Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 219
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 27(2)2022 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-35056718

RESUMO

The advancements in the field of nanotechnology have provided a great platform for the development of effective antiviral vaccines. Liposome-mediated delivery of antigens has been shown to induce the antigen-specific stimulation of the humoral and cell-mediated immune responses. Here, we prepared dried, reconstituted vesicles (DRVs) from DPPC liposomes and used them as the vaccine carrier system for the Middle East respiratory syndrome coronavirus papain-like protease (DRVs-MERS-CoV PLpro). MERS-CoV PLpro emulsified in the Incomplete Freund's Adjuvant (IFA-MERS-CoV PLpro) was used as a control. Immunization of mice with DRVs-MERS-CoV PLpro did not induce any notable toxicity, as revealed by the levels of the serum alanine transaminase (ALT), aspartate transaminase (AST), blood urea nitrogen (BUN) and lactate dehydrogenase (LDH) in the blood of immunized mice. Immunization with DRVs-MERS-CoV PLpro induced greater antigen-specific antibody titer and switching of IgG1 isotyping to IgG2a as compared to immunization with IFA-MERS-CoV PLpro. Moreover, splenocytes from mice immunized with DRVs-MERS-CoV PLpro exhibited greater proliferation in response to antigen stimulation. Moreover, splenocytes from DRVs-MERS-CoV PLpro-immunized mice secreted significantly higher IFN-γ as compared to splenocytes from IFA-MERS-CoV PLpro mice. In summary, DRVs-MERS-CoV PLpro may prove to be an effective prophylactic formulation to prevent MERS-CoV infection.


Assuntos
Proteases Semelhantes à Papaína de Coronavírus/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia , Animais , Proliferação de Células , Infecções por Coronavirus/prevenção & controle , Feminino , Imunidade Celular , Imunidade Humoral , Imunização/métodos , Imunoglobulina G/sangue , Interferon gama/metabolismo , Lipossomos/administração & dosagem , Lipossomos/química , Lipossomos/imunologia , Lipossomos/toxicidade , Linfócitos/metabolismo , Camundongos , Vacinas Virais/química , Vacinas Virais/toxicidade
2.
J Biol Inorg Chem ; 26(1): 109-122, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33475857

RESUMO

Iridium(III) complexes have gained great attention in cancer treatment in recent years. In this paper, we designed and synthesized a new iridium(III) complex [Ir(piq)2(DQTT)](PF6) Ir1 (piq = 1-phenylisoquinoline, DQTT = 12-(1,4-dihydroquinoxalin-6-yl)-4,5,9,14-tetraazabenzo[b]triphenylene). The Ir1-loaded PEGylated liposomes (Lipo-Ir1) were prepared using the ethanol injection method. The anticancer activity of the complex and Lipo-Ir1 against SGC-7901 (human gastric adenocarcinoma), A549 (human lung carcinoma), HeLa (human cervical carcinoma), HepG2 (human hepatocellular carcinoma), BEL-7402 (human hepatocellular carcinoma), and normal NIH3T3 (mouse embryonic fibroblasts) was tested by the MTT method. The complex Ir1 shows moderate or low cytotoxicity against the selected cancer cells, whereas the Lipo-Ir1 exhibits high anticancer activity toward the same cancer cells. The apoptosis induced by Lipo-Ir1 was assayed by flow cytometry and Lipo-Ir1 induced apoptosis through increasing intracellular reactive-oxygen species levels, decreasing mitochondrial membrane potential, further promoting cytochrome c release and causing the increase of level of intracellular Ca2+. Western blot was used to detect the changes in Bcl-2 family protein and PI3K/AKT pathway proteins. The cloning experiments demonstrated that the Lipo-Ir1 can effectively inhibit cell proliferation. In vivo experiments, Lipo-Ir1 inhibited tumor growth in xenograft nude mice, and the percentage of tumor growth inhibition in vivo was 75.70%. Overall, the liposomes Lipo-Ir1 exhibits higher anticancer activity than Ir1 under the same conditions. These results indicated that Lipo-Ir1 may be a valuable resource for cancer therapy.


Assuntos
Antineoplásicos/uso terapêutico , Complexos de Coordenação/uso terapêutico , Portadores de Fármacos/química , Lipossomos/química , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/química , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/química , Complexos de Coordenação/toxicidade , Portadores de Fármacos/toxicidade , Liberação Controlada de Fármacos , Hemólise/efeitos dos fármacos , Irídio/química , Irídio/toxicidade , Lipossomos/toxicidade , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Células NIH 3T3 , Neoplasias/patologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Biol Pharm Bull ; 44(1): 144-149, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33390543

RESUMO

Liposomes containing ionizable cationic lipids have been widely used for the delivery of nucleic acids such as small-interfering RNA and mRNA. The utility of cationic lipids with a permanent positive charge, however, is limited to in vitro transfection of cultured cells due to its dose-limiting toxic side effects observed in animals. Several reports have suggested that the permanently charged cationic lipids induce reactive oxygen species (ROS) and ROS-mediated toxicity in cells. We therefore hypothesized that the concomitant use of ROS inhibitor could reduce toxicity and improve drug efficacy. In this study, suppression of the cationic toxicity was evaluated using an ROS scavenger, edaravone, which is a low-molecular-weight antioxidant drug clinically approved for acute-phase cerebral infarction and amyotrophic lateral sclerosis. Cell viability assay in the mouse macrophage-like cell line RAW264 indicated that the concomitant use of edaravone were not able to suppress the cytotoxicity induced by cationic liposomes comprised of monovalent cationic lipid N-(1-[2,3-dioleyloxy]propyl)-N,N,N-trimethylammonium chloride (DOTMA) over a short period of time. Cationic lipids-induced necrosis was assumed to be involved in the cytotoxicity upon short-term exposure to cationic liposomes. On the other hand, the significant improvement of cell viability was observed when the short treatment with cationic liposomes was followed by exposure to edaravone for 24 h. It was also confirmed that apoptosis inhibition by ROS elimination might have contributed to this effect. These results suggest the utility of continuous administration with edaravone as concomitant drug for suppression of adverse reactions in therapeutic treatment using cationic liposomes.


Assuntos
Apoptose/efeitos dos fármacos , Edaravone/farmacologia , Sequestradores de Radicais Livres/farmacologia , Lipossomos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Animais , Apoptose/fisiologia , Cátions , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Camundongos , Estresse Oxidativo/fisiologia , Células RAW 264.7
4.
J Nanobiotechnology ; 19(1): 360, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34749742

RESUMO

In addition to early detection, early diagnosis, and early surgery, it is of great significance to use new strategies for the treatment of hepatocellular carcinoma (HCC). Studies showed that the combination of sorafenib (SFN) and triptolide (TPL) could reduce the clinical dose of SFN and maintain good anti-HCC effect. But the solubility of SFN and TPL in water is low and both drugs have certain toxicity. Therefore, we constructed a biomimetic nanosystem based on cancer cell-platelet (PLT) hybrid membrane camouflage to co-deliver SFN and TPL taking advantage of PLT membrane with long circulation functions and tumor cell membrane with homologous targeting. The biomimetic nanosystem, SFN and TPL loaded cancer cell-PLT hybrid membrane-camouflaged liquid crystalline lipid nanoparticles ((SFN + TPL)@CPLCNPs), could simultaneously load SFN and TPL at the molar ratio of SFN to TPL close to 10:1. (SFN + TPL)@CPLCNPs achieved long circulation function and tumor targeting at the same time, promoting tumor cell apoptosis, inhibiting tumor growth, and achieving a better "synergy and attenuation effect", which provided new ideas for the treatment of HCC.


Assuntos
Carcinoma Hepatocelular/metabolismo , Diterpenos , Lipossomos , Neoplasias Hepáticas/metabolismo , Nanopartículas , Fenantrenos , Sorafenibe , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Materiais Biomiméticos/química , Plaquetas/química , Linhagem Celular Tumoral , Membrana Celular/química , Diterpenos/química , Diterpenos/farmacocinética , Diterpenos/farmacologia , Compostos de Epóxi/química , Compostos de Epóxi/farmacocinética , Compostos de Epóxi/farmacologia , Humanos , Lipossomos/química , Lipossomos/farmacocinética , Lipossomos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Nanomedicina , Nanopartículas/química , Nanopartículas/toxicidade , Fenantrenos/química , Fenantrenos/farmacocinética , Fenantrenos/farmacologia , Células RAW 264.7 , Sorafenibe/química , Sorafenibe/farmacocinética , Sorafenibe/farmacologia
5.
Mol Pharm ; 17(1): 262-273, 2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31747284

RESUMO

The microtubule inhibitor paclitaxel (PTX) is used to treat a wide range of solid tumors. Due to the poor aqueous solubility of PTX, a continuous demand for safe, efficient PTX formulations with improved antitumor activity exists. Here, we report a novel form of redox-sensitive paclitaxel (PTX)-encapsulated liposomes based on the previously developed disulfide phosphatidylcholine (SS-PC). PTX-loaded stealth liposomes (PTX/SS-LP) composed of SS-PC, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-PEG2000 (DSPE-PEG2000), and cholesterol were prepared using the reverse-phase evaporation method. The characterization of the PTX/SS-LP liposomes using dynamic light scattering and transmission electron microscopy confirmed their uniform particle size and typical unilamellar vesicle structure with an average bilayer thickness of approximately 4 nm. Changes in the size and morphology as well as the rapid release of PTX triggered by the addition of dithiothreitol revealed the redox sensitivity of PTX/SS-LP. Finally, evaluations in MCF-7 and A549 cells in vitro and in BALB/c mice in vivo revealed the improved anticancer efficiency, biodistribution, and safety of PTX/SS-LP compared with those of Taxol and nonredox-sensitive PTX/LP. In conclusion, PTX/SS-LP displays a redox-responsive release of paclitaxel with improved antitumor activity and has great potential as a next-generation stealth liposomal PTX delivery system.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Lipossomos/química , Neoplasias/tratamento farmacológico , Paclitaxel/administração & dosagem , Fosfatidilcolinas/química , Animais , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Colesterol/química , Ditiotreitol , Liberação Controlada de Fármacos , Difusão Dinâmica da Luz , Humanos , Lipossomos/farmacologia , Lipossomos/toxicidade , Lipossomos/ultraestrutura , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Transmissão , Oxirredução/efeitos dos fármacos , Paclitaxel/química , Paclitaxel/farmacologia , Fosfatidilcolinas/síntese química , Fosfatidiletanolaminas/química , Polietilenoglicóis/química , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Med Microbiol Immunol ; 209(2): 163-176, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32020284

RESUMO

A major roadblock in the development of novel vaccines is the formulation and delivery of the antigen. Liposomes composed of a dimethyldioctadecylammonium (DDA) backbone and the adjuvant trehalose-6-6-dibehenate (TDB, termed "cationic adjuvant formulation (CAF01)", promote immunogenicity and protective efficacy of vaccines, most notably against infection with Mycobacterium tuberculosis. Specifically, the multicomponent antigen H56 delivered by CAF01 protects against tuberculosis in mice. Here we investigated whether the inclusion of immune-modulatory adjuvants into CAF01 modulates the immunogenicity of H56/CAF01 in vitro and in vivo. Based on our recent findings we selected the active sequence of the mycobacterial 19 kDa lipoprotein, Pam3Cys, which interacts with Toll like receptor 2 to induce an antimicrobial pathway. H56/CAF01-Pam3Cys liposomes were characterized for Pam3Cys incorporation, size, toxicity and activation of primary human macrophages. Macrophages efficiently take up H56/CAF01-Pam3Cys and trigger the release of significantly higher levels of TNF, IL-12 and IL-10 than H56/CAF01 alone. To evaluate the immunogenicity in vivo, we immunized mice with H56/CAF01-Pam3Cys and measured the release of IFN-γ and IL-17A by lymph node cells and spleen cells. While the antigen-specific production of IFN-γ was reduced by inclusion of Pam3Cys into H56/CAF01, the levels of IL-17A remained unchanged. In agreement with this finding, the concentration of the IFN-γ-associated IgG2a antibodies in the serum was lower than in H56/CAF01 immunized animals. These results provide proof of concept that Toll like-receptor agonist can be included into liposomes to modulate immune responses. The discordant results between the in vitro studies with human macrophages and in vivo studies in mice highlight the relevance and complexity of comparing immune responses in different species.


Assuntos
Adjuvantes Imunológicos/farmacologia , Antígenos de Bactérias/imunologia , Lipoproteínas/imunologia , Receptores Toll-Like/agonistas , Vacinas contra a Tuberculose/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Antígenos de Bactérias/administração & dosagem , Células Cultivadas , Citocinas/metabolismo , Feminino , Humanos , Imunomodulação , Lipossomos/administração & dosagem , Lipossomos/química , Lipossomos/imunologia , Lipossomos/toxicidade , Macrófagos/imunologia , Camundongos , Mycobacterium tuberculosis/imunologia , Células Th1/imunologia , Células Th17/imunologia , Vacinas contra a Tuberculose/administração & dosagem , Vacinas contra a Tuberculose/química , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/química , Vacinas de Subunidades Antigênicas/imunologia
7.
Mol Biol Rep ; 47(9): 6517-6529, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32767222

RESUMO

The current study intends to investigate a novel drug delivery system (DDS) based on niosomes structure (NISM) and bovine serum albumin (BSA) which was formulated to BSA coated NISM (NISM-B). Also, selenium nanoparticles (SeNPs) have been prepared by BSA mediated biosynthesis. Finally, the NISM-B was hybridized with SeNPs and was formulated as NISM-B@SeNPs for drug delivery applications. Physicochemical properties of all samples were characterized by UV-Vis spectroscopy, FT-IR, DLS, FESEM, and EDX techniques. The cytotoxicity of all samples against A549 cell line was assessed by cell viability analysis and flow cytometry for apoptotic cells as well as RT-PCR for the expression of MDR-1, Bax, and Bcl-2 genes. Besides, in vivo biocompatibility was performed by LD50 assay to evaluate the acute toxicity. The proposed formulation has a regular spherical shape and approximately narrow size distribution with proper zeta-potential values; the proposed DDS revealed a good biocompatibility. The compound showed a significant cytotoxic effect against A549 cell line. Although the Bax/Bcl-2 expression ratio was significantly in NISM-B@SeNPs- treated cancer cells, the expression of MDR-1 was non-significantly lower in NISM-B@SeNPs-treated cancer cells. The obtained results suggest that the proposed DDS presents a promising approach for drug delivery, co-delivery and multifunctional biomedicine applications.


Assuntos
Apoptose/efeitos dos fármacos , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Lipossomos/química , Nanopartículas/química , Selênio/química , Células A549 , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Apoptose/genética , Sobrevivência Celular/efeitos dos fármacos , Difusão Dinâmica da Luz , Humanos , Lipossomos/toxicidade , Teste de Materiais , Microscopia Eletrônica de Varredura , Nanopartículas/toxicidade , Nanopartículas/ultraestrutura , Tamanho da Partícula , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Reologia , Soroalbumina Bovina/química , Espectrometria por Raios X , Espectrofotometria , Espectroscopia de Infravermelho com Transformada de Fourier , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
8.
J Nanobiotechnology ; 18(1): 80, 2020 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-32448273

RESUMO

BACKGROUND: Psoriasis is a chronic immune-mediated inflammatory skin disease without effective treatment. The utilization of all trans-retinoic acid (TRA) and betamethasone (BT) for the treatment of psoriasis is still facing difficulties, due to their relatively poor stability, limited skin permeation, and systemic side effects. Flexible liposomes are excellent in deeper skin permeation and reducing the side effects of drugs, which is promising for effective treatment of skin disorders. This work aimed to establish dual-loaded flexible liposomal gel for enhanced therapeutic efficiency of psoriasis based on TRA and BT. RESULTS: Flexible liposomes co-loaded with TRA and BT were successfully prepared in our study. The characterization examination revealed that flexible liposomes featured nano-sized particles (around 70 nm), high drug encapsulation efficiency (> 98%) and sustained drug release behaviors. Flexible liposomes remarkably increased the drug skin permeation and retention as compared with free drugs. Results on HaCaT cells suggested that flexible liposomes were nontoxic, and its cellular uptake has a time-dependent manner. In vivo studies suggested the topical application of TRA and BT dual-loaded liposomal gel had the best ability to reduce the thickness of epidermal and the level of cytokines (TNF-α and IL-6), largely alleviating the symptoms of psoriasis. CONCLUSIONS: Flexible liposomal gel dual-loaded with TRA and BT exerted a synergistic effect, which is a promising topical therapeutic for the treatment of psoriasis.


Assuntos
Betametasona , Fármacos Dermatológicos , Lipossomos , Psoríase , Tretinoína , Animais , Betametasona/química , Betametasona/farmacocinética , Betametasona/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Fármacos Dermatológicos/química , Fármacos Dermatológicos/farmacocinética , Fármacos Dermatológicos/farmacologia , Fármacos Dermatológicos/toxicidade , Modelos Animais de Doenças , Géis , Células HaCaT , Humanos , Lipossomos/química , Lipossomos/farmacocinética , Lipossomos/farmacologia , Lipossomos/toxicidade , Camundongos Endogâmicos BALB C , Tamanho da Partícula , Maleabilidade , Psoríase/tratamento farmacológico , Psoríase/metabolismo , Ratos , Ratos Sprague-Dawley , Tretinoína/química , Tretinoína/farmacocinética , Tretinoína/farmacologia
9.
Anal Chem ; 91(10): 6585-6592, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-30994329

RESUMO

Development of a highly selective and sensitive imaging probe for accurate detection of myocardial hypoxia will be helpful to estimate the degree of ischemia and subsequently guide personalized treatment. However, an efficient optical approach for hypoxia monitoring in myocardial ischemia is still lacking. In this work, a cardiomyocyte-specific and nitroreductase-activatable near-infrared nanoprobe has been developed for selective and sensitive imaging of myocardial hypoxia. The nanoprobe is a liposome-based nanoarchitecture which is functionalized with a peptide (GGGGDRVYIHPF) for targeting heart cells and encapsulating a nitrobenzene-substituted BODIPY for nitroreductase imaging. The nanoprobe can specifically recognize and bind to angiotensin II type 1 receptor that is overexpressed on the ischemic heart cells by the peptide and is subsequently uptaken into heart cells, in which the probe is released and activated by hypoxia-related nitroreductase to produce fluorescence emission at 713 nm. The in vitro response of the nanoprobe toward nitroreductase resulted in 55-fold fluorescence enhancement with the limit of detection as low as 7.08 ng/mL. Confocal fluorescence imaging confirmed the successful uptake of nanoprobe by hypoxic heart cells and intracellular detection of nitroreductase. More significantly, in vivo imaging of hypoxia in a murine model of myocardial ischemia was achieved by the nanoprobe with high sensitivity and good biocompatibility. Therefore, this work presents a new tool for targeted detection of myocardial hypoxia and will promote the investigation of the hypoxia-related physiological and pathological process of ischemic heart disease.


Assuntos
Compostos de Boro/química , Corantes Fluorescentes/química , Hipóxia/diagnóstico por imagem , Isquemia Miocárdica/diagnóstico por imagem , Nitrorredutases/análise , Animais , Compostos de Boro/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Portadores de Fármacos/toxicidade , Corantes Fluorescentes/toxicidade , Limite de Detecção , Lipossomos/química , Lipossomos/toxicidade , Masculino , Camundongos Endogâmicos ICR , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Peptídeos/química , Peptídeos/metabolismo , Peptídeos/toxicidade , Ratos , Receptor Tipo 1 de Angiotensina/metabolismo
10.
Chemphyschem ; 20(16): 2110-2121, 2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31265754

RESUMO

The physicochemical properties and transfection efficacies of two samples of a cationic lipid have been investigated and compared in 2D (monolayers at the air/liquid interface) and 3D (aqueous bulk dispersions) model systems using different techniques. The samples differ only in their chain composition due to the purity of the oleylamine (chain precursor). Lipid 8 (using the oleylamine of technical grade for cost-efficient synthesis) shows lateral phase separation in the Langmuir layers. However, the amount of attached DNA, determined by IRRAS, is for both samples the same. In 3D systems, lipid 8 p forms cubic phases, which disappear after addition of DNA. At physiological temperatures, both lipids (alone and in mixture with cholesterol) assemble to lamellar aggregates and exhibit comparable DNA delivery efficiency. This study demonstrates that non-lamellar structures are not compulsory for high transfection rates. The results legitimate the utilization of oleyl chains of technical grade in the synthesis of cationic transfection lipids.


Assuntos
Aminas/química , DNA/química , Lipídeos/química , Lipossomos/química , Aminas/síntese química , Aminas/normas , Aminas/toxicidade , Animais , Bovinos , Linhagem Celular Tumoral , Colesterol/química , Técnicas de Transferência de Genes/normas , Humanos , Lipídeos/síntese química , Lipídeos/normas , Lipídeos/toxicidade , Lipossomos/normas , Lipossomos/toxicidade , Estrutura Molecular , Transição de Fase , Suínos , Transfecção/normas , Temperatura de Transição
11.
Bioorg Chem ; 82: 178-191, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30326400

RESUMO

Natural antioxidants and vitamins have potential to protect biological systems from peroxidative damage induced by peroxyl radicals, α-tocopherol (Vitamin E, lipid soluble) and ascorbic acid (vitamin C, water soluble), well known natural antioxidant molecules. In the present study we described the synthesis and biological evaluation of hybrid of these two natural antioxidants with each other via ammonium di-ethylether linker, Toc-As in gene delivery. Two control cationic lipids N14-As and Toc-NOH are designed in such a way that one is with ascorbic acid moiety and no tocopherol moiety; another is with tocopherol moiety and no ascorbic acid moiety respectively. All the three cationic lipids can form self-assembled aggregates. The antioxidant efficiencies of the three lipids were compared with free ascorbic acid. The cationic lipids (Toc-As, N14-As and Toc-NOH) were formulated individually with a well-known fusogenic co-lipid DOPE and characterization studies such as DNA binding, heparin displacement, size, charge, circular dichroism were performed. The biological characterization studies such as cell viability assay and in vitro transfection studies were carried out with the above formulations in HepG2, Neuro-2a, CHO andHEK-293T cell lines. The three formulations showed their transfection efficiencies with highest in Toc-As, moderate inN14-As and least in Toc-NOH. Interestingly, the transfection efficiency observed with the antioxidant based conjugated lipid Toc-As is found to be approximately two and half fold higher than the commercially available lipofectamine 2000 at 4:1 charge ratio in Hep G2 cell lines. In the other cell lines studied the efficiency of Toc-As is found to be either higher or similarly active compared to lipofectamine 2000. The physicochemical characterization results show that Toc-As lipid is showing maximum antioxidant potency, strong binding with pDNA, least size and optimal zeta potential. It is also found to be least toxic in all the cell lines studied especially in Neuro-2a cell lines when compared to other two lipids. In summary, the designed antioxidant lipid can be exploited as a delivering system for treating ROS related diseases such as malignancy, brain stroke, etc.


Assuntos
Ácido Ascórbico/farmacologia , DNA/química , Sequestradores de Radicais Livres/farmacologia , Lipossomos/farmacologia , Tensoativos/farmacologia , alfa-Tocoferol/farmacologia , Animais , Ácido Ascórbico/síntese química , Ácido Ascórbico/química , Ácido Ascórbico/toxicidade , Células CHO , Linhagem Celular Tumoral , Cricetulus , DNA/genética , Sequestradores de Radicais Livres/síntese química , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/toxicidade , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Lipossomos/síntese química , Lipossomos/química , Lipossomos/toxicidade , Camundongos , Tensoativos/síntese química , Tensoativos/química , Tensoativos/toxicidade , Transfecção/métodos , alfa-Tocoferol/síntese química , alfa-Tocoferol/química , alfa-Tocoferol/toxicidade
12.
Acta Pharmacol Sin ; 40(11): 1448-1456, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31015736

RESUMO

Gemcitabine (Gem) is a standard first-line treatment for pancreatic cancer (PC). However, its chemotherapeutic efficacy is hampered by various limitations such as short half-life, metabolic inactivation, and lack of tumor localizing. We previously synthesized a lipophilic Gem derivative (Gem formyl hexadecyl ester, GemC16) that exhibited improved antitumor activity in vitro. In this study, a target ligand N,N-dimethyl-1,3-propanediamine was conjugated to 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[hydroxyl succinimidyl (polyethylene glycol-2000)] (DSPE-PEG-NHS) to form DSPE-PEG-2N. Then, pancreas-targeting liposomes (2N-LPs) were prepared using the film dispersion-ultrasonic method. GemC16-loaded 2N-LPs displayed near-spherical shapes with an average size distribution of 157.2 nm (polydispersity index (PDI) = 0.201). The encapsulation efficiency of GemC16 was up to 97.3% with a loading capacity of 8.9%. In human PC cell line (BxPC-3) and rat pancreatic acinar cell line (AR42J), cellular uptake of 2N-LPs was significantly enhanced compared with that of unmodified PEG-LPs. 2N-LPs exhibited more potent in vitro cytotoxicity against BxPC-3 and AR42J cell lines than PEG-LPs. After systemic administration in mice, 2N-LPs remarkably increased drug distribution in the pancreas. In an orthotopic tumor mouse model of PC, GemC16-bearing liposomes were more effective in preventing tumor growth than free GemC16. Among these treatments, 2N-LPs showed the best curative effect. Together, 2N-LPs represent a promising nanocarrier to achieve pancreas-targeting drug delivery, and this work would provide new ideas for the chemotherapy of PC.


Assuntos
Antineoplásicos/uso terapêutico , Desoxicitidina/análogos & derivados , Portadores de Fármacos/química , Lipossomos/química , Pâncreas/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Desoxicitidina/administração & dosagem , Desoxicitidina/uso terapêutico , Diaminas/síntese química , Diaminas/química , Diaminas/toxicidade , Portadores de Fármacos/síntese química , Portadores de Fármacos/toxicidade , Sistemas de Liberação de Medicamentos/métodos , Lipossomos/síntese química , Lipossomos/toxicidade , Camundongos Endogâmicos C57BL , Pâncreas/patologia , Neoplasias Pancreáticas/patologia , Fosfatidiletanolaminas/síntese química , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/toxicidade , Polietilenoglicóis/síntese química , Polietilenoglicóis/química , Polietilenoglicóis/toxicidade , Gencitabina
13.
Regul Toxicol Pharmacol ; 103: 130-139, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30682377

RESUMO

Midkine antisense oligonucleotide (MK-ASODN) nanoliposomes have previously been shown to have inhibitory activity against hepatocellular carcinoma growth. Herein we report the 4-week sub-chronic toxicity of MK-ASODN nanoliposomes in SD rats. The adverse effects included loss of body weight gain and food consumption, peri-rhinal bleeding, piloerection, peri-anal filth, and kidney, liver, spleen, thymus, lung, and injection site lesions at high doses. Macroscopic changes were observed in the kidneys of the high-dose group, accompanied by a variation in urine protein and white blood cells, blood urea nitrogen, and serum creatinine. The increased spleen and liver coefficient, and the variation in circulating white blood cells, lymphocytes, and eosinophils in the high-dose group demonstrated that inflammation was caused by MK-ASODN nanoliposomes and was consistent with the macroscopic changes in the spleen and liver. The main necropsy findings of the animals that died were macroscopic changes in the lung. No severe toxic effects or mortalities occurred in the low- and medium-dose groups. However, a No Adverse Effect Level (NOAEL) was not identified since there were changes in organs deemed to be adverse at all dose levels. Thus, the maximum tolerated dose of MK-ASODN nanoliposomes for rats was considered to be 6 mg/kg/day.


Assuntos
Midkina/toxicidade , Nanopartículas/toxicidade , Oligonucleotídeos Antissenso/toxicidade , Animais , Relação Dose-Resposta a Droga , Feminino , Injeções Intravenosas , Lipossomos/administração & dosagem , Lipossomos/toxicidade , Fígado/efeitos dos fármacos , Masculino , Midkina/administração & dosagem , Midkina/sangue , Nanopartículas/administração & dosagem , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/sangue , Ratos , Ratos Sprague-Dawley , Baço/efeitos dos fármacos
14.
Phys Chem Chem Phys ; 20(26): 17829-17838, 2018 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-29923574

RESUMO

The aggregation processes of magnetic nanoparticles in biosystems are analysed by comparing the magnetic properties of three systems with different spatial distributions of the nanoparticles. The first one is iron oxide nanoparticles (NPs) of 14 nm synthesized by coprecipitation with two coatings, (3-aminopropyl)trimethoxysilane (APS) and dimercaptosuccinic acid (DMSA). The second one is liposomes with encapsulated nanoparticles, which have different configurations depending on the NP coating (NPs attached to the liposome surface or encapsulated in its aqueous volume). The last system consists of two cell lines (Pan02 and Jurkat) incubated with the NPs. Dynamic magnetic behaviour (AC) was analysed in liquid samples, maintaining their colloidal properties, while quasi-static (DC) magnetic measurements were performed on lyophilised samples. AC measurements provide a direct method for determining the effect of the environment on the magnetization relaxation of nanoparticles. Thus, the imaginary (χ'') component shifts to lower frequencies as the aggregation state increases from free nanoparticles to those attached or embedded into liposomes in cell culture media and more pronounced when internalized by the cells. DC magnetization curves show no degradation of the NPs after interaction with biosystems in the analysed timescale. However, the blocking temperature is shifted to higher temperatures for the nanoparticles in contact with the cells, regardless of the location, the incubation time, the cell line and the nanoparticle coating, supporting AC susceptibility data. These results indicate that the simple fact of being in contact with the cells makes the nanoparticles aggregate in a non-controlled way, which is not the same kind of aggregation caused by the contact with the cell medium nor inside liposomes.


Assuntos
Portadores de Fármacos/química , Lipossomos/química , Fenômenos Magnéticos , Nanopartículas de Magnetita/química , 1,2-Dipalmitoilfosfatidilcolina/química , Animais , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Portadores de Fármacos/toxicidade , Endocitose , Humanos , Lipossomos/toxicidade , Nanopartículas de Magnetita/toxicidade , Camundongos , Tamanho da Partícula , Propilaminas/química , Propilaminas/metabolismo , Propilaminas/toxicidade , Silanos/química , Silanos/metabolismo , Silanos/toxicidade , Succímero/química , Succímero/metabolismo , Succímero/toxicidade , Temperatura
15.
An Acad Bras Cienc ; 90(2 suppl 1): 2317-2329, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29694498

RESUMO

Creatine acts intracellularly as energy buffer and storage, demonstrating protective effects in animal models of neurodegenerative diseases. However, its permeability throught blood-brain barrier (BBB) is reduced. The aim of the present study was developing a carrier to facilitate the delivery of creatine to the central nervous system. Creatine nanoliposomes were produced, characterized and assayed in models of toxicity in vitro and in vivo. Particles showed negative zeta potential (-12,5 mV), polydispersity index 0.237 and medium-size of 105 nm, which was confirmed by transmission electron microscopy (TEM) images. Toxicity assay in vitro was evaluated with blank liposomes (no drug) or creatine nanoliposomes at concentrations of 0.02 and 0.2 mg/mL, that did not influence the viability of Vero cells. The result. of the comet assay that the nanoliposomes are not genotoxic, togeher with cell viability demonstrated that the nanoliposomes are not toxic. Besides, in vivo assays not demonstrate toxicity in hematological and biochemical markers of young rats. Nevertheless, increase content of creatine in the cerebral cortex tissue after subchronic treatment was observed. Altogether, results indicate increase permeability of creatine to the BBB that could be used as assay for in vivo studies to confirm improved effect than free creatine.


Assuntos
Encéfalo/efeitos dos fármacos , Creatina/toxicidade , Lipossomos/toxicidade , Nanopartículas/toxicidade , Polissorbatos/toxicidade , Animais , Encéfalo/ultraestrutura , Chlorocebus aethiops , Microscopia Eletrônica de Transmissão , Modelos Animais , Ratos , Ratos Wistar , Células Vero
16.
Anal Chem ; 89(13): 6936-6939, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28605896

RESUMO

Near-infrared persistent luminescence nanoparticles (NIR-PLNPs) are promising imaging agents due to deep tissue penetration, high signal-to-noise ratio, and repeatedly charging ability. Here, we report liposome-coated NIR-PLNPs (Lipo-PLNPs) as a novel persistent luminescence imaging guided drug carrier for chemotherapy. The Lipo-PLNP nanocomposite shows the advantages of superior persistent luminescence and high drug loading efficiency and enables autofluorescence-free and long-term tracking of drug delivery carriers with remarkable therapeutic effect.


Assuntos
Portadores de Fármacos/química , Lipossomos/química , Substâncias Luminescentes/química , Nanocompostos/química , Nanopartículas/química , Adenocarcinoma/tratamento farmacológico , Animais , Antineoplásicos/uso terapêutico , Portadores de Fármacos/síntese química , Portadores de Fármacos/toxicidade , Feminino , Humanos , Lipossomos/síntese química , Lipossomos/toxicidade , Substâncias Luminescentes/toxicidade , Células MCF-7 , Camundongos Endogâmicos BALB C , Nanocompostos/toxicidade , Nanopartículas/toxicidade , Paclitaxel/uso terapêutico
17.
Chemistry ; 23(25): 5920-5924, 2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-27726228

RESUMO

A series of (un-)charged NHC derivatives bearing two pentadecyl chains in the backbone was studied in detail to find cooperative effects between the membrane and the NHC derivative. The tendency to show lipid-like behavior is dependent on the properties of the NHC derivative headgroup, which can be modified on demand. The surface activity was investigated by film balance measurements, epifluorescence microscopy, and differential scanning calorimetry. Additionally the cytotoxicity was evaluated against different cell lines such as eukaryotic tumor cell lines. These novel lipid-like NHC derivatives offer a broad spectrum for biological applications.


Assuntos
Antineoplásicos/química , Lipídeos/química , 1,2-Dipalmitoilfosfatidilcolina/química , Animais , Antineoplásicos/síntese química , Antineoplásicos/toxicidade , Varredura Diferencial de Calorimetria , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Compostos Heterocíclicos/química , Humanos , Lipossomos/síntese química , Lipossomos/química , Lipossomos/toxicidade , Metano/análogos & derivados , Metano/química , Microscopia de Fluorescência
18.
Biomed Chromatogr ; 31(12)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28664536

RESUMO

Cationic liposomes (CLs) are novel nonviral vectors widely used for delivering drugs or genes. However, applications of CLs are largely hampered by their cytotoxicity, partly because the potential mechanism underlying the cytotoxicity of CLs remains unclear. The aim of the present study was to explore the underlying mechanism of cytotoxicity induced by CLs on HepG2 cells. Differential metabolites were identified and quantified using ultra-liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF/MS). The toxicity of CLs on HepG2 cells was evaluated by multivariate data analysis and statistics. Additionally, CCK-8 assay, heatmap, pathway and co-expression network were carried out to explore the relations between the metabolites and the pathways. The results showed a dose-dependent toxic effect of CLs on HepG2 cells, with an IC50 value of 119.9 µg/mL. Multivariate statistical analysis identified 42 potential metabolites between CLs exposure and control groups. Pathway analysis showed significant changes in pathways involving amino acid metabolism, energy metabolism, lipid metabolism and oxidative stress in the CLs exposure group vs the control group. Metabolites related to the above-mentioned pathways included phenylalanine, methionine, creatine, oxalacetic acid, glutathione, oxidized glutathione, choline phosphate and several unsaturated fatty acids, indicating that cells were disturbed in amino acid metabolism, energy and lipid supply when CLs exposure-induced injury occurred. It is concluded that CLs may induce cytotoxicity by enhancing reactive oxygen species in vitro, affect the normal process of energy metabolism, disturb several vital signaling pathways and finally induce cell death.


Assuntos
Cátions/toxicidade , Cromatografia Líquida de Alta Pressão/métodos , Lipossomos/toxicidade , Espectrometria de Massas/métodos , Metabolômica/métodos , Sobrevivência Celular/efeitos dos fármacos , Células Hep G2 , Humanos , Análise Multivariada , Reprodutibilidade dos Testes
19.
J Liposome Res ; 27(1): 74-82, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27126194

RESUMO

The aim of this study was to evaluate the in vitro cytotoxicity and the in vivo analgesic effect and local toxicity of the local anesthetic butamben (BTB) encapsulated in conventional or elastic liposomes incorporated in gel formulations. The results showed that both gel formulations of liposomal BTB reduced the cytotoxicity (p < 0.001; one-way ANOVA/Tukey's test) and increased the topical analgesic effect (p < 0.05; one-way ANOVA/Tukey's test) of butamben, compared to plain BTB gel. The gel formulations presented good rheological properties, and stability assays detected no differences in physicochemical stability up to 30 d after preparation. Moreover, histological assessment revealed no morphological changes in rat skin after application of any of the gel formulations tested.


Assuntos
Anestesia Local/efeitos adversos , Benzocaína/análogos & derivados , Modelos Animais de Doenças , Géis/toxicidade , Lipossomos/toxicidade , Células 3T3 , Administração Tópica , Animais , Benzocaína/administração & dosagem , Benzocaína/química , Benzocaína/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Géis/administração & dosagem , Géis/química , Injeções Intraperitoneais , Lipossomos/administração & dosagem , Lipossomos/química , Camundongos , Camundongos Endogâmicos BALB C , Ratos , Ratos Wistar
20.
Bioorg Med Chem Lett ; 26(16): 4025-9, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27426864

RESUMO

In our previous Letter, we have carried out the synthesis of a novel DDCTMA cationic lipid which was formulated with DOPE for gene delivery. Herein, we used folic acid (FA) as targeting ligand and cholesterol (Chol) as helper lipid instead of DOPE for enhancing the stability of the liposomes. These liposomes were characterized by dynamic laser scattering (DLS), transmission electron microscopy (TEM) and agarose gel electrophoresis assays of pDNA binding affinity. The lipoplexes were prepared by using different weight ratios of DDCTMA/Chol (1:1, 2:1, 3:1, 4:1) liposomes and different concentrations of FA (50-200µg/mL) combining with pDNA. The transfection efficiencies of the lipoplexes were evaluated using pGFP-N2 and pGL3 plasmid DNA against NCI-H460 cells in vitro. Among them, the optimum gene transfection efficiency with DDCTMA/Chol (3:1)/FA (100µg/mL) was obtained. The results showed that FA could improve the gene transfection efficiencies of DDCTMA/Chol cationic liposome. Our results also convincingly demonstrated FA (100µg/mL)-coated DDCTMA/Chol (3:1) cationic liposome could serve as a promising candidate for the gene delivery.


Assuntos
Ácido Fólico/química , Lipossomos/metabolismo , Transfecção , Cátions/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Colesterol/química , Difusão Dinâmica da Luz , Genes Reporter , Humanos , Lipossomos/química , Lipossomos/toxicidade , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Plasmídeos/química , Plasmídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA