Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.963
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 169(7): 1214-1227.e18, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28622508

RESUMO

Higher eukaryotic chromosomes are organized into topologically constrained functional domains; however, the molecular mechanisms required to sustain these complex interphase chromatin structures are unknown. A stable matrix underpinning nuclear organization was hypothesized, but the idea was abandoned as more dynamic models of chromatin behavior became prevalent. Here, we report that scaffold attachment factor A (SAF-A), originally identified as a structural nuclear protein, interacts with chromatin-associated RNAs (caRNAs) via its RGG domain to regulate human interphase chromatin structures in a transcription-dependent manner. Mechanistically, this is dependent on SAF-A's AAA+ ATPase domain, which mediates cycles of protein oligomerization with caRNAs, in response to ATP binding and hydrolysis. SAF-A oligomerization decompacts large-scale chromatin structure while SAF-A loss or monomerization promotes aberrant chromosome folding and accumulation of genome damage. Our results show that SAF-A and caRNAs form a dynamic, transcriptionally responsive chromatin mesh that organizes large-scale chromosome structures and protects the genome from instability.


Assuntos
Cromossomos/metabolismo , Instabilidade Genômica , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/metabolismo , RNA Nuclear Pequeno/metabolismo , Sequência de Aminoácidos , Cromatina , Células HEK293 , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/química , Humanos , Interfase , Modelos Moleculares , Alinhamento de Sequência , Transcrição Gênica
2.
Mol Cell ; 84(8): 1422-1441.e14, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38521067

RESUMO

The topological state of chromosomes determines their mechanical properties, dynamics, and function. Recent work indicated that interphase chromosomes are largely free of entanglements. Here, we use Hi-C, polymer simulations, and multi-contact 3C and find that, by contrast, mitotic chromosomes are self-entangled. We explore how a mitotic self-entangled state is converted into an unentangled interphase state during mitotic exit. Most mitotic entanglements are removed during anaphase/telophase, with remaining ones removed during early G1, in a topoisomerase-II-dependent process. Polymer models suggest a two-stage disentanglement pathway: first, decondensation of mitotic chromosomes with remaining condensin loops produces entropic forces that bias topoisomerase II activity toward decatenation. At the second stage, the loops are released, and the formation of new entanglements is prevented by lower topoisomerase II activity, allowing the establishment of unentangled and territorial G1 chromosomes. When mitotic entanglements are not removed in experiments and models, a normal interphase state cannot be acquired.


Assuntos
Cromossomos , DNA Topoisomerases Tipo II , DNA Topoisomerases Tipo II/genética , Cromossomos/genética , Mitose/genética , Interfase/genética , Polímeros
3.
Mol Cell ; 84(7): 1224-1242.e13, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38458201

RESUMO

Although mismatch repair (MMR) is essential for correcting DNA replication errors, it can also recognize other lesions, such as oxidized bases. In G0 and G1, MMR is kept in check through unknown mechanisms as it is error-prone during these cell cycle phases. We show that in mammalian cells, D-type cyclins are recruited to sites of oxidative DNA damage in a PCNA- and p21-dependent manner. D-type cyclins inhibit the proteasomal degradation of p21, which competes with MMR proteins for binding to PCNA, thereby inhibiting MMR. The ability of D-type cyclins to limit MMR is CDK4- and CDK6-independent and is conserved in G0 and G1. At the G1/S transition, the timely, cullin-RING ubiquitin ligase (CRL)-dependent degradation of D-type cyclins and p21 enables MMR activity to efficiently repair DNA replication errors. Persistent expression of D-type cyclins during S-phase inhibits the binding of MMR proteins to PCNA, increases the mutational burden, and promotes microsatellite instability.


Assuntos
Ciclinas , Reparo de Erro de Pareamento de DNA , Animais , Ciclinas/genética , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Interfase , Mamíferos/metabolismo
4.
Cell ; 163(1): 134-47, 2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-26365489

RESUMO

Mammalian interphase chromosomes interact with the nuclear lamina (NL) through hundreds of large lamina-associated domains (LADs). We report a method to map NL contacts genome-wide in single human cells. Analysis of nearly 400 maps reveals a core architecture consisting of gene-poor LADs that contact the NL with high cell-to-cell consistency, interspersed by LADs with more variable NL interactions. The variable contacts tend to be cell-type specific and are more sensitive to changes in genome ploidy than the consistent contacts. Single-cell maps indicate that NL contacts involve multivalent interactions over hundreds of kilobases. Moreover, we observe extensive intra-chromosomal coordination of NL contacts, even over tens of megabases. Such coordinated loci exhibit preferential interactions as detected by Hi-C. Finally, the consistency of NL contacts is inversely linked to gene activity in single cells and correlates positively with the heterochromatic histone modification H3K9me3. These results highlight fundamental principles of single-cell chromatin organization. VIDEO ABSTRACT.


Assuntos
Cromatina/metabolismo , Lâmina Nuclear/metabolismo , Análise de Célula Única/métodos , Linhagem Celular Tumoral , Cromatina/química , Cromossomos/química , Cromossomos/metabolismo , Estudo de Associação Genômica Ampla , Humanos , Hibridização in Situ Fluorescente , Interfase
5.
Cell ; 160(6): 1145-58, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25768910

RESUMO

Nucleosomes help structure chromosomes by compacting DNA into fibers. To gain insight into how nucleosomes are arranged in vivo, we combined quantitative super-resolution nanoscopy with computer simulations to visualize and count nucleosomes along the chromatin fiber in single nuclei. Nucleosomes assembled in heterogeneous groups of varying sizes, here termed "clutches," and these were interspersed with nucleosome-depleted regions. The median number of nucleosomes inside clutches and their compaction defined as nucleosome density were cell-type-specific. Ground-state pluripotent stem cells had, on average, less dense clutches containing fewer nucleosomes and clutch size strongly correlated with the pluripotency potential of induced pluripotent stem cells. RNA polymerase II preferentially associated with the smallest clutches while linker histone H1 and heterochromatin were enriched in the largest ones. Our results reveal how the chromatin fiber is formed at nanoscale level and link chromatin fiber architecture to stem cell state.


Assuntos
Cromatina/química , Nucleossomos/química , Nucleossomos/ultraestrutura , Animais , Diferenciação Celular , Cromatina/metabolismo , Simulação por Computador , Células-Tronco Embrionárias/química , Células-Tronco Embrionárias/metabolismo , Estudo de Associação Genômica Ampla , Histonas/metabolismo , Humanos , Interfase , Camundongos , Mutação , Nucleossomos/metabolismo , Células-Tronco Pluripotentes/química , Células-Tronco Pluripotentes/metabolismo , RNA Polimerase II/metabolismo
6.
Cell ; 156(5): 864-5, 2014 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-24581484

RESUMO

RNA has been proposed to be a component of an underlying nuclear matrix. Hall et al. show that noncoding, repetitive RNAs, some derived from LINE1 elements, stably associate with interphase chromosomes and copurify with nuclear scaffold, indicating that RNAs might impact interphase chromosome architecture.


Assuntos
Cromossomos de Mamíferos/química , Eucromatina/química , Interfase , RNA não Traduzido/análise , Animais , Humanos
7.
Cell ; 156(5): 907-19, 2014 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-24581492

RESUMO

Recent studies recognize a vast diversity of noncoding RNAs with largely unknown functions, but few have examined interspersed repeat sequences, which constitute almost half our genome. RNA hybridization in situ using C0T-1 (highly repeated) DNA probes detects surprisingly abundant euchromatin-associated RNA comprised predominantly of repeat sequences (C0T-1 RNA), including LINE-1. C0T-1-hybridizing RNA strictly localizes to the interphase chromosome territory in cis and remains stably associated with the chromosome territory following prolonged transcriptional inhibition. The C0T-1 RNA territory resists mechanical disruption and fractionates with the nonchromatin scaffold but can be experimentally released. Loss of repeat-rich, stable nuclear RNAs from euchromatin corresponds to aberrant chromatin distribution and condensation. C0T-1 RNA has several properties similar to XIST chromosomal RNA but is excluded from chromatin condensed by XIST. These findings impact two "black boxes" of genome science: the poorly understood diversity of noncoding RNA and the unexplained abundance of repetitive elements.


Assuntos
Cromossomos de Mamíferos/química , Eucromatina/química , Interfase , RNA não Traduzido/análise , Animais , Núcleo Celular/química , Humanos , Células Híbridas , Elementos Nucleotídeos Longos e Dispersos , Camundongos , RNA não Traduzido/genética , Sequências Repetitivas de Ácido Nucleico , Transcrição Gênica
8.
Cell ; 156(5): 1017-31, 2014 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-24581499

RESUMO

The spindle assembly checkpoint (SAC) delays anaphase until all chromosomes are bioriented on the mitotic spindle. Under current models, unattached kinetochores transduce the SAC by catalyzing the intramitotic production of a diffusible inhibitor of APC/C(Cdc20) (the anaphase-promoting complex/cyclosome and its coactivator Cdc20, a large ubiquitin ligase). Here we show that nuclear pore complexes (NPCs) in interphase cells also function as scaffolds for anaphase-inhibitory signaling. This role is mediated by Mad1-Mad2 complexes tethered to the nuclear basket, which activate soluble Mad2 as a binding partner and inhibitor of Cdc20 in the cytoplasm. Displacing Mad1-Mad2 from nuclear pores accelerated anaphase onset, prevented effective correction of merotelic errors, and increased the threshold of kinetochore-dependent signaling needed to halt mitosis in response to spindle poisons. A heterologous Mad1-NPC tether restored Cdc20 inhibitor production and normal M phase control. We conclude that nuclear pores and kinetochores both emit "wait anaphase" signals that preserve genome integrity.


Assuntos
Anáfase , Proteínas de Ciclo Celular/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular , Proteínas Mad2/metabolismo , Poro Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Transporte Ativo do Núcleo Celular , Proteínas de Ciclo Celular/genética , Dimerização , Células HCT116 , Células HeLa , Humanos , Interfase , Cinetocoros/metabolismo , Mitose , Proteínas Nucleares/genética
9.
Nature ; 613(7943): 345-354, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36599983

RESUMO

Understanding how a subset of expressed genes dictates cellular phenotype is a considerable challenge owing to the large numbers of molecules involved, their combinatorics and the plethora of cellular behaviours that they determine1,2. Here we reduced this complexity by focusing on cellular organization-a key readout and driver of cell behaviour3,4-at the level of major cellular structures that represent distinct organelles and functional machines, and generated the WTC-11 hiPSC Single-Cell Image Dataset v1, which contains more than 200,000 live cells in 3D, spanning 25 key cellular structures. The scale and quality of this dataset permitted the creation of a generalizable analysis framework to convert raw image data of cells and their structures into dimensionally reduced, quantitative measurements that can be interpreted by humans, and to facilitate data exploration. This framework embraces the vast cell-to-cell variability that is observed within a normal population, facilitates the integration of cell-by-cell structural data and allows quantitative analyses of distinct, separable aspects of organization within and across different cell populations. We found that the integrated intracellular organization of interphase cells was robust to the wide range of variation in cell shape in the population; that the average locations of some structures became polarized in cells at the edges of colonies while maintaining the 'wiring' of their interactions with other structures; and that, by contrast, changes in the location of structures during early mitotic reorganization were accompanied by changes in their wiring.


Assuntos
Células-Tronco Pluripotentes Induzidas , Espaço Intracelular , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Análise de Célula Única , Conjuntos de Dados como Assunto , Interfase , Forma Celular , Mitose , Polaridade Celular , Sobrevivência Celular
10.
Nature ; 613(7944): 575-581, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36599981

RESUMO

Understanding how the nuclear pore complex (NPC) is assembled is of fundamental importance to grasp the mechanisms behind its essential function and understand its role during the evolution of eukaryotes1-4. There are at least two NPC assembly pathways-one during the exit from mitosis and one during nuclear growth in interphase-but we currently lack a quantitative map of these events. Here we use fluorescence correlation spectroscopy calibrated live imaging of endogenously fluorescently tagged nucleoporins to map the changes in the composition and stoichiometry of seven major modules of the human NPC during its assembly in single dividing cells. This systematic quantitative map reveals that the two assembly pathways have distinct molecular mechanisms, in which the order of addition of two large structural components, the central ring complex and nuclear filaments are inverted. The dynamic stoichiometry data was integrated to create a spatiotemporal model of the NPC assembly pathway and predict the structures of postmitotic NPC assembly intermediates.


Assuntos
Complexo de Proteínas Formadoras de Poros Nucleares , Poro Nuclear , Humanos , Interfase , Mitose , Poro Nuclear/química , Poro Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/química , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Espectrometria de Fluorescência
11.
Nature ; 618(7967): 1041-1048, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37165191

RESUMO

Complex genome rearrangements can be generated by the catastrophic pulverization of missegregated chromosomes trapped within micronuclei through a process known as chromothripsis1-5. As each chromosome contains a single centromere, it remains unclear how acentric fragments derived from shattered chromosomes are inherited between daughter cells during mitosis6. Here we tracked micronucleated chromosomes with live-cell imaging and show that acentric fragments cluster in close spatial proximity throughout mitosis for asymmetric inheritance by a single daughter cell. Mechanistically, the CIP2A-TOPBP1 complex prematurely associates with DNA lesions within ruptured micronuclei during interphase, which poises pulverized chromosomes for clustering upon mitotic entry. Inactivation of CIP2A-TOPBP1 caused acentric fragments to disperse throughout the mitotic cytoplasm, stochastically partition into the nucleus of both daughter cells and aberrantly misaccumulate as cytoplasmic DNA. Mitotic clustering facilitates the reassembly of acentric fragments into rearranged chromosomes lacking the extensive DNA copy-number losses that are characteristic of canonical chromothripsis. Comprehensive analysis of pan-cancer genomes revealed clusters of DNA copy-number-neutral rearrangements-termed balanced chromothripsis-across diverse tumour types resulting in the acquisition of known cancer driver events. Thus, distinct patterns of chromothripsis can be explained by the spatial clustering of pulverized chromosomes from micronuclei.


Assuntos
Cromossomos Humanos , Cromotripsia , Micronúcleos com Defeito Cromossômico , Mitose , Humanos , Centrômero , Cromossomos Humanos/genética , DNA/genética , DNA/metabolismo , Variações do Número de Cópias de DNA , Interfase , Mitose/genética , Neoplasias/genética
12.
Nature ; 620(7972): 209-217, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37438531

RESUMO

The human genome functions as a three-dimensional chromatin polymer, driven by a complex collection of chromosome interactions1-3. Although the molecular rules governing these interactions are being quickly elucidated, relatively few proteins regulating this process have been identified. Here, to address this gap, we developed high-throughput DNA or RNA labelling with optimized Oligopaints (HiDRO)-an automated imaging pipeline that enables the quantitative measurement of chromatin interactions in single cells across thousands of samples. By screening the human druggable genome, we identified more than 300 factors that influence genome folding during interphase. Among these, 43 genes were validated as either increasing or decreasing interactions between topologically associating domains. Our findings show that genetic or chemical inhibition of the ubiquitous kinase GSK3A leads to increased long-range chromatin looping interactions in a genome-wide and cohesin-dependent manner. These results demonstrate the importance of GSK3A signalling in nuclear architecture and the use of HiDRO for identifying mechanisms of spatial genome organization.


Assuntos
Cromatina , Posicionamento Cromossômico , Cromossomos Humanos , Genoma Humano , Quinases da Glicogênio Sintase , Ensaios de Triagem em Larga Escala , Análise de Célula Única , Humanos , Cromatina/efeitos dos fármacos , Cromatina/genética , Cromatina/metabolismo , Posicionamento Cromossômico/efeitos dos fármacos , Cromossomos Humanos/efeitos dos fármacos , Cromossomos Humanos/genética , Cromossomos Humanos/metabolismo , DNA/análise , DNA/metabolismo , Genoma Humano/efeitos dos fármacos , Genoma Humano/genética , Quinases da Glicogênio Sintase/antagonistas & inibidores , Quinases da Glicogênio Sintase/deficiência , Quinases da Glicogênio Sintase/genética , Ensaios de Triagem em Larga Escala/métodos , Interfase , Reprodutibilidade dos Testes , RNA/análise , RNA/metabolismo , Transdução de Sinais/efeitos dos fármacos , Análise de Célula Única/métodos , Coesinas
13.
Mol Cell ; 81(21): 4377-4397.e12, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34478647

RESUMO

Structural heterogeneity of nucleosomes in functional chromosomes is unknown. Here, we devise the template-, reference- and selection-free (TRSF) cryo-EM pipeline to simultaneously reconstruct cryo-EM structures of protein complexes from interphase or metaphase chromosomes. The reconstructed interphase and metaphase nucleosome structures are on average indistinguishable from canonical nucleosome structures, despite DNA sequence heterogeneity, cell-cycle-specific posttranslational modifications, and interacting proteins. Nucleosome structures determined by a decoy-classifying method and structure variability analyses reveal the nucleosome structural variations in linker DNA, histone tails, and nucleosome core particle configurations, suggesting that the opening of linker DNA, which is correlated with H2A C-terminal tail positioning, is suppressed in chromosomes. High-resolution (3.4-3.5 Å) nucleosome structures indicate DNA-sequence-independent stabilization of superhelical locations ±0-1 and ±3.5-4.5. The linker histone H1.8 preferentially binds to metaphase chromatin, from which chromatosome cryo-EM structures with H1.8 at the on-dyad position are reconstituted. This study presents the structural characteristics of nucleosomes in chromosomes.


Assuntos
Cromossomos/química , Interfase , Metáfase , Nucleossomos/metabolismo , Animais , Comunicação Celular , Ciclo Celular , Divisão Celular , Cromatina/química , Simulação por Computador , Microscopia Crioeletrônica , DNA/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Nucleossomos/química , Conformação Proteica , Domínios Proteicos , Processamento de Proteína Pós-Traducional , Xenopus
15.
Cell ; 152(6): 1270-84, 2013 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-23498936

RESUMO

The architecture of interphase chromosomes is important for the regulation of gene expression and genome maintenance. Chromosomes are linearly segmented into hundreds of domains with different protein compositions. Furthermore, the spatial organization of chromosomes is nonrandom and is characterized by many local and long-range contacts among genes and other sequence elements. A variety of genome-wide mapping techniques have made it possible to chart these properties at high resolution. Combined with microscopy and computational modeling, the results begin to yield a more coherent picture that integrates linear and three-dimensional (3D) views of chromosome organization in relation to gene regulation and other nuclear functions.


Assuntos
Núcleo Celular/genética , Cromossomos/química , Interfase , Animais , Nucléolo Celular/metabolismo , Estruturas Cromossômicas , Cromossomos/metabolismo , Humanos , Lâmina Nuclear/metabolismo
16.
Cell ; 154(1): 47-60, 2013 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-23827674

RESUMO

During mitotic exit, missegregated chromosomes can recruit their own nuclear envelope (NE) to form micronuclei (MN). MN have reduced functioning compared to primary nuclei in the same cell, although the two compartments appear to be structurally comparable. Here we show that over 60% of MN undergo an irreversible loss of compartmentalization during interphase due to NE collapse. This disruption of the MN, which is induced by defects in nuclear lamina assembly, drastically reduces nuclear functions and can trigger massive DNA damage. MN disruption is associated with chromatin compaction and invasion of endoplasmic reticulum (ER) tubules into the chromatin. We identified disrupted MN in both major subtypes of human non-small-cell lung cancer, suggesting that disrupted MN could be a useful objective biomarker for genomic instability in solid tumors. Our study shows that NE collapse is a key event underlying MN dysfunction and establishes a link between aberrant NE organization and aneuploidy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Instabilidade Genômica , Neoplasias Pulmonares/patologia , Micronúcleos com Defeito Cromossômico , Membrana Nuclear/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Dano ao DNA , Humanos , Interfase , Laminas/metabolismo , Neoplasias Pulmonares/genética
17.
Nature ; 607(7919): 604-609, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35831506

RESUMO

Chromosome segregation errors during cell divisions generate aneuploidies and micronuclei, which can undergo extensive chromosomal rearrangements such as chromothripsis1-5. Selective pressures then shape distinct aneuploidy and rearrangement patterns-for example, in cancer6,7-but it is unknown whether initial biases in segregation errors and micronucleation exist for particular chromosomes. Using single-cell DNA sequencing8 after an error-prone mitosis in untransformed, diploid cell lines and organoids, we show that chromosomes have different segregation error frequencies that result in non-random aneuploidy landscapes. Isolation and sequencing of single micronuclei from these cells showed that mis-segregating chromosomes frequently also preferentially become entrapped in micronuclei. A similar bias was found in naturally occurring micronuclei of two cancer cell lines. We find that segregation error frequencies of individual chromosomes correlate with their location in the interphase nucleus, and show that this is highest for peripheral chromosomes behind spindle poles. Randomization of chromosome positions, Cas9-mediated live tracking and forced repositioning of individual chromosomes showed that a greater distance from the nuclear centre directly increases the propensity to mis-segregate. Accordingly, chromothripsis in cancer genomes9 and aneuploidies in early development10 occur more frequently for larger chromosomes, which are preferentially located near the nuclear periphery. Our findings reveal a direct link between nuclear chromosome positions, segregation error frequencies and micronucleus content, with implications for our understanding of tumour genome evolution and the origins of specific aneuploidies during development.


Assuntos
Aneuploidia , Posicionamento Cromossômico , Segregação de Cromossomos , Cromossomos , Proteína 9 Associada à CRISPR , Linhagem Celular , Linhagem Celular Tumoral , Segregação de Cromossomos/genética , Cromossomos/genética , Cromossomos/metabolismo , Cromotripsia , Crescimento e Desenvolvimento/genética , Humanos , Interfase , Micronúcleos com Defeito Cromossômico , Mitose , Neoplasias/genética , Neoplasias/patologia , Organoides/citologia , Organoides/metabolismo , Análise de Sequência de DNA , Análise de Célula Única
18.
Mol Cell ; 80(6): 1039-1054.e6, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33301732

RESUMO

Eukaryotic SMC complexes, cohesin, condensin, and Smc5/6, use ATP hydrolysis to power a plethora of functions requiring organization and restructuring of eukaryotic chromosomes in interphase and during mitosis. The Smc5/6 mechanism of action and its activity on DNA are largely unknown. Here we purified the budding yeast Smc5/6 holocomplex and characterized its core biochemical and biophysical activities. Purified Smc5/6 exhibits DNA-dependent ATP hydrolysis and SUMO E3 ligase activity. We show that Smc5/6 binds DNA topologically with affinity for supercoiled and catenated DNA templates. Employing single-molecule assays to analyze the functional and dynamic characteristics of Smc5/6 bound to DNA, we show that Smc5/6 locks DNA plectonemes and can compact DNA in an ATP-dependent manner. These results demonstrate that the Smc5/6 complex recognizes DNA tertiary structures involving juxtaposed helices and might modulate DNA topology by plectoneme stabilization and local compaction.


Assuntos
Proteínas de Ciclo Celular/genética , Complexos Multiproteicos/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Adenosina Trifosfatases/genética , Fenômenos Biofísicos , Proteínas de Ciclo Celular/ultraestrutura , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/ultraestrutura , Proteínas de Ligação a DNA/genética , Humanos , Interfase/genética , Mitose/genética , Complexos Multiproteicos/ultraestrutura , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Sumoilação/genética , Coesinas
19.
EMBO J ; 42(17): e109738, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37401899

RESUMO

The centrosome linker joins the two interphase centrosomes of a cell into one microtubule organizing center. Despite increasing knowledge on linker components, linker diversity in different cell types and their role in cells with supernumerary centrosomes remained unexplored. Here, we identified Ninein as a C-Nap1-anchored centrosome linker component that provides linker function in RPE1 cells while in HCT116 and U2OS cells, Ninein and Rootletin link centrosomes together. In interphase, overamplified centrosomes use the linker for centrosome clustering, where Rootletin gains centrosome linker function in RPE1 cells. Surprisingly, in cells with centrosome overamplification, C-Nap1 loss prolongs metaphase through persistent activation of the spindle assembly checkpoint indicated by BUB1 and MAD1 accumulation at kinetochores. In cells lacking C-Nap1, the reduction of microtubule nucleation at centrosomes and the delay in nuclear envelop rupture in prophase probably cause mitotic defects like multipolar spindle formation and chromosome mis-segregation. These defects are enhanced when the kinesin HSET, which normally clusters multiple centrosomes in mitosis, is partially inhibited indicating a functional interplay between C-Nap1 and centrosome clustering in mitosis.


Assuntos
Proteínas de Ciclo Celular , Centrossomo , Centrossomo/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Interfase/fisiologia , Mitose , Fuso Acromático/genética , Fuso Acromático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA