Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Molecules ; 27(3)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35163930

RESUMO

A number of studies have confirmed the relationship between constipation and gut microbiota. Additionally, many human and animal experiments have identified probiotics as effectors for the relief of constipation symptoms. In this study, probiotic compounds, including Lactobacillus acidophilus LA11-Onlly, Lacticaseibacillus rhamnosus LR22, Limosilactobacillus reuteri LE16, Lactiplantibacillus plantarum LP-Onlly, and Bifidobacterium animalis subsp. lactis BI516, were administered to mice with loperamide-induced constipation, and the impacts of these strains on constipation-related indicators and gut microbiota were evaluated. The effects of probiotic compounds on constipation relief were associated with various aspects, including gastrointestinal transit rate, number and weight of stools, serum and intestinal gastrointestinal regulatory hormones, and serum cytokines. Some of the probiotic compounds, including Limosilactobacillus reuteri, Lactiplantibacillus plantarum, and Lacticaseibacillus rhamnosus, were found to colonize the intestinal tract. Furthermore, higher dosages promoted the colonization of specific strains. This study yields a new perspective for the clinical use of probiotics to improve constipation symptoms by combining strains with different mechanisms for the alleviation of constipation.


Assuntos
Constipação Intestinal/tratamento farmacológico , Microbioma Gastrointestinal , Trato Gastrointestinal/efeitos dos fármacos , Probióticos/farmacologia , Animais , Constipação Intestinal/microbiologia , Citocinas/metabolismo , Fezes/microbiologia , Trato Gastrointestinal/microbiologia , Lactobacillus acidophilus/química , Lacticaseibacillus rhamnosus/química , Masculino , Camundongos , Camundongos Endogâmicos BALB C
2.
Food Microbiol ; 97: 103739, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33653518

RESUMO

The effect of bioprotective extracts (BEs) from Latilactobacillus curvatus CRL705 and Lactobacillus acidophilus CRL641 against Latilactobacillus sakei CRL1407 was evaluated in a refrigerated meat model system under vacuum and aerobic conditions at 4 and 10 °C. As shown by culturing, the BE-1 from L. acidophilus completely inhibited the spoilage strain, while that from Lat. Curvatus CRL705 (BE-2) and its combination with BE-1 exerted a bacteriostatic effect. The antimicrobial activity and exopolysaccharide production correlated with the efficacy of inhibitory treatment while final pH decrease was higher in control samples. When flow cytometry was applied, a lack of correlation with plate counting was found; counts under the detection limit for BE-1 at 21 and 28 days at 4 and 10 °C represented between 64.15 and 73.70% of dead cells. Thus, the concurrence of lactic acid bacteria as biocontrol agents and the use of more accurate tools to prevent the growth of deteriorating species will contribute to the extension of fresh meat shelf-life without quality loss.


Assuntos
Conservantes de Alimentos/farmacologia , Lactobacillaceae/efeitos dos fármacos , Lactobacillus acidophilus/química , Lactobacillus/química , Carne/microbiologia , Animais , Embalagem de Alimentos , Conservação de Alimentos/instrumentação , Conservação de Alimentos/métodos , Conservantes de Alimentos/química , Lactobacillaceae/crescimento & desenvolvimento , Lactobacillaceae/metabolismo , Refrigeração , Vácuo
3.
Appl Environ Microbiol ; 86(10)2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32169940

RESUMO

A longstanding awareness in generating resistance to common antimicrobial therapies by Gram-negative bacteria has made them a major threat to global health. The application of antimicrobial peptides as a therapeutic agent would be a great opportunity to combat bacterial diseases. Here, we introduce a new antimicrobial peptide (∼8.3 kDa) from probiotic strain Lactobacillus acidophilus ATCC 4356, designated acidocin 4356 (ACD). This multifunctional peptide exerts its anti-infective ability against Pseudomonas aeruginosa through an inhibitory action on virulence factors, bacterial killing, and biofilm degradation. Reliable performance over tough physiological conditions and low hemolytic activity confirmed a new hope for the therapeutic setting. Antibacterial kinetic studies using flow cytometry technique showed that the ACD activity is related to the change in permeability of the membrane. The results obtained from molecular dynamic (MD) simulation were perfectly suited to the experimental data of ACD behavior. The structure-function relationship of this natural compound, along with the results of transmission electron microscopy analysis and MD simulation, confirmed the ability of the ACD aimed at enhancing bacterial membrane perturbation. The peptide was effective in the treatment of P. aeruginosa infection in mouse model. The results support the therapeutic potential of ACD for the treatment of Pseudomonas infections.IMPORTANCE Multidrug-resistant bacteria are a major threat to global health, and the Pseudomonas bacterium with the ability to form biofilms is considered one of the main causative agents of nosocomial infections. Traditional antibiotics have failed because of increased resistance. Thus, finding new biocompatible antibacterial drugs is essential. Antimicrobial peptides are produced by various organisms as a natural defense mechanism against pathogens, inspiring the possible design of the next generation of antibiotics. In this study, a new antimicrobial peptide was isolated from Lactobacillus acidophilus ATCC 4356, counteracting both biofilm and planktonic cells of Pseudomonas aeruginosa A detailed investigation was then conducted concerning the functional mechanism of this peptide by using fluorescence techniques, electron microscopy, and in silico methods. The antibacterial and antibiofilm properties of this peptide may be important in the treatment of Pseudomonas infections.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Proteínas de Bactérias/farmacologia , Lactobacillus acidophilus/química , Pseudomonas aeruginosa/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Cinética , Simulação de Dinâmica Molecular , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/patogenicidade , Pseudomonas aeruginosa/fisiologia , Virulência/efeitos dos fármacos
4.
Nutr Cancer ; 72(8): 1390-1399, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31707847

RESUMO

Many beneficial effects of probiotic Lactobacilli on cancer prevention and therapy were previously presented. So finding probiotics with proapoptotic activities is a promising approach for cancer drug discovery. Here, the antiproliferative and antioxidant activities of cell-free extracts of Lactobacillus acidophilus and Lactobacillus delbrueckii on HT-29 cell line were evaluated employing MTT and DPPH assays. The induction of apoptosis was assessed by Hoechst staining and flow cytometry analysis which was further confirmed by expression analysis of BCL-2, BAX, caspase-3, caspase-8, and caspase-9 genes using real-time quantitative PCR. Caspase-3 activity was also analyzed. Results showed that cell viability was significantly reduced to 42.2 ± 0.01% and 19.40 ± 0.01% by 5 and 8 mg ml-1 of L. acidophilus and L. delbrueckii extracts, respectively. Apoptosis induction was shown with both bacterial extracts. Caspase-9 and caspase-3 overexpression as well as Bax/Bcl-2 ratio increase revealed the ability of both probiotics to induce intrinsic pathway-dependent apoptosis. The extrinsic pathway was also activated by L. acidophilus. At the concentration of 198 µg ml-1, L. acidophilus and L. delbrueckii had a DPPH scavenging activity of 59.37 ± 3.97% and 71.19 ± 3.64%, respectively. Taken together, these findings provide evidence for antiproliferative, proapoptotic, and antioxidant effects driven by these probiotic lactic acid bacteria (LAB) strains.


Assuntos
Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Neoplasias do Colo/tratamento farmacológico , Lactobacillus acidophilus/química , Lactobacillus delbrueckii/química , Probióticos/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Células HT29 , Humanos
5.
Anal Bioanal Chem ; 411(29): 7737-7745, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31713014

RESUMO

A newly developed molecularly imprinted photonic polymer (MIPP) film, which was prepared by colloidal crystal templating and surface molecular imprinting, was used for selective capture of S-layer protein (SLP) from a complex Lactobacillus acidophilus sample. The colloidal crystal templates were formed by a dipping process followed by chemical binding of the imprinted template SLP molecules. A sandwich structure consisting of two glass slides was formed after the SLP-silica layer had been covered with a poly(methyl methacrylate) glass slide. After polymerization of the SLP-silica layer with the preprepared polymerization solution, hydrofluoric acid and acetic phosphate buffer solutions removed the silica particles and SLP molecules, respectively. The MIPP film obtained exhibited a three-dimensional, highly ordered and interconnected macroporous structure (pore size greater than 200 nm), which is specifically accessible to SLP molecules. The adsorbed SLP molecules were simply and straightforwardly detected by a fiber-optic spectrometer. The redshift of the Bragg diffraction peak of the MIPP film was linearly related to the number of SLP molecules that had been harvested in the film. The detection limit of the SLP-MMIP-fiber-optic spectrometer method for SLP was 1 ng mL-1. The MIPP sensor was successfully applied to detect SLP molecules in a crudely extracted Lactobacillus acidophilus sample. Our results prove the applicability of the SLP-MIPP film for fast and real-time measurement of SLP. Graphical abstract.


Assuntos
Proteínas de Bactérias/análise , Tecnologia de Fibra Óptica , Glicoproteínas de Membrana/análise , Impressão Molecular , Fótons , Polímeros/química , Análise Espectral/instrumentação , Lactobacillus acidophilus/química , Limite de Detecção
6.
J Dairy Sci ; 101(2): 889-899, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29248229

RESUMO

Breastfeeding is one of the major factors affecting the early development of the infant gut microbiota, and weaning is associated with a shift in the gut microbiota toward a more adult composition. Through breastfeeding, infants receive bioactive components that shape their microbiota while also being exposed to the breast milk and breast surface microbial communities. Recent studies have suggested the possibility of an entero-mammary route of microbial transfer, opening the possibility of infant gut microbiota modulation through maternal probiotic supplementation. In this study, we have analyzed breast milk samples collected at 10 d and 3 mo postpartum from women participating in the Probiotics in the Prevention of Allergy among Children in Trondheim placebo controlled trial. Women who were randomized to the probiotic arm of the Probiotics in the Prevention of Allergy among Children in Trondheim trial received a fermented milk supplemented with Lactobacillus rhamnosus GG, Lactobacillus acidophilus La-5, and Bifidobacterium animalis ssp. lactis Bb-12, consuming this daily from 4 wk before their expected due date until 3 mo after birth. In total, 472 breast milk samples were assessed for the administered bacteria using quantitative real-time PCR and the microbiota transferred during breastfeeding was analyzed using 16S ribosomal RNA gene sequencing of 142 samples. We found that breastfeeding is unlikely to be a significant source of L. rhamnosus GG, L. acidophilus La-5, and B. animalis ssp. lactis Bb-12 for infants in the probiotic arm of the trial. Furthermore, maternal supplementation did not significantly affect the overall composition of the breast milk microbiota transferred during breastfeeding. We also present a descriptive analysis of this microbiota, which was largely dominated by Streptococcus and Staphylococcus genera at both 10 d and 3 mo postpartum. Samples collected at 3 mo postpartum had a statistically significant lower presence and relative abundance of the Staphylococcus genus. These samples also had a greater number of observed species and diversity, including more operational taxonomic units from the Rothia, Veillonella, Granulicatella, and Methylbacterium genera.


Assuntos
Bifidobacterium animalis/química , Aleitamento Materno , Lacticaseibacillus rhamnosus/química , Lactobacillus acidophilus/química , Microbiota , Leite Humano/microbiologia , Probióticos/administração & dosagem , Adulto , Bactérias/classificação , Dermatite Atópica/epidemiologia , Feminino , Humanos , Incidência , Noruega/epidemiologia , Período Pós-Parto
7.
J Dairy Sci ; 101(2): 900-911, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29224862

RESUMO

This study aimed to investigate in vitro anticancer activity by antiproliferative activity, antihypertensive activity by angiotensin-converting enzyme inhibition, antidiabetic activity by α-amylase and α-glucosidase inhibitions, and antioxidant activities of camel milk fermented with camel milk probiotic compared with fermented bovine milk. The camel milk probiotic strain Lactococcus lactis KX881782 (Lc.K782) and control Lactobacillus acidophilus DSM9126 (La.DSM) were used to prepare fermented camel and bovine milks separately. The proteolytic activities of water-soluble extract (WSE) in all fermented camel milk were higher than those in fermented bovine milk. The α-glucosidase inhibitions in both milk types fermented by Lc.K782 ranged from 30 to 40%. Camel milk fermented by Lc.K782 had the highest antioxidant activity by 2,2'-azino-bis(3-ethylbenzo-thiazoline-6-sulphonic acid). The highest angiotensin-converting enzyme inhibition of WSE in camel milk fermented by Lc.K782 was >80%. The proliferations of Caco-2, MCF-7, and HELA cells were more inhibited when treated with WSE of fermented camel milk extracts.


Assuntos
Anti-Hipertensivos/farmacologia , Antineoplásicos/farmacologia , Antioxidantes/metabolismo , Hipoglicemiantes/farmacologia , Lactococcus lactis/química , Leite/química , Animais , Células CACO-2 , Camelus , Bovinos , Proliferação de Células/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Fermentação , Células HeLa , Humanos , Lactobacillus acidophilus/química , Células MCF-7 , Leite/microbiologia , Probióticos/administração & dosagem , Probióticos/farmacologia
8.
J Microencapsul ; 35(7-8): 705-719, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30719943

RESUMO

The present study aimed to optimise the microencapsulation of Lactobacillus acidophilus La-05 by spray drying, using soy extract and maltodextrin as encapsulants. Air inlet temperature, maltodextrin/soy extract ratio and feed flow rate were investigated through Central Composite Rotational Design (CCRD). Probiotic viability increased with increasing the proportion of soy extract. Temperature and feed flow rate had a negative effect. Particle diameter ranged from 4.97 to 8.82 µm, water activity from 0.25 to 0.52 and moisture from 2.30 to 7.01 g.100g-1 Particles produced following the optimised conditions (air temperature of 87 °C, maltodextrin/soy extract ratio of 2:3 w.w-1, feed flow rate of 0.54 L.h-1) reached Encapsulation yield (EY) of 83%. Thermogravimetry and FTIR analysis suggested that microcapsules could protect L. acidophilus cells against dehydration and heating. During storage, microencapsulated probiotic had high cell viability (reductions ranged between 0.12 and 1.72 log cycles). Soy extract/maltodextrin presented well-encapsulating properties of Lactobacillus acidophilus La-05.


Assuntos
Glycine max/química , Lactobacillus acidophilus/citologia , Extratos Vegetais/química , Polissacarídeos/química , Probióticos , Cápsulas/química , Células Imobilizadas/química , Células Imobilizadas/citologia , Dessecação , Composição de Medicamentos/métodos , Lactobacillus acidophilus/química , Viabilidade Microbiana , Probióticos/química
9.
J Basic Microbiol ; 57(9): 744-751, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28736866

RESUMO

Bacteriocins from lactic acid bacteria (LAB) are useful to control the persistent development of pathogenic microorganisms in food and medicine fields. The bacteriocin acidocin was extracted from Lactobacillus acidophilus M1 that was isolated from fermented milk, purified using ammonium sulphate fractionation, and gel filtration column chromatography using Sephadex matrix and applied as a potential antibacterial agent. The molecular weight of the purified acidocin was estimated using SDS-PAGE to be 6.6 kDa. The acidocin was compared with silver nanoparticles (SNPs), biosynthesized by Aspergillus brasiliensis (niger) ATCC 16404, against two bacterial strains Bacillus cereus ATCC 14579 and Staphylococcus aureus ATCC 25923. Both acidocin and SNPs showed significance antibacterial effects using disc and well diffusion methods; the maximum antibacterial activity was proved against B. cereus from acidocin/SNPs composite using a ratio of 1/1 from each agent. The application of acidocin/SNPs composite as immersion solution, for disinfecting chicken eggshells, resulted in remarkable reduction in microbial load on the shells of 5.53 log10 CFU/eggshell. Results could provide an eco-friendly approach for potential antimicrobial composites to be used in food preservation and other health protection researches.


Assuntos
Antibacterianos/farmacologia , Bacteriocinas/farmacologia , Casca de Ovo/efeitos dos fármacos , Microbiologia de Alimentos , Nanopartículas Metálicas , Prata , Animais , Antibacterianos/química , Antibacterianos/isolamento & purificação , Bacillus cereus/efeitos dos fármacos , Carga Bacteriana/efeitos dos fármacos , Bacteriocinas/química , Bacteriocinas/isolamento & purificação , Casca de Ovo/microbiologia , Conservação de Alimentos , Concentração de Íons de Hidrogênio , Lactobacillus acidophilus/química , Lactobacillus acidophilus/metabolismo , Staphylococcus aureus/efeitos dos fármacos
10.
J Sci Food Agric ; 97(12): 4204-4209, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28244103

RESUMO

BACKGROUND: Surface-layer proteins (SLP) have been found in the outermost layer of the cell wall in many types of lactobacillus are considered to be an important factor with respect to intestinal immunity. RESULTS: The present study compared the effects of SLP extracted by different concentrations of LiCl and carbamide, and subsequently identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, circular dichroism and differential scanning calorimetry. Furthermore, RAW 264.7 cells were used to evaluate the immunomodulatory effects of SLP. SLP were derived from Lactobacillus acidophilus CICC6074 with a molecular weight of 46 kDa, and consisted of 16.9% α-helix, 42.3% ß-sheet, 20.8% ß-turns and 22.5% random coils. SLP promoted NO secretion and higher quantities of NO were produced as the SLP concentrations increased. SLP concentrations over 50 µg mL-1 significantly decreased the amount of tumor necrosis factor-α secreted by RAW264.7 cells. CONCLUSION: SLP can trigger immunomodulatory effects in RAW 264.7 cells. This provides crucial information that will enable the further use of L. acidophilus in food, medicine and other products. © 2017 Society of Chemical Industry.


Assuntos
Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/farmacologia , Fatores Imunológicos/isolamento & purificação , Fatores Imunológicos/farmacologia , Lactobacillus acidophilus/química , Glicoproteínas de Membrana/isolamento & purificação , Glicoproteínas de Membrana/farmacologia , Animais , Proteínas de Bactérias/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Glicoproteínas de Membrana/imunologia , Camundongos , Células RAW 264.7
11.
Appl Environ Microbiol ; 82(9): 2676-2685, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26921419

RESUMO

Bacterial surface layers (S-layers) are crystalline arrays of self-assembling proteinaceous subunits called S-layer proteins (Slps) that comprise the outermost layer of the cell envelope. Many additional proteins that are associated with or embedded within the S-layer have been identified in Lactobacillus acidophilus NCFM, an S-layer-forming bacterium that is widely used in fermented dairy products and probiotic supplements. One putative S-layer-associated protein (SLAP), LBA0191, was predicted to mediate adhesion to fibronectin based on the in silico detection of a fibronectin-binding domain. Fibronectin is a major component of the extracellular matrix (ECM) of intestinal epithelial cells. Adhesion to intestinal epithelial cells is considered an important trait for probiotic microorganisms during transit and potential association with the intestinal mucosa. To investigate the functional role of LBA0191 (designated FbpB) in L. acidophilus NCFM, an fbpB-deficient strain was constructed. The L. acidophilus mutant with a deletion off bpB lost the ability to adhere to mucin and fibronectin in vitro Homologues off bpB were identified in five additional putative S-layer-forming species, but no homologues were detected in species outside theL. acidophilus homology group.


Assuntos
Proteínas de Bactérias/metabolismo , Fibronectinas/metabolismo , Lactobacillus acidophilus/metabolismo , Glicoproteínas de Membrana/metabolismo , Aderência Bacteriana/fisiologia , Proteínas de Bactérias/química , Intestinos/microbiologia , Lactobacillus acidophilus/química , Lactobacillus acidophilus/genética , Mutação , Filogenia , Ligação Proteica
12.
Appl Environ Microbiol ; 82(1): 134-45, 2016 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-26475115

RESUMO

The Lactobacillus acidophilus homology group comprises Gram-positive species that include L. acidophilus, L. helveticus, L. crispatus, L. amylovorus, L. gallinarum, L. delbrueckii subsp. bulgaricus, L. gasseri, and L. johnsonii. While these bacteria are closely related, they have varied ecological lifestyles as dairy and food fermenters, allochthonous probiotics, or autochthonous commensals of the host gastrointestinal tract. Bacterial cell surface components play a critical role in the molecular dialogue between bacteria and interaction signaling with the intestinal mucosa. Notably, the L. acidophilus complex is distinguished in two clades by the presence or absence of S-layers, which are semiporous crystalline arrays of self-assembling proteinaceous subunits found as the outermost layer of the bacterial cell wall. In this study, S-layer-associated proteins (SLAPs) in the exoproteomes of various S-layer-forming Lactobacillus species were proteomically identified, genomically compared, and transcriptionally analyzed. Four gene regions encoding six putative SLAPs were conserved in the S-layer-forming Lactobacillus species but not identified in the extracts of the closely related progenitor, L. delbrueckii subsp. bulgaricus, which does not produce an S-layer. Therefore, the presence or absence of an S-layer has a clear impact on the exoproteomic composition of Lactobacillus species. This proteomic complexity and differences in the cell surface properties between S-layer- and non-S-layer-forming lactobacilli reveal the potential for SLAPs to mediate intimate probiotic interactions and signaling with the host intestinal mucosa.


Assuntos
Proteínas de Bactérias/química , Lactobacillus/genética , Glicoproteínas de Membrana/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Lactobacillus/química , Lactobacillus/classificação , Lactobacillus/metabolismo , Lactobacillus acidophilus/química , Lactobacillus acidophilus/genética , Lactobacillus acidophilus/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Dados de Sequência Molecular , Filogenia , Proteômica
13.
Cell Mol Biol (Noisy-le-grand) ; 62(10): 1-6, 2016 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-27609467

RESUMO

Low proliferation rate and unwanted differentiation of bone marrow-derived stromal cells (rBMSCs) during the frequent passages have limited the use of such cells in clinical cell therapy. Recently, the researchers have focused on the effects of the components produced by some bacteria on proliferation of the stem cells. In this study, we discussed the possible effects of the Lactobacillus acidophilus supernatant on proliferation and differentiation of the rBMSCs. For this aim, the cells were isolated from rat bone marrow, characterized by culturing on tissue specific differentiation media and stained. The cells (passage two) were treated with different concentrations of the L. acidophilus supernatant (0, 0.1, 0.3, 0.9, 3, 9 and 30 &mgr;l/ml) for 14 days. The proliferation and differentiation capacity of the cells were then determined by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT assay) and tissue specific staining. The results showed a positive effect of the supernatant on the cell proliferation in 3 and 9 &mgr;l/ml concentrations, while did not affect the differentiation capacity of the rBMSCs. The current study strongly suggests the L. acidophilus supernatant as an alternative material that could be added to the media with aim of improvement in the proliferation rate of the rBMSCs without affecting their differentiation capacity.


Assuntos
Diferenciação Celular , Lactobacillus acidophilus/química , Células-Tronco Mesenquimais/citologia , Adipogenia , Animais , Linhagem da Célula , Proliferação de Células , Ratos Sprague-Dawley
14.
J Dairy Sci ; 99(7): 5039-5046, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27108169

RESUMO

To evaluate the safety and efficacy of prolonged ingestion of Lactobacillus acidophilus L-92 (L-92) on skin symptoms in adult atopic dermatitis (AD) patients, a placebo-controlled double-blinded parallel-group comparison study was performed. This included daily administration of heat-killed and dried L-92 or placebo for 24wk in 50 AD patients who were 16yr old or older. The severity of skin symptoms was evaluated at baseline and at 4, 8, 12, 16, 20, and 24wk during the intervention using the investigator global assessment, eczema area and severity index, and scoring atopic dermatitis. Serum cytokine and blood marker levels were also measured at baseline and at 4, 8, 16, and 24wk during the intervention. No adverse events were reported during the study period. Compared with the placebo group, the L-92 group showed significant decreases in investigator global assessment, eczema area and severity index, and scoring atopic dermatitis. Subjective symptoms in adult AD patients were reduced by intake of L-92. Furthermore, it was suggested that sustained ingestion of L-92 resulted in suppression of scratching behavior and maintenance of remission status of skin symptoms. Sixteen weeks after the study commenced, a significant decrease in lactate dehydrogenase and a significant increase in transforming growth factor-ß were observed in the L-92 group compared with the placebo group. In the L-92 group, a significant elevation of IL-12 (p70) level at the end of treatment period compared with before the treatment was observed. This study suggested that L-92 suppresses type-2-helper-T-cell-dominant inflammation by activating regulatory T cells and type 1 helper T cells.


Assuntos
Citocinas/efeitos dos fármacos , Dermatite Atópica/tratamento farmacológico , Lactobacillus acidophilus/química , Probióticos/uso terapêutico , Adolescente , Adulto , Idoso , Biomarcadores/análise , Dermatite Atópica/microbiologia , Método Duplo-Cego , Feminino , Humanos , Japão , Masculino , Pessoa de Meia-Idade , Probióticos/efeitos adversos , Resultado do Tratamento , Adulto Jovem
15.
J Dairy Sci ; 99(7): 5008-5021, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27157575

RESUMO

We conducted a randomized double-blind, placebo-controlled multicentric study to investigate the influence of a synbiotic fermented milk on the fecal microbiota composition of 30 adults with irritable bowel syndrome (IBS). The synbiotic product contained Lactobacillus acidophilus La-5, Bifidobacterium animalis ssp. lactis BB-12, Streptococcus thermophilus, and dietary fiber (90% inulin, 10% oligofructose), and a heat-treated fermented milk without probiotic bacteria or dietary fiber served as placebo. Stool samples were collected after a run-in period, a 4-wk consumption period, and a 1-wk follow-up period, and were subjected to real-time PCR and 16S rDNA profiling by next-generation sequencing. After 4wk of synbiotic (11 subjects) or placebo (19 subjects) consumption, a greater increase in DNA specific for L. acidophilus La-5 and Bifidobacterium animalis ssp. lactis was detected in the feces of the synbiotic group compared with the placebo group by quantitative real-time PCR. After 1wk of follow-up, the content of L. acidophilus La-5 and B. animalis ssp. lactis decreased to levels close to initial levels. No significant changes with time or differences between the groups were observed for Lactobacillus, Enterobacteriaceae, Bifidobacterium, or all bacteria. The presence of viable BB-12- and La-5-like bacteria in the feces resulting from the intake of synbiotic product was confirmed by random amplification of polymorphic DNA (RAPD)-PCR. At the end of consumption period, the feces of all subjects assigned to the synbiotic group contained viable bacteria with a BB-12-like RAPD profile, and after 1wk of follow-up, BB-12-like bacteria remained in the feces of 87.5% of these subjects. The presence of La-5-like colonies was observed less frequently (37.5 and 25% of subjects, respectively). Next-generation sequencing of 16S rDNA amplicons revealed that only the percentage of sequences assigned to Strep. thermophilus was temporarily increased in both groups, whereas the global profile of the fecal microbiota of patients was not altered by consumption of the synbiotic or placebo. In conclusion, daily consumption of a synbiotic fermented milk had a short-term effect on the amount and proportion of La-5-like strains and B. animalis ssp. lactis in the fecal microbiome of IBS patients. Furthermore, both synbiotic and placebo products caused a temporary increase in fecal Strep. thermophilus.


Assuntos
Bifidobacterium animalis/química , Produtos Fermentados do Leite/microbiologia , Fibras na Dieta/administração & dosagem , Síndrome do Intestino Irritável/tratamento farmacológico , Lactobacillus acidophilus/química , Simbióticos/administração & dosagem , Adolescente , Adulto , Idoso , Croácia , DNA Bacteriano/genética , Método Duplo-Cego , Fezes/microbiologia , Humanos , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase em Tempo Real , Eslovênia , Streptococcus thermophilus/química , Adulto Jovem
16.
Fish Shellfish Immunol ; 42(2): 533-8, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25514375

RESUMO

The present study evaluates the effects of different levels of dietary Lactobacillus acidophilus as feed supplement on intestinal microbiota, skin mucus immune parameters and salinity stress resistance as well as growth performance of black swordtail (Xiphophorus helleri). One-thousand and eight hundred healthy black swordtail larvae (0.03 ± 0.001 g) were randomly distributed in 12 tanks (100 L) at a density of 150 fish per aquaria and fed different levels of dietary L. acidophilus (0, 1.5 × 10(8), 3 × 10(8) and 6 × 10(8) CFU g(-1)) for 10 weeks. At the end of trial, there were significant differences among antibacterial activity of skin mucus in probiotic fed fish and control group (P < 0.05). Furthermore, the skin mucus protein level and alkaline phosphatase activity in control group were significantly lower than those of L. acidophilus fed fish (P < 0.05). Microbiological assessments revealed that feeding with probiotic supplemented diet remarkably increased total autochthonous bacteria and autochthonous lactic acid bacteria levels (P < 0.05). The results showed that dietary administration of L. acidophilus significantly elevated black swordtail resistance against salinity stress (i.e survival %) (P < 0.05). Also, dietary administration of different levels of L. acidophilus improved weight gain, SGR, FCR compared to fish fed unsupplemented diet (P < 0.05). These results demonstrate beneficial effects of dietary L. acidophilus on mucosal immune parameters, intestinal microbiota, stress resistance and growth parameters of black swordtail and the appropriate inclusion is 6 × 10(8) CFU g(-1).


Assuntos
Ciprinodontiformes/fisiologia , Dieta/veterinária , Imunidade nas Mucosas , Intestinos/microbiologia , Lactobacillus acidophilus/química , Probióticos , Estresse Fisiológico , Ração Animal/análise , Animais , Ciprinodontiformes/crescimento & desenvolvimento , Ciprinodontiformes/imunologia , Microbiota , Pele/imunologia
17.
Pol J Microbiol ; 64(3): 307-10, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26638541

RESUMO

This paper presents a description of an experiment in which the survival rate of the probiotic bacteria Lactobacillus acidophilus PCM2499 was increased only due to the presence of Fe3O4 magnetic nanoparticles. The survival rate increased from 1.3 to 10 times compare to the control. It has been shown that the minimum concentration of NPs with a positive effect equals 8 mg/ml and the maximum concentration of the NPs equals 24 mg/ml.


Assuntos
Lactobacillus acidophilus/crescimento & desenvolvimento , Nanopartículas de Magnetita/química , Viabilidade Microbiana , Probióticos/química , Meios de Cultura/química , Concentração de Íons de Hidrogênio , Lactobacillus acidophilus/química
18.
BMC Microbiol ; 14: 199, 2014 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-25070625

RESUMO

BACKGROUND: Adhesiveness to intestinal epithelium, beneficial immunomodulating effects and the production of pathogen-inhibitory compounds are generally considered as beneficial characteristics of probiotic organisms. We showed the potential health-promoting properties and the mechanisms of probiotic action of seven swine intestinal Lactobacillus amylovorus isolates plus the type strain (DSM 20531T) by investigating their adherence to porcine intestinal epithelial cells (IPEC-1) and mucus as well as the capacities of the strains to i) inhibit the adherence of Escherichia coli to IPEC-1 cells, ii) to produce soluble inhibitors against intestinal pathogens and iii) to induce immune signaling in dendritic cells (DCs). Moreover, the role of the L. amylovorus surface (S) -layers - symmetric, porous arrays of identical protein subunits present as the outermost layer of the cell envelope - in adherence to IPEC-1 cells was assessed using a novel approach which utilized purified cell wall fragments of the strains as carriers for the recombinantly produced S-layer proteins. RESULTS: Three of the L. amylovorus strains studied adhered to IPEC-1 cells, while four strains inhibited the adherence of E. coli, indicating additional mechanisms other than competition for binding sites being involved in the inhibition. None of the strains bound to porcine mucus. The culture supernatants of all of the strains exerted inhibitory effects on the growth of E. coli, Salmonella, Listeria and Yersinia, and a variable, strain-dependent induction was observed of both pro- and anti-inflammatory cytokines in human DCs. L. amylovorus DSM 16698 was shown to carry two S-layer-like proteins on its surface in addition to the major S-layer protein SlpA. In contrast to expectations, none of the major S-layer proteins of the IPEC-1 -adhering strains mediated bacterial adherence. CONCLUSIONS: We demonstrated adhesive and significant pathogen inhibitory efficacies among the swine intestinal L. amylovorus strains studied, pointing to their potential use as probiotic feed supplements, but no independent role could be demonstrated for the major S-layer proteins in adherence to epithelial cells. The results indicate that many intestinal bacteria may coexist with and confer benefits to the host by mechanisms not attributable to adhesion to epithelial cells or mucus.


Assuntos
Antibiose , Aderência Bacteriana , Lactobacillus acidophilus/química , Lactobacillus acidophilus/fisiologia , Glicoproteínas de Membrana/análise , Glicoproteínas de Membrana/farmacologia , Probióticos , Animais , Células Cultivadas , Células Epiteliais/microbiologia , Escherichia coli/fisiologia , Intestinos/microbiologia , Lactobacillus acidophilus/isolamento & purificação , Listeria/crescimento & desenvolvimento , Muco/microbiologia , Salmonella/crescimento & desenvolvimento , Suínos , Yersinia/crescimento & desenvolvimento
19.
Exp Parasitol ; 146: 52-63, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25300763

RESUMO

Trials for identifying efficient anti-giardial agents are still ongoing. Nowadays, bacteriocins have attracted the attention as potential antimicrobial compounds. For the first time, the current study evaluated the therapeutic efficacy of bacteriocins derived from newly isolated Egyptian strains of probiotics Lactobacilli; L. acidophilus (P106) and L. plantarum (P164) against Giardia lamblia. Bacteriocins' efficacy was evaluated both in vitro; by growth inhibition and adherence assays, and in vivo; through estimation of parasite density, intestinal histopathological examination and ultrastructural analysis of Giardia trophozoites. In vivo bacteriocins' clinical safety was assessed. In vitro results proved that 50 µg of L. acidophilus bacteriocin induced reduction of the mean Giardia lamblia trophozoites by 58.3 ± 4.04%, while at lower concentrations of 10 and 20 µg of both L. acidophilus and L. plantarum, non significant reduction of the mean parasite density was achieved. In vitro trophozoites adherence was susceptible to the tested bacteriocins at all studied concentrations with variable degrees, while the highest adherence reduction was demonstrated using 50 µg of L acidophilus bacteriocin. In vivo, oral inoculation of 50 µg/mouse L. acidophilus bacteriocin for 5 successive days resulted in a noteworthy decline of the intestinal parasite density, along with amelioration of intestinal pathology of infected mice. Ultrastructural examination proved thatfive doses of L. acidophilus bacteriocin showed marked changes in cellular architecture of the trophozoites with evident disorganization of the cell membrane, adhesive disc and cytoplasmic components. This is the first reported study of the safe anti-giardial efficacy of L. acidophilus (P106) derived bacteriocin, hence highlighting its great promise as a potential therapeutic safe alternative to existing commercial drugs.


Assuntos
Bacteriocinas/uso terapêutico , Giardia lamblia/efeitos dos fármacos , Giardíase/tratamento farmacológico , Lactobacillus acidophilus/química , Lactobacillus plantarum/química , Animais , Bacteriocinas/isolamento & purificação , Bacteriocinas/farmacologia , Adesão Celular/efeitos dos fármacos , Feminino , Giardia lamblia/crescimento & desenvolvimento , Giardia lamblia/ultraestrutura , Humanos , Mucosa Intestinal/parasitologia , Mucosa Intestinal/patologia , Intestino Delgado/parasitologia , Intestino Delgado/patologia , Masculino , Camundongos , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Probióticos/química
20.
Poult Sci ; 93(5): 1197-201, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24795312

RESUMO

The current trial was carried out on a commercial poultry farm to study the effect of skim milk powder (SMP) added to a diet containing Lactobacillus acidophilus on performance and egg quality of laying hens from 20 to 49 wk of age. A total of 2,400 Hy-Line W-36 laying hens were housed in 600 unenriched cages (4 hens each) located over 4 tier levels. Animals were assigned to 1 of 3 experimental treatments (0, 3, and 4). The laying hens assigned to treatments 3 and 4 received a diet enriched respectively with 3 and 4% SMP, whereas the animals in treatment 0 were fed a diet without SMP. All diets, moreover, were supplemented with L. acidophilus D2/CSL. Hen performance was determined throughout the experimental period and egg quality was measured on 30 eggs per treatment every week. Results showed that productive performance in terms of egg production, egg weight, and feed conversion ratio was not influenced by SMP at 3 or 4% of the diet. Egg quality was significantly affected by SMP included at 3 or 4% of the diet. Eggs from treatments 3 and 4, in fact, displayed higher shell thickness than those from treatment 0 (P < 0.0001). Likewise, specific gravity, Haugh unit, and shell percentage were significantly affected by the addition of SMP. In conclusion, in our study, SMP added to a diet containing L. acidophilus had no significant effects on the productive parameters of hens during the laying period, whereas significant improvements were found in certain egg quality characteristics.


Assuntos
Galinhas/fisiologia , Lactobacillus acidophilus/química , Leite/metabolismo , Óvulo/efeitos dos fármacos , Reprodução/efeitos dos fármacos , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta/veterinária , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga , Feminino , Óvulo/fisiologia , Distribuição Aleatória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA