RESUMO
Brown algae are multicellular photosynthetic organisms that have evolved independently of plants and other algae. Here, we have studied the determinism of body axis formation in the kelp Saccharina latissima. After microdissection of the embryo, we show that the stalk, an empty cell that retains the embryo on the maternal tissue, represses longitudinal cell divisions in the early embryo, thereby reinforcing the establishment of the initial apico-basal axis. In addition, it promotes cell growth and controls cell shape and arrangement in the flat oblong embryo composed of cells aligned in rows and columns. Although the stalk persists for several weeks until the embryo reaches at least 500 cells, proper embryogenesis requires connection to maternal tissue only during the first 4â days after fertilisation, i.e. before the embryo reaches the 8-cell stage. Transplantation experiments indicate that the maternal signal is not diffused in seawater, but requires contact between the embryo and the maternal tissue. This first global quantitative study of brown algal embryogenesis highlights the role of MUM, an unknown maternal message, in the control of growth axes and tissue patterning in kelp embryos.
Assuntos
Kelp , Padronização Corporal/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Phaeophyceae , Proteínas de Algas/metabolismo , Algas Comestíveis , LaminariaRESUMO
BACKGROUND: Kelps are not only ecologically important, being primary producers and habitat forming species, they also hold substantial economic potential. Expansion of the kelp cultivation industry raises the interest for genetic improvement of kelp for cultivation, as well as concerns about genetic introgression from cultivated to wild populations. Thus, increased understanding of population genetics in natural kelp populations is crucial. Genotyping-by-sequencing (GBS) is a powerful tool for studying population genetics. Here, using Saccharina latissima (sugar kelp) as our study species, we characterize the population genetics at a fine geographic scale, while also investigating the influence of marker type (biallelic SNPs versus multi-allelic short read-backed haplotypes) and minor allele count (MAC) thresholds on estimated population genetic metrics. RESULTS: We examined 150 sporophytes from 10 locations within a small area in Mid-Norway. Employing GBS, we detected 20,710 bi-allelic SNPs and 42,264 haplotype alleles at 20,297 high quality GBS loci. We used both marker types as well as two MAC filtering thresholds (3 and 15) in the analyses. Overall, higher genetic diversity, more outbreeding and stronger substructure was estimated using haplotypes compared to SNPs, and with MAC 15 compared to MAC 3. The population displayed high genetic diversity (HE ranging from 0.18-0.37) and significant outbreeding (FIS ≤ - 0.076). Construction of a genomic relationship matrix, however, revealed a few close relatives within sampling locations. The connectivity between sampling locations was high (FST ≤ 0.09), but subtle, yet significant, genetic substructure was detected, even between sampling locations separated by less than 2 km. Isolation-by-distance was significant and explained 15% of the genetic variation, while incorporation of predicted currents in an "isolation-by-oceanography" model explained a larger proportion (~ 27%). CONCLUSION: The studied population is diverse, significantly outbred and exhibits high connectivity, partly due to local currents. The use of genome-wide markers combined with permutation testing provides high statistical power to detect subtle population substructure and inbreeding or outbreeding. Short haplotypes extracted from GBS data and removal of rare alleles enhances the resolution. Careful consideration of marker type and filtering thresholds is crucial when comparing independent studies, as they profoundly influence numerical estimates of population genetic metrics.
Assuntos
Genética Populacional , Haplótipos , Kelp , Polimorfismo de Nucleotídeo Único , Kelp/genética , Marcadores Genéticos , Alelos , Variação Genética , Algas Comestíveis , LaminariaRESUMO
A plethora of di- and oligosaccharides isolated from the natural sources are used in food and pharmaceutical industry. An enzymatic hydrolysis of fungal cell wall ß-glucans is a good alternative to produce the desired oligosaccharides with different functionalities, such as the flavour enhancer gentiobiose. We have previously identified PsGly30A as a potential yeast cell wall degrading ß-1,6-glycosidase. The aim of this study is to characterise the PsGly30A enzyme, a member of the GH30 family, and to evaluate its suitability for the production of gentiobiose from ß-1,6-glucans. An endo-ß-1,6-glucanase PsGly30A encoding gene from Paenibacillus sp. GKG has been cloned and overexpressed in Escherichia coli. The recombinant enzyme has been active towards pustulan and yeast ß-glucan, but not on laminarin from the Laminaria digitata, confirming the endo-ß-1,6-glucanase mode of action. The PsGly30A shows the highest activity at pHâ 5.5 and 50 °C. The specific activity of PsGly30A on pustulan (1262±82â U/mg) is among the highest reported for GH30 ß-1,6-glycosidases. Moreover, gentiobiose is the major reaction product when pustulan, yeast ß-glucan or yeast cell walls have been used as a substrate. Therefore, PsGly30A is a promising catalyst for valorisation of the yeast-related by-products.
Assuntos
Dissacarídeos , Algas Comestíveis , Laminaria , Paenibacillus , beta-Glucanas , Saccharomyces cerevisiae/metabolismo , Concentração de Íons de Hidrogênio , Glucanos , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Oligossacarídeos , Especificidade por SubstratoRESUMO
Marine bacteria play important roles in the degradation and cycling of algal polysaccharides. However, the dynamics of epiphytic bacterial communities and their roles in algal polysaccharide degradation during kelp decay are still unclear. Here, we performed metagenomic analyses to investigate the identities and predicted metabolic abilities of epiphytic bacterial communities during the early and late decay stages of the kelp Saccharina japonica. During kelp decay, the dominant epiphytic bacterial communities shifted from Gammaproteobacteria to Verrucomicrobia and Bacteroidetes. In the early decay stage of S. japonica, epiphytic bacteria primarily targeted kelp-derived labile alginate for degradation, among which the gammaproteobacterial Vibrionaceae (particularly Vibrio) and Psychromonadaceae (particularly Psychromonas), abundant in alginate lyases belonging to the polysaccharide lyase (PL) families PL6, PL7, and PL17, were key alginate degraders. More complex fucoidan was preferred to be degraded in the late decay stage of S. japonica by epiphytic bacteria, predominantly from Verrucomicrobia (particularly Lentimonas), Pirellulaceae of Planctomycetes (particularly Rhodopirellula), Pontiellaceae of Kiritimatiellota, and Flavobacteriaceae of Bacteroidetes, which depended on using glycoside hydrolases (GHs) from the GH29, GH95, and GH141 families and sulfatases from the S1_15, S1_16, S1_17, and S1_25 families to depolymerize fucoidan. The pathways for algal polysaccharide degradation in dominant epiphytic bacterial groups were reconstructed based on analyses of metagenome-assembled genomes. This study sheds light on the roles of different epiphytic bacteria in the degradation of brown algal polysaccharides.IMPORTANCEKelps are important primary producers in coastal marine ecosystems. Polysaccharides, as major components of brown algal biomass, constitute a large fraction of organic carbon in the ocean. However, knowledge of the identities and pathways of epiphytic bacteria involved in the degradation process of brown algal polysaccharides during kelp decay is still elusive. Here, based on metagenomic analyses, the succession of epiphytic bacterial communities and their metabolic potential were investigated during the early and late decay stages of Saccharina japonica. Our study revealed a transition in algal polysaccharide-degrading bacteria during kelp decay, shifting from alginate-degrading Gammaproteobacteria to fucoidan-degrading Verrucomicrobia, Planctomycetes, Kiritimatiellota, and Bacteroidetes. A model for the dynamic degradation of algal cell wall polysaccharides, a complex organic carbon, by epiphytic microbiota during kelp decay was proposed. This study deepens our understanding of the role of epiphytic bacteria in marine algal carbon cycling as well as pathogen control in algal culture.
Assuntos
Algas Comestíveis , Flavobacteriaceae , Kelp , Laminaria , Microbiota , Phaeophyceae , Humanos , Metagenoma , Kelp/metabolismo , Polissacarídeos/metabolismo , Alginatos/metabolismo , Flavobacteriaceae/genética , Flavobacteriaceae/metabolismo , Carbono/metabolismoRESUMO
The impact of climate change on populations will be contingent upon their contemporary adaptive evolution. In this study, we investigated the contemporary evolution of 4 populations of the cold-water kelp Laminaria digitata by analyzing their spatial and temporal genomic variations using ddRAD-sequencing. These populations were sampled from the center to the southern margin of its north-eastern Atlantic distribution at 2 time points, spanning at least 2 generations. Through genome scans for local adaptation at a single time point, we identified candidate loci that showed clinal variation correlated with changes in sea surface temperature (SST) along latitudinal gradients. This finding suggests that SST may drive the adaptive response of these kelp populations, although factors such as species' demographic history should also be considered. Additionally, we performed a simulation approach to distinguish the effect of selection from genetic drift in allele frequency changes over time. This enabled the detection of loci in the southernmost population that exhibited temporal differentiation beyond what would be expected from genetic drift alone: these are candidate loci which could have evolved under selection over time. In contrast, we did not detect any outlier locus based on temporal differentiation in the population from the North Sea, which also displayed low and decreasing levels of genetic diversity. The diverse evolutionary scenarios observed among populations can be attributed to variations in the prevalence of selection relative to genetic drift across different environments. Therefore, our study highlights the potential of temporal genomics to offer valuable insights into the contemporary evolution of marine foundation species facing climate change.
Assuntos
Kelp , Kelp/genética , Genômica , Mudança Climática , Evolução Biológica , Variação Genética , Seleção Genética , Laminaria/genética , Adaptação Fisiológica/genética , Deriva GenéticaRESUMO
Interfibrillar phases and bonding in cellulose nanofibril (CNF)-based composites are crucial for materials performances. In this study, we investigated the influence of CNF surface characteristics, the guluronic acid/mannuronic acid ratio, and the molecular weight of alginates on the structure, mechanical, and barrier properties of CNF/alginate composite films. Three types of CNFs with varying surface charges and nanofibril dimensions were prepared from wood pulp fibers. The interfacial bonding through calcium ion cross-linking between alginate and carboxylated CNFs (TCNFs) led to significantly enhanced stiffness and strength due to the formation of an interpenetrating double network, compared to composites from alginates and CNFs with native negative or cationic surface charges. Various alginates extracted from Alaria esculenta (AE) and Laminaria hyperborea (LH) were also examined. The TCNF/AE composite, prepared from alginate with a high mannuronic acid proportion and high molecular weight, exhibited a Young's modulus of 20.3 GPa and a tensile strength of 331 MPa under dry conditions and a Young's modulus of 430 MPa and a tensile strength of 9.3 MPa at the wet state. Additionally, the TCNF/AE composite demonstrated protective properties as a barrier coating for fruit, significantly reducing browning of banana peels and weight loss of bananas stored under ambient conditions.
Assuntos
Alginatos , Celulose , Nanofibras , Resistência à Tração , Alginatos/química , Celulose/química , Nanofibras/química , Laminaria/química , Módulo de Elasticidade , Peso Molecular , Ácidos Hexurônicos/químicaRESUMO
BACKGROUND AND AIMS: Marine heatwaves (MHWs) are widely recognized as pervasive drivers of ecosystem change, yet our understanding of how different MHW properties mediate ecological responses remains largely unexplored. Understanding MHW impacts on foundation species is particularly important, given their structural role in communities and ecosystems. METHODS: We simulated a series of realistic MHWs with different levels of intensity (Control: 14 °C, Moderate: 18 °C, Extreme: 22 °C) and duration (14 or 28 d) and examined responses of two habitat-forming kelp species in the southwest UK. Here, Laminaria digitata reaches its trailing edge and is undergoing a range contraction, whereas Laminaria ochroleuca reaches its leading edge and is undergoing a range expansion. KEY RESULTS: For both species, sub-lethal stress responses induced by moderate-intensity MHWs were exacerbated by longer duration. Extreme-intensity MHWs caused dramatic declines in growth and photosynthetic performance, and elevated bleaching, which were again exacerbated by longer MHW duration. Stress responses were most pronounced in L. ochroleuca, where almost complete tissue necrosis was observed by the end of the long-duration MHW. This was unexpected given the greater thermal safety margins assumed with leading edge populations. It is likely that prolonged exposure to sub-lethal thermal stress exceeded a physiological tipping point for L. ochroleuca, presumably due to depletion of internal reserves. CONCLUSIONS: Overall, our study showed that exposure to MHW profiles projected to occur in the region in the coming decades can have significant deleterious effects on foundation kelp species, regardless of their thermal affinities and location within respective latitudinal ranges, which would probably have consequences for entire communities and ecosystems.
Assuntos
Algas Comestíveis , Kelp , Laminaria , EcossistemaRESUMO
BACKGROUND AND AIMS: Kelps are the primary foundation species in temperate subtidal rocky shores worldwide. However, global change is causing their decline with consequences for the organisms that rely on them. An accurate assessment of these consequences may depend on which attributes of the associated community are considered. This study shows that conventional α-diversity approaches may overlook some of these consequences compared to spatially explicit approaches such as with ß-diversity. METHODS: A 1-year seasonal study was conducted to compare the macroalgal understorey between healthy reefs with a Laminaria ochroleuca canopy and degraded reefs where the canopy collapsed years ago due to excessive fish herbivory. At each reef, the understorey seaweed assemblage was recorded in five replicate quadrats to estimate α-diversity (total richness, species density, Shannon index) and ß-diversity (intra- and inter-reef scale). KEY RESULTS: The understorey assemblage exhibited a distinct seasonal dynamic in both healthy and degraded reefs. α-Diversity attributes increased in spring and summer; turf-forming algae were particularly dominant in degraded reefs during summer. ß-Diversity also showed seasonal variability, but mostly due to the changes in degraded reefs. None of the α-diversity estimates differed significantly between healthy and degraded reefs. In contrast, spatial ß-diversity was significantly lower in degraded reefs. CONCLUSIONS: Although the loss of the kelp canopy affected the composition of the macroalgal understorey, none of the conventional indicators of α-diversity detected significant differences between healthy and degraded reefs. In contrast, small-scale spatial ß-diversity decreased significantly as a result of deforestation, suggesting that the loss of kelp canopy may not significantly affect the number of species but still have an effect on their spatial arrangement. Our results suggest that small-scale ß-diversity may be a good proxy for a more comprehensive assessment of the consequences of kelp forest decline.
Assuntos
Algas Comestíveis , Kelp , Laminaria , Alga Marinha , Animais , Florestas , Verduras , EcossistemaRESUMO
BACKGROUND: The sugar kelp Saccharina latissima is a Laminariales species widely distributed in the Northern Hemisphere. Its physiology and ecology have been studied since the 1960s, given its ecological relevance on western temperate coasts. However, research interest has been rising recently, driven mainly by reports of negative impacts of anthropogenically induced environmental change and by the increased commercial interest in cultivating the species, with several industrial applications for the resulting biomass. SCOPE: We used a variety of sources published between 2009 to May 2023 (but including some earlier literature where required), to provide a comprehensive review of the ecology, physiology, biochemical and molecular biology of S. latissima. In so doing we aimed to better understand the species' response to stressors in natural communities, but also inform the sustainable cultivation of the species. CONCLUSION: Due to its wide distribution, S. latissima has developed a variety of physiological and biochemical mechanisms to adjust to environmental changes, including adjustments in photosynthetic parameters, modulation of osmolytes and antioxidants, reprogramming of gene expression and epigenetic modifications, among others summarized in this review. This is particularly important because massive changes in the abundance and distribution of S. latissima have already been observed. Namely, presence and abundance of S. latissima has significantly decreased at the rear edges on both sides of the Atlantic, and increased in abundance at the polar regions. These changes were mainly caused by climate change and will therefore be increasingly evident in the future. Recent developments in genomics, transcriptomics and epigenomics have clarified the existence of genetic differentiation along its distributional range with implications in the fitness at some locations. The complex biotic and abiotic interactions unraveled here demonstrated the cascading effects the disappearance of a kelp forest can have in a marine ecosystem. We show how S. latissima is an excellent model to study acclimation and adaptation to environmental variability and how to predict future distribution and persistence under climate change.
Assuntos
Algas Comestíveis , Kelp , Laminaria , Kelp/genética , Ecossistema , Açúcares , Mudança ClimáticaRESUMO
BACKGROUND AND AIMS: Changes in kelp abundances on regional scales have been highly variable over the past half-century owing to strong effects of local and regional drivers. Here, we assess patterns and dominant environmental variables causing spatial and interspecific variability in kelp persistence and resilience to change in Nova Scotia over the past 40 years. METHODS: We conducted a survey of macrophyte abundance at 251 sites spanning the Atlantic coast of Nova Scotia from 2019 to 2022. We use this dataset to describe spatial variability in kelp species abundances, compare species occurrences to surveys conducted in 1982 and assess changes in kelp abundance over the past 22 years. We then relate spatial and temporal patterns in abundance and resilience to environmental metrics. KEY RESULTS: Our results show losses of sea urchins and the cold-tolerant kelp species Alaria esculenta, Saccorhiza dermatodea and Agarum clathratum in Nova Scotia since 1982 in favour of the more warm-tolerant kelps Saccharina latissima and Laminaria digitata. Kelp abundances have increased slightly since 2000, and Saccharina latissima and L. digitata are widely abundant in the region today. The highest kelp cover occurs on wave-exposed shores and at sites where temperatures have remained below thresholds for growth (21 °C) and mortality (23 °C). Moreover, kelp has recovered from turf dominance following losses at some sites during a warm period from 2010 to 2012. CONCLUSIONS: Our results indicate that dramatic changes in kelp community composition and a loss of sea urchin herbivory as a dominant driver of change in the system have occurred in Nova Scotia over the past 40 years. However, a broad-scale shift to turf-dominance has not occurred, as predicted, and our results suggest that resilience and persistence are still a feature of kelp forests in the region despite rapid warming over the past several decades.
Assuntos
Algas Comestíveis , Kelp , Laminaria , Resiliência Psicológica , Animais , Florestas , Ouriços-do-Mar , Oceanos e Mares , EcossistemaRESUMO
RATIONALE: 1,2-Diacyl-sn-glycero-3-phospho-O-[N-(2-hydroxyethyl)glycines] (PHEGs) are a class of rare aminophospholipids found specifically in brown algae, including kombu seaweed. Despite their potential importance in algal physiology, a comprehensive mass spectrometry (MS) characterization, useful to understand their biological behaviour, is still lacking. METHODS: To establish the structural regiochemical features of PHEGs, we employed hydrophilic interaction liquid chromatography (HILIC). Following separation, the isolated band of PHEGs was analyzed using MS techniques. This included multistage tandem MS experiments, performed in both positive and negative electrospray ionization modes at low and high resolution. RESULTS: By comparing MS/MS and MS3 spectra acquired in negative ion mode, the regiochemical rules for PHEG identification were established. The most abundant PHEG species in kombu seaweed, from both Laminaria ochroleuca (European Atlantic) and Laminaria longissima (Japan), was identified as PHEG 20:4/20:4. Less abundant species included PHEG 20:4/20:5 and hydroxylated forms of both PHEG 20:4/20:4 (i.e. 40:8;O) and 20:4/20:5 (40:9;O). The presence of a lyso PHEG 20:4 was consistently detected but at very low levels. CONCLUSIONS: This study employed MS analysis to elucidate the regiochemical patterns of PHEGs in kombu seaweed. We identified PHEG 20:4/20:4 as the dominant species, along with several less abundant variants, including hydroxylated forms. These findings provide valuable insights into the potential roles and metabolism of PHEGs in brown algae, paving the way for further investigation into their biological functions.
Assuntos
Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Alga Marinha/química , Fosfolipídeos/química , Fosfolipídeos/análise , Glicina/análogos & derivados , Glicina/química , Glicina/análise , Phaeophyceae/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Laminaria/química , Cromatografia Líquida/métodos , Algas ComestíveisRESUMO
Globally kelp farming is gaining attention to mitigate land-use pressures and achieve carbon neutrality. However, the influence of environmental perturbations on kelp farming remains largely unknown. Recently, a severe disease outbreak caused extensive kelp mortality in Sanggou Bay, China, one of the world's largest high-density kelp farming areas. Here, through in situ investigations and simulation experiments, we find indications that an anomalously dramatic increase in elevated coastal seawater light penetration may have contributed to dysbiosis in the kelp Saccharina japonica's microbiome. This dysbiosis promoted the proliferation of opportunistic pathogenic Enterobacterales, mainly including the genera Colwellia and Pseudoalteromonas. Using transcriptomic analyses, we revealed that high-light conditions likely induced oxidative stress in kelp, potentially facilitating opportunistic bacterial Enterobacterales attack that activates a terrestrial plant-like pattern recognition receptor system in kelp. Furthermore, we uncover crucial genotypic determinants of Enterobacterales dominance and pathogenicity within kelp tissue, including pathogen-associated molecular patterns, potential membrane-damaging toxins, and alginate and mannitol lysis capability. Finally, through analysis of kelp-associated microbiome data sets under the influence of ocean warming and acidification, we conclude that such Enterobacterales favoring microbiome shifts are likely to become more prevalent in future environmental conditions. Our study highlights the need for understanding complex environmental influences on kelp health and associated microbiomes for the sustainable development of seaweed farming.
Assuntos
Algas Comestíveis , Kelp , Laminaria , Humanos , Kelp/microbiologia , Disbiose , Agricultura , EcossistemaRESUMO
In this study, arsenic (As) speciation was investigated in the freshwater alga Chlamydomonas reinhardtii treated with 20 µg/L arsenate using fractionation as well as ICP-MS/ESI-MS analyses and was compared with the known As metabolite profile of wild-grown Saccharina latissima. While the total As accumulation in C. reinhardtii was about 85% lower than in S. latissima, the relative percentage of arsenolipids was significantly higher in C. reinhardtii (57.0% vs. 5.01%). As-containing hydrocarbons and phospholipids dominated the hydrophobic As profile in S. latissima, but no As-containing hydrocarbons were detectable in C. reinhardtii. Instead for the first time, an arsenoriboside-containing phytol (AsSugPhytol) was found to dominate the hydrophobic arsenicals of C. reinhardtii. Interestingly, this compound and its relatives had so far been only found in green marine microalgae, open sea plankton (mixed assemblage), and sediments but not in brown or red macroalgae. This compound family might therefore relate to differences in the arsenic metabolism between the algae phyla.
Assuntos
Arsênio , Arsenicais , Chlamydomonas reinhardtii , Algas Comestíveis , Laminaria , Arsenicais/química , Arsênio/metabolismo , Chlamydomonas reinhardtii/metabolismo , HidrocarbonetosRESUMO
Environmental changes associated with rapid climate change in the Arctic, such as the increased rates of sedimentation from climatic or anthropogenic sources, can enhance the impact of abiotic stressors on coastal ecosystems. High sedimentation rates can be detrimental to nearshore kelp abundance and distribution, possibly due to increased mortality at the spore settlement stage. Spore settlement and viability of the Arctic kelp Laminaria solidungula were examined through a series of lab-based sedimentation experiments. Spores were exposed to increasing sediment loads in three experimental designs simulating different sedimentation scenarios: sediment deposition above settled spores, settlement of spores on sediment-covered substrate, and simultaneous suspension of spores and sediments during settlement. Spore settlement was recorded upon completion of each experiment, and gametophyte abundance was assessed following a growth period with sediments removed to examine short-term spore viability via a gametophyte-to-settled-spore ratio. In all three types of sediment exposure, the addition of sediments caused a 30%-40% reduction in spore settlement relative to a no-sediment control. Spore settlement decreased significantly between the low and high sediment treatments when spores were settled onto sediment-covered substrates. In all experiments, increasing amounts of sediment had no significant effect on spore viability, indicating that spores that had settled under different short-term sediment conditions were viable. Our results indicate that depending on spore-sediment interaction type, higher rates of sedimentation resulting from increased sediment loading could affect L. solidungula spore settlement success with potential impacts on the long-term persistence of a diverse and productive benthic habitat.
Assuntos
Sedimentos Geológicos , Laminaria , Esporos , Laminaria/fisiologia , Esporos/fisiologia , Regiões Árticas , Kelp/fisiologiaRESUMO
Due to global rises in temperature, recent studies predict marine species shifting toward higher latitudes. We investigated the impact of interacting abiotic drivers on the distribution potential of the temperate kelp Laminaria hyperborea. The ecosystem engineering species is widespread along European coasts but has not yet been observed in the High Arctic, although it can survive several months of low temperatures and darkness. To investigate its ability to extend northward in future, we conducted a long-term multifactorial experiment with sporophytes from Porsangerfjorden, Norway-close to the species' documented northernmost distribution margin. The samples were exposed to three different photoperiods (PolarDay, LongDay, and PolarNight) at 0°C, 5°C, and 10°C for 3 months. Optimum quantum yield of photosynthesis (Fv/Fm), dry weight, pigments, phlorotannins, and storage carbohydrates were monitored. Both physiological and biochemical parameters revealed that L. hyperborea was strongly influenced by the different photoperiods and their interaction with temperature, while temperature alone exerted only minor effects. The Fv/Fm data were integrated into a species distribution model to project a possible northward expansion of L. hyperborea. The combination of extended day lengths and low temperatures appeared to be the limiting reason for northward spread of L. hyperborea until recently. However, with water temperatures reaching 10°C in summer, this kelp will be able to thrive also in the High Arctic. Moreover, no evidence of stress to Arctic winter warming was observed. Consequently, L. hyperborea has a high potential for spreading northward with further warming which may significantly affect the structure and function of Arctic ecosystems.
Assuntos
Mudança Climática , Laminaria , Fotoperíodo , Temperatura , Laminaria/fisiologia , Noruega , Regiões Árticas , Fotossíntese , Alga MarinhaRESUMO
This study aimed to improve the conventional procedure of alginate isolation from the brown seaweed (Laminaria digitata L.) biomass and investigate the possibility of further valorization of the ethanolic fraction representing the byproduct after the degreasing and depigmentation of biomass. The acid treatment of biomass supported by ultrasound was modeled and optimized regarding the alginate yield using a response surface methodology based on the Box-Behnken design. A treatment time of 30 min, a liquid-to-solid ratio of 30 mL/g, and a treatment temperature of 47 °C were proposed as optimal conditions under which the alginate yield related to the mass of dry biomass was 30.9%. The use of ultrasonic radiation significantly reduced the time required for the acid treatment of biomass by about 4 to 24 times compared to other available conventional procedures. The isolated alginate had an M/G ratio of 1.08, which indicates a greater presence of M-blocks in its structure and the possibility of forming a soft and elastic hydrogel with its use. The chemical composition of the ethanolic fraction including total antioxidant content (293 mg gallic acid equivalent/g dry weight), total flavonoid content (14.9 mg rutin equivalent/g dry weight), contents of macroelements (the highest content of sodium, 106.59 mg/g dry weight), and microelement content (the highest content of boron, 198.84 mg/g dry weight) was determined, and the identification of bioactive compounds was carried out. The results of ultra high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry analysis confirmed the presence of 48 compounds, of which 41 compounds were identified as sugar alcohol, phenolic compounds, and lipids. According to the 2,2-diphenyl-1-picrylhydrazyl assay, the radical scavenging activity of the ethanolic fraction (the half-maximal inhibitory concentration of 42.84 ± 0.81 µg/mL) indicated its strong activity, which was almost the same as in the case of the positive control, synthetic antioxidant butylhydroxytoluene (the half-maximal inhibitory concentration of 36.61 ± 0.79 µg/mL). Gram-positive bacteria (Staphylococcus aureus, Enterococcus faecalis, and Bacillus cereus) were more sensitive to the ethanolic fraction compared to Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa, and Shigella sonnei). The obtained results indicated the possibility of the further use of the ethanolic fraction as a fertilizer for plant growth in different species and antifouling agents, applicable in aquaculture.
Assuntos
Alginatos , Antioxidantes , Etanol , Laminaria , Alga Marinha , Alginatos/química , Laminaria/química , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Etanol/química , Alga Marinha/química , Biomassa , Flavonoides/química , Flavonoides/isolamento & purificação , Algas ComestíveisRESUMO
To improve probiotics' survivability during gastrointestinal digestion and heat treatment, Lactobacillus plantarum was microencapsulated by spray-drying using Laminaria japonica polysaccharide/sodium caseinate/gelatin (LJP/SC/GE) composites. Thermogravimetry and differential scanning calorimetry results revealed that the denaturation of LJP/SC/GE microcapsules requires higher thermal energy than that of SC/GE microcapsules, and the addition of LJP may improve thermal stability. Zeta potential measurements indicated that, at low pH of the gastric fluid, the negatively charged LJP attracted the positively charged SC/GE, helping to maintain an intact microstructure without disintegration. The encapsulation efficiency of L. plantarum-loaded LJP/SC/GE microcapsules reached about 93.4%, and the survival rate was 46.9% in simulated gastric fluid (SGF) for 2 h and 96.0% in simulated intestinal fluid (SIF) for 2 h. In vitro release experiments showed that the LJP/SC/GE microcapsules could protect the viability of L. plantarum in SGF and release probiotics slowly in SIF. The cell survival of LJP/SC/GE microcapsules was significantly improved during the heat treatment compared to SC/GE microcapsules and free cells. LJP/SC/GE microcapsules can increase the survival of L. plantarum by maintaining the lactate dehydrogenase and Na+-K+-ATPase activity. Overall, this study demonstrates the great potential of LJP/SC/GE microcapsules to protect and deliver probiotics in food and pharmaceutical systems.
Assuntos
Cápsulas , Temperatura Alta , Lactobacillus plantarum , Laminaria , Polissacarídeos , Laminaria/química , Polissacarídeos/farmacologia , Polissacarídeos/química , Probióticos/farmacologia , Probióticos/administração & dosagem , Digestão/efeitos dos fármacos , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/microbiologia , Concentração de Íons de Hidrogênio , Gelatina/química , Gelatina/farmacologia , Viabilidade Microbiana/efeitos dos fármacos , Algas ComestíveisRESUMO
Three Laminaria japonica polysaccharides (LJPs) extracted via water extraction (LJP-W), acid extraction (LJP-A), and enzymatic extraction (LJP-E) were used as raw materials to be cross-linked with chitosan and polyvinyl alcohol to prepare hydrogels. Compared with conventional hydrogel systems, all three types of LJP-based polysaccharide hydrogels exhibited better swelling properties (14 times their original weight) and the absorption ability of simulated body fluid (first 2 h: 6-10%). They also demonstrated better rigidity and mechanical strength. Young's modulus of LJP-E was 4 times that of the blank. In terms of hemostatic properties, all three polysaccharide hydrogels did not show significant cytotoxic and hemolytic properties. The enzyme- and acid-extracted hydrogels (LJP-Gel-A and LJP-Gel-E) demonstrated better whole-blood coagulant ability compared with the water-extracted hydrogel (LJP-Gel-W), as evidenced by the whole blood coagulation index being half that of LJP-Gel-W. Additionally, the lactate dehydrogenase viabilities of LJP-Gel-A and LJP-Gel-E were significantly higher, at about four and three times those of water extraction, respectively. The above results suggested that LJP-Gel-A and LJP-Gel-E exhibited better blood coagulation capabilities than LJP-Gel-W, due to their enhanced platelet enrichment and adhesion properties. Consequently, these hydrogels are more conducive to promoting coagulation and have good potential for wound hemostasis.
Assuntos
Coagulação Sanguínea , Algas Comestíveis , Hemostáticos , Hidrogéis , Laminaria , Polissacarídeos , Hidrogéis/química , Hidrogéis/farmacologia , Laminaria/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Polissacarídeos/isolamento & purificação , Coagulação Sanguínea/efeitos dos fármacos , Hemostáticos/farmacologia , Hemostáticos/química , Hemostáticos/isolamento & purificação , Humanos , Animais , Quitosana/química , Quitosana/farmacologia , Álcool de Polivinil/química , Hemostasia/efeitos dos fármacos , Hemólise/efeitos dos fármacosRESUMO
AIM: To document the outcomes of second-trimester induction of labor with laminaria cervical dilation followed by gemeprost vaginal tablets, with a particular emphasis on its complications. METHODS: This was a single-center retrospective cohort study of women who experienced medical abortions between 12 and 21 weeks of gestation from January 2016 to July 2021. Procedures were performed with three laminaria cervical dilation for 2 days followed by the administration of gemeprost (1 mg, vaginal tablet) every 3 h with a maximum of five tablets per day. Epidural anesthesia was provided upon request. The primary outcome was successful labor induction, which was defined as fetal expulsion without assisted surgical procedures. Other maternal outcomes, complications and related interventions during and after the procedure were assessed. RESULTS: Among 319 women, 313 (98.1%) experienced successful labor induction with a median of one gemeprost tablet. The median blood loss during the abortion was 145 mL, and three women (0.9%) required blood transfusion. Fever was observed in 19 women (6.0%) during hospitalization, although most cases were drug fever. Thirteen women (4.1%) had abnormal uterine bleeding ~24 days after the abortion. Eleven cases (3.4%) were associated with retained products of conception, of which three cases required uterine artery embolization and three needed surgical curettage. CONCLUSIONS: Second-trimester induction of labor with laminaria cervical dilation and subsequent gemeprost vaginal tablets is a reliable method for completing medical abortions. Abnormal uterine bleeding several weeks after abortion is suspected to be a retained product of conception that could require invasive treatment.
Assuntos
Alprostadil , Trabalho de Parto Induzido , Laminaria , Segundo Trimestre da Gravidez , Humanos , Feminino , Gravidez , Trabalho de Parto Induzido/efeitos adversos , Trabalho de Parto Induzido/métodos , Adulto , Estudos Retrospectivos , Japão , Alprostadil/administração & dosagem , Alprostadil/efeitos adversos , Alprostadil/análogos & derivados , Aborto Induzido/efeitos adversos , Aborto Induzido/métodos , Adulto Jovem , Administração IntravaginalRESUMO
Recent studies have highlighted the potential of Saccharina japonica Polysaccharides (SJPs) in alleviating high-fat diet (HFD)-induced obesity by regulating gut microbiota, which warrants further exploration to elucidate the underlying structure-activity relationship. In this study, five polysaccharide fractions (Sj-T, Sj-T-1, Sj-T-2, Sj-T-3, and Sj-T-4) with different structure characteristics were prepared from S. japonica, and their effects on HFD-induced obesity and gut microbiota composition were investigated using C57BL/6J mice. The results revealed that oral administration of Sj-T considerably suppressed HFD-induced obesity, glucose metabolic dysfunction, and other disordered symptoms. While, Sj-T-2, which has the lowest molecular weight, was the most effective in alleviating HFD-induced obesity and had the second-best effect on improving HFD-induced impaired glucose tolerance among the five SJPs. Supplementation with SJPs significantly modulated HFD-induced gut microbiota dysbiosis both at the phylum and species levels, such as enriching Desulfobacterota and Actinobacteriota, while suppressing the abundance of Bacteroidota. Sj-T also dramatically restored the gut microbiota composition by modulating the abundance of many crucial gut bacterial taxa, including s_Bacteroides_acidifaciens, s_Lachnospiraceae _bacterium, and g_Lachnospiraceae_NK4A136_group. Besides, SJPs also dramatically altered the function of gut microbiota, including many carbohydrate-metabolism enzymes. This study highlights the potential of SJPs in preventing obesity and restoring intestinal homeostasis in obese individuals.