhibitory activity and 5-HT1A weak partial agonistic activity, which could work as a 5-HT1A antagonist, displayed faster onset of antidepressant-like effect than a representative SSRI paroxetine in an animal model.


Assuntos
Antidepressivos/farmacologia , Dioxanos/farmacologia , Piperidinas/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Animais , Antidepressivos/administração & dosagem , Antidepressivos/síntese química , Antidepressivos/farmacocinética , Inibidores do Citocromo P-450 CYP2D6/administração & dosagem , Inibidores do Citocromo P-450 CYP2D6/síntese química , Inibidores do Citocromo P-450 CYP2D6/farmacocinética , Inibidores do Citocromo P-450 CYP2D6/farmacologia , Dioxanos/administração & dosagem , Dioxanos/síntese química , Dioxanos/farmacocinética , Agonismo Parcial de Drogas , Humanos , Masculino , Piperidinas/administração & dosagem , Piperidinas/síntese química , Piperidinas/farmacocinética , Ratos Wistar , Agonistas do Receptor 5-HT1 de Serotonina/administração & dosagem , Agonistas do Receptor 5-HT1 de Serotonina/síntese química , Agonistas do Receptor 5-HT1 de Serotonina/farmacocinética , Inibidores Seletivos de Recaptação de Serotonina/administração & dosagem , Inibidores Seletivos de Recaptação de Serotonina/síntese química , Inibidores Seletivos de Recaptação de Serotonina/farmacocinética
10.
Xenobiotica ; 46(3): 268-77, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26294260

RESUMO

1. Metabolite profiling and identification studies were conducted to understand the cross-species differences in the metabolic clearance of EPZ015666, a first-in-class protein arginine methyltransferase-5 (PRMT5) inhibitor, with anti-proliferative effects in preclinical models of Mantle Cell Lymphoma. EPZ015666 exhibited low clearance in human, mouse and rat liver microsomes, in part by introduction of a 3-substituted oxetane ring on the molecule. In contrast, a higher clearance was observed in dog liver microsomes (DLM) that translated to a higher in vivo clearance in dog compared with rodent. 2. Structure elucidation via high resolution, accurate mass LC-MS(n) revealed that the prominent metabolites of EPZ015666 were present in hepatocytes from all species, with the highest turnover rate in dogs. M1 and M2 resulted from oxidative oxetane ring scission, whereas M3 resulted from loss of the oxetane ring via an N-dealkylation reaction. 3. The formation of M1 and M2 in DLM was significantly abrogated in the presence of the specific CYP2D inhibitor, quinidine, and to a lesser extent by the CYP3A inhibitor, ketoconazole, corroborating data from human recombinant isozymes. 4. Our data indicate a marked species difference in the metabolism of the PRMT5 inhibitor EPZ015666, with oxetane ring scission the predominant metabolic pathway in dog mediated largely by CYP2D.


Assuntos
Inibidores Enzimáticos/farmacocinética , Éteres Cíclicos/farmacocinética , Isoquinolinas/farmacocinética , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Pirimidinas/farmacocinética , Animais , Inibidores do Citocromo P-450 CYP2D6/farmacocinética , Inibidores do Citocromo P-450 CYP3A/farmacocinética , Cães , Hepatócitos/metabolismo , Humanos , Cetoconazol/farmacocinética , Masculino , Camundongos , Microssomos Hepáticos/metabolismo , Quinidina/farmacocinética , Ratos , Ratos Sprague-Dawley , Especificidade da Espécie
11.
Arch Toxicol ; 90(2): 305-18, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25417051

RESUMO

In vitro cytochrome P450 (CYP) inhibition assays are common approaches for testing the inhibition potential of drugs for predicting potential interactions. In contrast to marketed medicaments, drugs of abuse, particularly the so-called novel psychoactive substances, were not tested before distribution and consumption. Therefore, the inhibition potential of methylenedioxy-derived designer drugs (MDD) of different drug classes such as aminoindanes, amphetamines, benzofurans, cathinones, piperazines, pyrrolidinophenones, and tryptamines should be elucidated. The FDA-preferred test substrates, split in two cocktails, were incubated with pooled human liver microsomes and analysed after protein precipitation using LC-high-resolution-MS/MS. IC50 values were determined of MDD showing more than 50 % inhibition in the prescreening. Values were calculated by plotting the relative metabolite concentration formed over the logarithm of the inhibitor concentration. All MDD showed inhibition against CYP2D6 activity and most of them in the range of the clinically relevant CYP2D6 inhibitors quinidine and fluoxetine. In addition, the beta-keto compounds showed inhibition of the activity of CYP2B6, 5,6-MD-DALT of CYP1A2 and CYP3A, and MDAI of CYP2A6, all in the range of clinically relevant inhibitors. In summary, all MDD showed inhibition of the activity of CYP2D6, six of CYP1A2, three of CYP2A6, 13 of CYP2B6, two of CYP2C9, six of CYP2C19, one of CYP2E1, and six of CYP3A. These results showed that the CYP inhibition by MDD might be clinically relevant, but further studies are needed for final conclusions.


Assuntos
Inibidores das Enzimas do Citocromo P-450/toxicidade , Drogas Desenhadas/farmacocinética , Drogas Desenhadas/toxicidade , Testes de Toxicidade/métodos , 3,4-Metilenodioxianfetamina/farmacocinética , 3,4-Metilenodioxianfetamina/toxicidade , Inibidores do Citocromo P-450 CYP2D6/farmacocinética , Inibidores do Citocromo P-450 CYP2D6/toxicidade , Inibidores das Enzimas do Citocromo P-450/farmacocinética , Interações Medicamentosas , Humanos , Concentração Inibidora 50 , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Piperidinas/farmacocinética , Piperidinas/toxicidade
12.
J Pharmacol Exp Ther ; 354(1): 43-54, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25943764

RESUMO

Selective deuterium substitution as a means of ameliorating clinically relevant pharmacokinetic drug interactions is demonstrated in this study. Carbon-deuterium bonds are more stable than corresponding carbon-hydrogen bonds. Using a precision deuteration platform, the two hydrogen atoms at the methylenedioxy carbon of paroxetine were substituted with deuterium. The new chemical entity, CTP-347 [(3S,4R)-3-((2,2-dideuterobenzo[d][1,3]dioxol-5-yloxy)methyl)-4-(4-fluorophenyl)piperidine], demonstrated similar selectivity for the serotonin receptor, as well as similar neurotransmitter uptake inhibition in an in vitro rat synaptosome model, as unmodified paroxetine. However, human liver microsomes cleared CTP-347 faster than paroxetine as a result of decreased inactivation of CYP2D6. In phase 1 studies, CTP-347 was metabolized more rapidly in humans and exhibited a lower pharmacokinetic accumulation index than paroxetine. These alterations in the metabolism profile resulted in significantly reduced drug-drug interactions between CTP-347 and two other CYP2D6-metabolized drugs: tamoxifen (in vitro) and dextromethorphan (in humans). Our results show that precision deuteration can improve the metabolism profiles of existing pharmacotherapies without affecting their intrinsic pharmacologies.


Assuntos
Inibidores do Citocromo P-450 CYP2D6/farmacologia , Citocromo P-450 CYP2D6/metabolismo , Paroxetina/farmacologia , Animais , Encéfalo/metabolismo , Inibidores do Citocromo P-450 CYP2D6/farmacocinética , Deutério , Método Duplo-Cego , Interações Medicamentosas , Feminino , Humanos , Marcação por Isótopo , Microssomos Hepáticos/metabolismo , Paroxetina/farmacocinética , Paroxetina/uso terapêutico , Ensaio Radioligante , Ratos , Receptores de Serotonina/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacocinética , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Sinaptossomos/metabolismo , Tamoxifeno/metabolismo
13.
Drug Metab Dispos ; 43(2): 182-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25324279

RESUMO

Evaluation of drug-drug interaction (DDI) involving circulating inhibitory metabolites of perpetrator drugs has recently drawn more attention from regulatory agencies and pharmaceutical companies. Here, using amiodarone (AMIO) as an example, we demonstrate the use of physiologically based pharmacokinetic (PBPK) modeling to assess how a potential inhibitory metabolite can contribute to clinically significant DDIs. Amiodarone was reported to increase the exposure of simvastatin, dextromethorphan, and warfarin by 1.2- to 2-fold, which was not expected based on its weak inhibition observed in vitro. The major circulating metabolite, mono-desethyl-amiodarone (MDEA), was later identified to have a more potent inhibitory effect. Using a combined "bottom-up" and "top-down" approach, a PBPK model was built to successfully simulate the pharmacokinetic profile of AMIO and MDEA, particularly their accumulation in plasma and liver after a long-term treatment. The clinical AMIO DDIs were predicted using the verified PBPK model with incorporation of cytochrome P450 inhibition from both AMIO and MDEA. The closest prediction was obtained for CYP3A (simvastatin) DDI when the competitive inhibition from both AMIO and MDEA was considered, for CYP2D6 (dextromethorphan) DDI when the competitive inhibition from AMIO and the competitive plus time-dependent inhibition from MDEA were incorporated, and for CYP2C9 (warfarin) DDI when the competitive plus time-dependent inhibition from AMIO and the competitive inhibition from MDEA were considered. The PBPK model with the ability to simulate DDI by considering dynamic change and accumulation of inhibitor (parent and metabolite) concentration in plasma and liver provides advantages in understanding the possible mechanism of clinical DDIs involving inhibitory metabolites.


Assuntos
Amiodarona/farmacocinética , Antiarrítmicos/farmacocinética , Modelos Biológicos , Administração Oral , Adulto , Amiodarona/administração & dosagem , Amiodarona/análogos & derivados , Amiodarona/antagonistas & inibidores , Amiodarona/sangue , Amiodarona/metabolismo , Antiarrítmicos/administração & dosagem , Antiarrítmicos/química , Antiarrítmicos/metabolismo , Biotransformação/efeitos dos fármacos , Simulação por Computador , Inibidores do Citocromo P-450 CYP2C9/sangue , Inibidores do Citocromo P-450 CYP2C9/química , Inibidores do Citocromo P-450 CYP2C9/metabolismo , Inibidores do Citocromo P-450 CYP2C9/farmacocinética , Inibidores do Citocromo P-450 CYP2D6/sangue , Inibidores do Citocromo P-450 CYP2D6/química , Inibidores do Citocromo P-450 CYP2D6/metabolismo , Inibidores do Citocromo P-450 CYP2D6/farmacocinética , Inibidores do Citocromo P-450 CYP3A/sangue , Inibidores do Citocromo P-450 CYP3A/química , Inibidores do Citocromo P-450 CYP3A/metabolismo , Inibidores do Citocromo P-450 CYP3A/farmacocinética , Relação Dose-Resposta a Droga , Interações Medicamentosas , Sistemas Inteligentes , Feminino , Humanos , Infusões Intravenosas , Fígado/efeitos dos fármacos , Fígado/enzimologia , Fígado/metabolismo , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Adulto Jovem
14.
Xenobiotica ; 45(3): 256-63, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25268386

RESUMO

1. Recently, we demonstrated that sarpogrelate is a potent and selective CYP2D6 inhibitor in vitro. Here, we evaluated the effect of sarpogrelate on the pharmacokinetics and pharmacodynamics of metoprolol in healthy subjects. 2. Nine healthy male subjects genotyped for CYP2D6*1/*1 or *1/*2 were included in an open-label, randomized, three treatment-period and crossover study. A single oral dose of metoprolol (100 mg) was administered with water (treatment A) and sarpogrelate (100 mg bid.; a total dose of 200 mg and treatment B), or after pretreatment of sarpogrelate for three days (100 mg tid.; treatment C). Plasma levels of metoprolol and α-hydroxymetoprolol were determined using a validated LC-MS/MS method. Changes in heart rate and blood pressure were monitored as pharmacodynamic responses to metoprolol. 3. Metoprolol was well tolerated in the three treatment groups. In treatment B and C groups, the AUCt of metoprolol increased by 53% (GMR, 1.53; 90% CI, 1.17-2.31) and by 51% (1.51; 1.17-2.31), respectively. Similar patterns were observed for the increase in Cmax of metoprolol by sarpogrelate. However, the pharmacodynamics of metoprolol did not differ significantly among the three treatment groups. 4. Greater systemic exposure to metoprolol after co-administration or pretreatment with sarpogrelate did not result in clinically relevant effects. Co-administration of both agents is well tolerated and can be employed without the need for dose adjustments.


Assuntos
Povo Asiático , Inibidores do Citocromo P-450 CYP2D6/farmacologia , Voluntários Saudáveis , Metoprolol/farmacologia , Metoprolol/farmacocinética , Succinatos/farmacologia , Administração Oral , Adulto , Área Sob a Curva , Inibidores do Citocromo P-450 CYP2D6/administração & dosagem , Inibidores do Citocromo P-450 CYP2D6/efeitos adversos , Inibidores do Citocromo P-450 CYP2D6/farmacocinética , Humanos , Masculino , Metoprolol/administração & dosagem , Metoprolol/efeitos adversos , Metoprolol/análogos & derivados , Pessoa de Meia-Idade , República da Coreia , Succinatos/administração & dosagem , Succinatos/efeitos adversos , Adulto Jovem
15.
Clin Pharmacol Drug Dev ; 13(8): 930-937, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38702918

RESUMO

Atogepant, an oral calcitonin gene-related peptide receptor antagonist, is approved for the preventive treatment of migraine. Atogepant is a substrate of P-glycoprotein (P-gp), breast cancer resistance protein, organic anion transporting polypeptide transporters, and cytochrome P450 (CYP)3A4 and 2D6. Quinidine is a strong P-gp and CYP2D6 inhibitor. A phase 1 open-label study evaluated the effect of P-gp and CYP2D6 inhibition by quinidine on the pharmacokinetics of atogepant, and the safety and tolerability of atogepant and quinidine gluconate (QG) when co-administered and when given alone in 33 healthy adults. There was no significant change in the atogepant maximum plasma concentration with QG co-administration. The overall systemic exposure, the area under the plasma concentration-time curve (from time 0 to time t or to infinity), of atogepant increased by 25% when co-administered with QG. However, such an increase was not considered clinically relevant. Atogepant did not alter the mean plasma concentration of quinidine at steady state. The incidence of treatment-emergent adverse events (TEAEs) was highest when QG was administered alone (42.4%), which was primarily due to QT prolongation. Most TEAEs reported were mild in severity and resolved within 1-2 days. Co-administration of atogepant with QG did not result in any unexpected tolerability findings in this phase 1 study in healthy participants. The increase in atogepant exposure during QG co-administration could be due to inhibition of CYP2D6 (a minor contributor to atogepant clearance) as well as inhibition of P-gp.


Assuntos
Interações Medicamentosas , Voluntários Saudáveis , Quinidina , Humanos , Quinidina/efeitos adversos , Quinidina/farmacocinética , Quinidina/administração & dosagem , Quinidina/farmacologia , Quinidina/análogos & derivados , Adulto , Masculino , Feminino , Adulto Jovem , Pessoa de Meia-Idade , Área Sob a Curva , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Inibidores do Citocromo P-450 CYP2D6/farmacologia , Inibidores do Citocromo P-450 CYP2D6/administração & dosagem , Inibidores do Citocromo P-450 CYP2D6/efeitos adversos , Inibidores do Citocromo P-450 CYP2D6/farmacocinética
16.
Clin Pharmacokinet ; 62(12): 1755-1763, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37882999

RESUMO

BACKGROUND: Ulotaront is a novel psychotropic agent with agonist activity at trace amine-associated receptor 1 (TAAR1) and 5-hydroxytryptamine type 1A (5-HT1A) receptors in phase III clinical development for the treatment of schizophrenia. OBJECTIVE: This study aimed to investigate the effect of paroxetine, a strong cytochrome P450 (CYP) 2D6 inhibitor, on ulotaront pharmacokinetics (PK) in healthy volunteers. METHODS: Subjects received a single oral dose of 25 mg ulotaront on Day 1 and an oral dose of 20 mg paroxetine once daily from Days 5 to 10 to achieve steady-state plasma paroxetine levels. On Day 11, subjects received another single oral dose of 25 mg ulotaront, with continued daily oral dosing of 20 mg paroxetine from Days 11 to 14. All 24 subjects were CYP2D6 normal metabolizers. RESULTS: Coadministration of paroxetine increased ulotaront maximum observed plasma concentration (Cmax) and area under the plasma concentration-time curve from time zero to infinity (AUC∞) by 31% and 72%, respectively, and decreased ulotaront apparent clearance (CL/F) by approximately 42%. While coadministration of paroxetine increased AUC∞ of active but minor metabolite SEP-363854 by 32%, it had no effect on SEP-363854 Cmax, or on SEP-363854 to the ulotaront AUC from time zero to the last quantifiable concentration (AUClast) ratio. Based on the acceptable adverse event profile of ulotaront across previous phase II studies, the increase in ulotaront exposure is unlikely to be clinically meaningful. CONCLUSIONS: Weak drug-drug interactions were observed between ulotaront and the strong CYP2D6 inhibitor paroxetine; however, dose adjustment as a precondition when ulotaront is coadministered with strong CYP2D6 inhibitors or administered to CYP2D6 poor metabolizers should not be necessary.


Assuntos
Citocromo P-450 CYP2D6 , Paroxetina , Humanos , Citocromo P-450 CYP2D6/metabolismo , Paroxetina/efeitos adversos , Voluntários Saudáveis , Inibidores do Citocromo P-450 CYP2D6/farmacocinética , Interações Medicamentosas , Inibidores Enzimáticos , Área Sob a Curva
17.
Eur J Drug Metab Pharmacokinet ; 47(5): 699-710, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35840839

RESUMO

BACKGROUND AND OBJECTIVES: Index substrates and inhibitors to investigate the role of the polymorphic enzyme, cytochrome P450 (CYP) 2D6, in the metabolism of new compounds have been proposed by regulatory agencies. This work describes the development and verification of physiologically-based pharmacokinetic (PBPK) models for the CYP2D6-sensitive substrate, nebivolol and the index CYP2D6 inhibitors, mirabegron and cinacalcet. METHODS: PBPK models for nebivolol, mirabegron and cinacalcet were developed using in vitro and clinical data. The performance of the PBPK models was verified by comparing the simulated results against reported human systemic exposure and clinical drug-drug interactions (DDIs) studies. RESULTS: The exposure of nebivolol, cinacalcet and mirabegron predicted by the PBPK models was verified against pharmacokinetic data from 13, 3 and 9 clinical studies, respectively. For nebivolol, the predicted mean maximum plasma concentration (Cmax) and area under the plasma concentration-time (AUC) values in CYP2D6 extensive metaboliser subjects were within 0.9- to 1.49-fold of the observed values. In poor metaboliser CYP2D6 subjects, the predicted Cmax and AUC values were within 0.41- to 0.81-fold of observed values. For cinacalcet, the predicted Cmax and AUC values were within 0.97- to 1.32-fold of the observed data. For mirabegron, the predicted AUC values across all the studies investigated were within 0.71- to 1.88-fold of observed values. The PBPK model-predicted DDIs were in good agreement (within 2-fold) with observed DDIs in all verification studies (n = 8) assessed. The overall precision was 1.26 and 1.21 for Cmax and the AUC ratio, respectively. CONCLUSIONS: The developed PBPK models can be used to assess the DDI potential liability of new chemical entities that are substrates or inhibitors of CYP2D6.


Assuntos
Inibidores do Citocromo P-450 CYP2D6 , Citocromo P-450 CYP2D6 , Acetanilidas/farmacocinética , Cinacalcete/farmacocinética , Simulação por Computador , Citocromo P-450 CYP2D6/metabolismo , Inibidores do Citocromo P-450 CYP2D6/farmacocinética , Interações Medicamentosas , Humanos , Modelos Biológicos , Nebivolol/farmacocinética , Tiazóis/farmacocinética
18.
J Clin Pharmacol ; 62(1): 76-86, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34383318

RESUMO

Tramadol is an opioid medication used to treat moderately severe pain. Cytochrome P450 (CYP) 2D6 inhibition could be important for tramadol, as it decreases the formation of its pharmacologically active metabolite, O-desmethyltramadol, potentially resulting in increased opioid use and misuse. The objective of this study was to evaluate the impact of allosteric and competitive CYP2D6 inhibition on tramadol and O-desmethyltramadol pharmacokinetics using quinidine and metoprolol as prototypical perpetrator drugs. A physiologically based pharmacokinetic model for tramadol and O-desmethyltramadol was developed and verified in PK-Sim version 8 and linked to respective models of quinidine and metoprolol to evaluate the impact of allosteric and competitive CYP2D6 inhibition on tramadol and O-desmethyltramadol exposure. Our results show that there is a differentiated impact of CYP2D6 inhibitors on tramadol and O-desmethyltramadol based on their mechanisms of inhibition. Following allosteric inhibition by a single dose of quinidine, the exposure of both tramadol (51% increase) and O-desmethyltramadol (52% decrease) was predicted to be significantly altered after concomitant administration of a single dose of tramadol. Following multiple-dose administration of tramadol and a single-dose or multiple-dose administration of quinidine, the inhibitory effect of quinidine was predicted to be long (≈42 hours) and to alter exposure of tramadol and O-desmethyltramadol by up to 60%, suggesting that coadministration of quinidine and tramadol should be avoided clinically. In comparison, there is no predicted significant impact of metoprolol on tramadol and O-desmethyltramadol exposure. In fact, tramadol is predicted to act as a CYP2D6 perpetrator and increase metoprolol exposure, which may necessitate the need for dose separation.


Assuntos
Analgésicos Opioides/farmacocinética , Inibidores do Citocromo P-450 CYP2D6/farmacologia , Citocromo P-450 CYP2D6/efeitos dos fármacos , Tramadol/análogos & derivados , Tramadol/farmacocinética , Área Sob a Curva , Inibidores do Citocromo P-450 CYP2D6/farmacocinética , Interações Medicamentosas , Meia-Vida , Humanos , Taxa de Depuração Metabólica , Metoprolol/farmacologia , Modelos Biológicos , Quinidina/farmacologia
19.
Clin Pharmacol Drug Dev ; 10(3): 299-306, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32648334

RESUMO

This phase 1 study characterized the effect of multiple doses of upadacitinib, an oral Janus kinase 1 selective inhibitor, on the pharmacokinetics of the cytochrome P450 (CYP) 2B6 substrate bupropion. Healthy subjects (n = 22) received a single oral dose of bupropion 150 mg alone (study period 1) and on day 12 of a 16-day regimen of upadacitinib 30 mg once daily (study period 2). Serial blood samples for measurement of bupropion and hydroxybupropion plasma concentrations were collected in each study period. The central values (90% confidence intervals) for the ratios of change were 0.87 (0.79-0.96) for bupropion maximum plasma concentration (Cmax ), 0.92 (0.87-0.98) for bupropion area under the plasma-concentration time curve from time 0 to infinity (AUCinf ), 0.78 (0.72-0.85) for hydroxybupropion Cmax , and 0.72 (0.67-0.78) for hydroxybupropion AUCinf when administered with, relative to when administered without, upadacitinib. After multiple-dose administration of upadacitinib 30 mg once daily, upadacitinib mean ± SD AUC0-24 was 641 ± 177 ng·h/mL, and Cmax was 83.3 ± 30.7 ng/mL. These results confirm that upadacitinib has no relevant effect on pharmacokinetics of substrates metabolized by CYP2B6.


Assuntos
Bupropiona/farmacocinética , Citocromo P-450 CYP2B6/efeitos dos fármacos , Inibidores do Citocromo P-450 CYP2D6/farmacocinética , Compostos Heterocíclicos com 3 Anéis/farmacocinética , Inibidores de Janus Quinases/farmacocinética , Administração Oral , Adulto , Área Sob a Curva , Artrite Reumatoide/tratamento farmacológico , Disponibilidade Biológica , Bupropiona/administração & dosagem , Bupropiona/análogos & derivados , Bupropiona/sangue , Bupropiona/metabolismo , Citocromo P-450 CYP2B6/metabolismo , Inibidores do Citocromo P-450 CYP2D6/administração & dosagem , Inibidores do Citocromo P-450 CYP2D6/sangue , Interações Medicamentosas , Feminino , Voluntários Saudáveis/estatística & dados numéricos , Compostos Heterocíclicos com 3 Anéis/administração & dosagem , Compostos Heterocíclicos com 3 Anéis/efeitos adversos , Humanos , Inibidores de Janus Quinases/administração & dosagem , Inibidores de Janus Quinases/efeitos adversos , Masculino , Pessoa de Meia-Idade
20.
Clin Pharmacol Ther ; 108(1): 116-125, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31910286

RESUMO

The US Food and Drug Administration (FDA) lists 22 medications as clinical inhibitors of cytochrome P450 2D6 isoenzyme, with classifications of strong, moderate, and weak. It is accepted that strong inhibitors result in nearly null enzymatic activity, but reduction caused by moderate and weak inhibitors is less well characterized. The objective was to identify if the classification of currently listed FDA moderate and weak inhibitors is supported by publicly available primary literature. We conducted a literature search and reviewed product labels for area under the plasma concentration-time curve (AUC) fold-changes caused by inhibitors in humans and identified 89 inhibitor-substrate pairs. Observed AUC fold-change of the substrate was used to create an observed inhibitor classification per FDA-defined AUC fold-change thresholds. We then compared the observed inhibitor classification with the classification listed in the FDA Table of Inhibitors. We found 62% of the inhibitors within the pairs matched the listed FDA classification. We explored reasons for discordance and suggest modifications to the FDA table of clinical inhibitors for cimetidine, desvenlafaxine, and fluvoxamine.


Assuntos
Inibidores do Citocromo P-450 CYP2D6/classificação , Citocromo P-450 CYP2D6/efeitos dos fármacos , Área Sob a Curva , Cimetidina/classificação , Cimetidina/farmacocinética , Cimetidina/farmacologia , Citocromo P-450 CYP2D6/metabolismo , Inibidores do Citocromo P-450 CYP2D6/farmacocinética , Succinato de Desvenlafaxina/classificação , Succinato de Desvenlafaxina/farmacocinética , Succinato de Desvenlafaxina/farmacologia , Fluvoxamina/classificação , Fluvoxamina/farmacocinética , Fluvoxamina/farmacologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA