Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 736
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Comput Chem ; 44(22): 1807-1816, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37158307

RESUMO

The experimental gas-phase thermochemistry of reactions: M+ (S)n-1 + S → M+ (S)n and M+ + nS→ M+ (S)n , where M is an alkali metal and S is acetonitrile/ammonia, is reproduced. Three approximations are tested: (1) scaled rigid-rotor-harmonic-oscillator (sRRHO); (2) the sRRHO(100) identical to (1), but with all vibrational frequencies smaller than 100 cm-1 replaced with 100 cm-1 ; (3) Grimme's modified scaled RRHO (msRRHO) (Grimme, Chem. Eur. J., 2012, 18, 9955-9964). The msRRHO approach provides the most accurate reaction entropies with the mean unsigned error (MUE) below 5.5 cal mol-1 K-1 followed by sRRHO(100) and sRRHO with MUEs of 7.2 and 16.9 cal mol-1 K-1 . For the first time, we propose using the msRRHO scheme to calculate the enthalpy contribution that is further utilized to arrive at reaction Gibbs free energies (∆Gr ) ensuring the internal consistency. The final ∆Gr MUEs for msRRHO, sRRHO(100) and sRRHO schemes are 1.2, 3.6 and 3.1 kcal mol-1 .


Assuntos
Metais Alcalinos , Ligantes , Termodinâmica , Entropia
2.
Phys Chem Chem Phys ; 25(44): 30308-30318, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37934509

RESUMO

Acetylcholinesterase (AChE) is an important hydrolase in cholinergic synapses and a candidate target in the treatment of Alzheimer's disease. The lithium treatment widely used in neurological disorders can alter the AChE activity, yet the underlying mechanism of how the ion species regulate the enzymatic activity remains unclear. In this work, we performed combined quantum mechanics/molecular mechanics (QM/MM) and molecular dynamics (MD) simulations and well-tempered metadynamics to understand the modulation of human AChE (hAChE) activity using three alkali metal ions (Li+, Na+, and K+) in different concentrations. Our simulations show that the binding affinity and catalytic activity are affected by different ion species through allosteric ion coordination geometries on the hAChE complex and distant electrostatic screening effect. A Li+ cluster involving D330, E393, and D397 residues and three Li+ ions was found to be highly conserved and can be critical to the enzyme activity. Binding energy calculations indicate that the electrostatic screening from allosterically bound cations can affect the key residues at the catalytic site and active-site gorge, including E199. Furthermore, an increase in ion concentration can lead to lower reactivity, especially for Li+ ions, which exhibit more cation-hAChE contacts than Na+ and K+. The selective ion binding and their preferred modulation on hAChE are highly related to ion species. This work provides a molecular perspective on selective modulation by different ion species of the enzyme catalytic processes.


Assuntos
Acetilcolinesterase , Metais Alcalinos , Humanos , Acetilcolinesterase/química , Metais Alcalinos/química , Lítio/química , Sódio/química , Cátions
3.
Bioorg Chem ; 141: 106914, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37857065

RESUMO

Bioactive phenolic compounds are commonly found in medications, with examples including apomorphine, estrone, thymol, estradiol, propofol, o-phenylphenol, l-Dopa, doxorubicin, tetrahydrocannabinol (THC), and cannabidiol (CBD). This study is the first to explore the creation and assessment of metal and ammonium phenolate salts using CBD as an example. CBD is used in medicine to treat anxiety, insomnia, chronic pain, and inflammation, but its bioavailability is limited due to poor water solubility. In this study exploit a synthetic route to convert CBD into anionic CBD-salts to enhance water solubility. Various CBD-salts with metal and ammonium counterions such as lithium (Li+), sodium (Na+), potassium (K+), choline hydroxide ([(CH3)3NCH2CH2OH]+), and tetrabutylammonium ([N(C4H9)4]+) have been synthesized and characterized. These salts are obtained in high yields, ranging from 74 % to 88 %, through a straightforward dehydration reaction between CBD and alkali metal hydroxides (LiOH, NaOH, KOH) or ammonium hydroxides (choline hydroxide, tetrabutylammonium hydroxide). These reactions are conducted in either ethanol, methanol, or a methanol:water mixture, maintaining a 1:1 molar ratio between the reactants. Comprehensive characterization using Fourier-Transform Infrared Spectroscopy (FT-IR), Nuclear Magnetic Resonance (NMR) spectroscopy, and elemental (CHN) analysis confirms the formation of CBD-salts, as evidenced by the absence of aromatic hydroxyl resonances or stretching frequencies. The molecular formulas of CBD salts were determined based on CHN analysis, and CBD quantification from acid regeneration experiments. Characterization data confirms that each CBD phenolate in a specific CBD salt was electrostatically stabilized by one of the either alkali metal or ammonium ion. The CBD-salts are highly susceptible to acidic conditions, readily reverting back to the original CBD. The percentage and purity of CBD in the CBD-metal/ammonium salts have been studied using High-Performance Liquid Chromatography (HPLC) analysis. Solubility studies indicate that the conversion of CBD into CBD salts significantly enhances its solubility in water, ranging from 110 to 1606 folds greater than pure CBD. Furthermore, the pharmacokinetic evaluation of oral administration of CBD-salts compared to CBD were determined in rats.


Assuntos
Compostos de Amônio , Canabidiol , Metais Alcalinos , Ratos , Animais , Canabidiol/química , Canabidiol/farmacocinética , Sais/química , Espectroscopia de Infravermelho com Transformada de Fourier , Metanol , Metais Alcalinos/química , Preparações Farmacêuticas , Sódio/química , Fenóis , Colina , Hidróxidos , Água
4.
Environ Res ; 239(Pt 2): 117347, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37821062

RESUMO

Controlling the nanoscale synthesis of semiconductor TiO2 on a fixed substrate has fascinated the curiosity of academics for decades. Synthesis development is required to give an easy-to-control technique and parameters for TiO2 manufacture, leading to advancements in prospective applications such as photocatalysts. This study, mixed-phase TiO2(B)/other titania thin films were synthesized on a fused quartz substrate utilizing a modified Chemical vapor depodition involving alkali-metal ions (Li+, Na+, and K+) solution pre-treatment. It was discovered that different cations promote dramatically varied phases and compositions of thin films. The films had a columnar structure with agglomerated irregular-shaped particles with a mean thickness of 800-2000 nm. Na+ ions can promote TiO2(B) more effectively than K+ ions, however Li+ ions cannot synthesize TiO2(B). The amounts of TiO2(B) in thin films increase with increasing alkali metal (K+ and Na+) concentration. According to experimental and DFT calculations, the hypothesized TiO2(B) production mechanism happened via the meta-stable intermediate alkaline titanate transformation caused by alkali-metal ion diffusion. The mixed phase of TiO2(B) and anatase TiO2 on the fixed substrate (1 × 1 cm2) obtained from Na+ pre-treated procedures showed significant photocatalytic activity for the degradation of methylene blue. K2Ti6O12, Li2TiO3, Rutile TiO2, and Brookite TiO2 phase formations produced by K+ and Li + pretreatment are low activity photocatalysts. Photocatalytic activities were more prevalent in NaOH pre-treated samples (59.1% dye degradation) than in LiOH and KOH pre-treated samples (49.6% and 34.2%, respectively). This revealed that our developed CVD might generate good photocatalytic thin films of mixed-phase TiO2(B)/anatase TiO2 on any substrate, accelerating progress in future applications.


Assuntos
Doenças Cardiovasculares , Metais Alcalinos , Humanos , Compostos Azo , Catálise , Cátions , Lítio , Álcalis
5.
Luminescence ; 38(9): 1562-1571, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37309260

RESUMO

A series of Mn4+ -doped and Mn4+ ,K+ -co-doped Ba2 LaTaO6 (BLT) double-perovskite phosphors was synthesized using a high-temperature solid-state reaction. The phase purity and luminescence properties were also studied. The optimum doping concentration of Mn4+ and K+ was obtained by investigating the photoluminescence excitation spectra and photoluminescence emission spectra. The comparison of BLT:Mn4+ phosphors with and without K+ ions shows that the photoluminescence intensity of K+ -doped phosphors was greatly enhanced. This is because there was a charge difference when Mn4+ ions were doped with Ta5+ ions in BLT. Mn4+ -K+ ion pairs were formed after doping K+ ions, which hinders the nonradiative energy transfer between Mn4+ ions. Therefore, the luminescence intensity, quantum yield, and thermal stability of phosphors were enhanced. The electroluminescence spectra of BLT:Mn4+ and BLT:Mn4+ ,K+ were measured. The spectra showed that the light emitted from the phosphors corresponded well with chlorophyll a and phytochrome PR . The results show that the BLT:Mn4+ ,K+ phosphors had good luminescence properties and application prospects and are ideal materials for plant-illuminated red phosphors.


Assuntos
Iluminação , Metais Alcalinos , Clorofila A , Luminescência , Íons
6.
Int J Mol Sci ; 24(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36834487

RESUMO

This article investigated the structure, and the spectroscopic and antimicrobial properties of mandelic acid and its alkali metal salts. The electron charge distribution and aromaticity in the analyzed molecules were investigated using molecular spectroscopy methods (FT-IR, FT-Raman, 1H NMR, and 13C NMR) and theoretical calculations (structure, NBO, HOMO, LUMO, energy descriptors, and theoretical IR and NMR spectra). The B3LYP/6-311++G(d,p) method was used in the calculations. The antimicrobial activities of mandelic acid and its salt were tested against six bacteria: Gram-positive Listeria monocytogenes ATCC 13932, Staphylococcus aureus ATCC 25923, Bacillus subtilis ATCC 6633, and Loigolactobacillus backii KKP 3566; Gram-negative Escherichia coli ATCC 25922 and Salmonella Typhimurium ATCC 14028, as well as two yeast species, Rhodotorulla mucilaginosa KKP 3560 and Candida albicans ATCC 10231.


Assuntos
Anti-Infecciosos , Metais Alcalinos , Sais/química , Espectroscopia de Infravermelho com Transformada de Fourier , Elétrons , Metais Alcalinos/química , Anti-Infecciosos/química , Análise Espectral Raman
7.
Int J Mol Sci ; 24(20)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37895065

RESUMO

Nucleoside radicals are key intermediates in the process of DNA damage, and alkali metal ions are a common group of ions in living organisms. However, so far, there has been a significant lack of research on the structural effects of alkali metal ions on nucleoside free radicals. In this study, we report a new method for generating metalized nucleoside radical cations in the gas phase. The radical cations [Ade+M-H]•+ (M = Li, Na) are generated by the 280 nm ultraviolet photodissociation (UVPD) of the precursor ions of lithiated and sodiated ions of 2-iodoadenine in a Fourier transform ion cyclotron resonance (FT ICR) cell. Further infrared multiphoton dissociation (IRMPD) spectra of both radical cations were recorded in the region of 2750-3750 cm-1. By combining these results with theoretical calculations, the most stable isomers of both radicals can be identified, which share the common characteristics of triple coordination patterns of the metal ions. For both radical species, the lowest-energy isomers undergo hydrogen transfer. Although the sugar ring in the most stable isomer of [Ade+Li-H]•+ is in a (South, syn) conformation similar to that of [Ado+Na]+, [Ade+Na-H]•+ is distinguished by the unexpected opening of the sugar ring. Their theoretical spectra are in good agreement with experimental spectra. However, due to the flexibility of the structures and the complexity of their potential energy surfaces, the hydrogen transfer pathways still need to be further studied. Considering that the free radicals formed directly after C-I cleavage have some similar spectral characteristics, the existence of these corresponding isomers cannot be ruled out. The findings imply that the structures of nucleoside radicals may be significantly influenced by the attached alkali metal ions. More detailed experiments and theoretical calculations are still crucial.


Assuntos
Adenosina , Metais Alcalinos , Nucleosídeos , Metais Alcalinos/química , Lítio/química , Sódio/química , Cátions/química , Hidrogênio , Modelos Teóricos , Açúcares , Radicais Livres , Análise Espectral
8.
J Am Chem Soc ; 144(12): 5200-5213, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35294171

RESUMO

Phase-transfer catalysis (PTC) is one of the most powerful catalytic manifolds for asymmetric synthesis. Chiral cationic or anionic PTC strategies have enabled a variety of transformations, yet studies on the use of insoluble inorganic salts as nucleophiles for the synthesis of enantioenriched molecules have remained elusive. A long-standing challenge is the development of methods for asymmetric carbon-fluorine bond formation from readily available and cost-effective alkali metal fluorides. In this Perspective, we describe how H-bond donors can provide a solution through fluoride binding. We use examples, primarily from our own research, to discuss how hydrogen bonding interactions impact fluoride reactivity and the role of H-bond donors as phase-transfer catalysts to bring solid-phase alkali metal fluorides in solution. These studies led to hydrogen bonding phase-transfer catalysis (HB-PTC), a new concept in PTC, originally crafted for alkali metal fluorides but offering opportunities beyond enantioselective fluorination. Looking ahead, the unlimited options that one can consider to diversify the H-bond donor, the inorganic salt, and the electrophile, herald a new era in phase-transfer catalysis. Whether abundant inorganic salts of lattice energy significantly higher than those studied to date could be considered as nucleophiles, e.g., CaF2, remains an open question, with solutions that may be found through synergistic PTC catalysis or beyond PTC.


Assuntos
Fluoretos , Metais Alcalinos , Catálise , Fluoretos/química , Ligação de Hidrogênio , Sais
9.
J Am Chem Soc ; 144(32): 14778-14789, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35930460

RESUMO

Chalcogen bonding (ChB) is rapidly rising to prominence in supramolecular chemistry as a powerful sigma (σ)-hole-based noncovalent interaction, especially for applications in the field of molecular recognition. Recent studies have demonstrated ChB donor strength and potency to be remarkably sensitive to local electronic environments, including redox-switchable on/off anion binding and sensing capability. Influencing the unique electronic and geometric environment sensitivity of ChB interactions through simultaneous cobound metal cation recognition, herein, we present the first potassium chloride-selective heteroditopic ion-pair receptor. The direct conjugation of benzo-15-crown-5 ether (B15C5) appendages to Te centers in a bis-tellurotriazole framework facilitates alkali metal halide (MX) ion-pair binding through the formation of a cofacial intramolecular bis-B15C5 M+ (M+ = K+, Rb+, Cs+) sandwich complex and bidentate ChB···X- formation. Extensive quantitative 1H NMR ion-pair affinity titration experiments, solid-liquid and liquid-liquid extraction, and U-tube transport studies all demonstrate unprecedented KCl selectivity over all other group 1 metal chlorides. It is demonstrated that the origin of the receptor's ion-pair binding cooperativity and KCl selectivity arises from an electronic polarization of the ChB donors induced by the cobound alkali metal cation. Importantly, the magnitude of this switch on Te-centered electrophilicity, and therefore anion-binding affinity, is shown to correlate with the inherent Lewis acidity of the alkali metal cation. Extensive computational DFT investigations corroborated the experimental alkali metal cation-anion ion-pair binding observations for halides and oxoanions.


Assuntos
Calcogênios , Metais Alcalinos , Ânions/química , Cátions/química , Cloretos , Cloreto de Potássio
10.
Chemistry ; 28(18): e202104260, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35170823

RESUMO

Arylmethyl anions allow alkali-metals to bind in a σ-fashion to the lateral carbanionic centre or a π-fashion to the aryl ring or in between these extremities, with the trend towards π bonding increasing on descending group 1. Here we review known alkali metal structures of diphenylmethane, fluorene, 2-benzylpyridine and 4-benzylpyridine. Next, we synthesise Li, Na, K monomers of these diarylmethyls using polydentate donors PMDETA or Me6 TREN to remove competing oligomerizing interactions, studying the effect that two aromatic rings has on negative charge (de)localisation via NMR, X-ray crystallographic and DFT studies. Diphenylmethyl and fluorenyl anions maintain C(H)-M interactions regardless of alkali-metal, although the adjacent arene carbons engage in interactions with larger alkali-metals. Introducing a nitrogen atom into the ring (at the 2- or 4-position) encourages relocalisation of negative charge away from the deprotonated carbon and onto nitrogen. Phenyl(2-pyridyl)methyl moves from an enamide formation at one extremity (lithium) to an aza-allyl formation at the other extremity (potassium), while C- or N-coordination modes become energetically viable for Na and K phenyl(4-pyridyl)methyl complexes.


Assuntos
Metais Alcalinos , Álcalis , Ânions/química , Cátions/química , Metais Alcalinos/química , Modelos Moleculares
11.
Chemphyschem ; 23(14): e202200183, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35513345

RESUMO

The alkali metal sesquioxides A4 O6 (A=K, Rb, Cs) are mixed-valent with respect to oxygen and display several degrees of electronic and structural freedom, which give rise to diverse transport and ordering processes. We report on analyses of the respective underlying excitations by diffuse reflectance spectroscopy and thermally activated electron transport. Backed by DFT based band structure calculations we identify three possible mechanisms, inter valence charge transfer from peroxide to superoxide, excitation across the Jahn-Teller gap of tilted superoxide anions, and polaron migration. The activation energies as found by the three different approaches are in a rather narrow range of 0.62-0.89 eV for Rb4 O6 and 0.49-0.65 eV for Cs4 O6 , confirming opacity in the full range of visible light. The effect of the phase transition from cubic to tetragonal as demonstrated for the caesium representative corresponds to a marginal shift to higher activation energy.


Assuntos
Metais Alcalinos , Superóxidos , Transporte de Elétrons , Luz , Análise Espectral
12.
Int Microbiol ; 25(4): 745-758, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35768673

RESUMO

Cesium (Cs+) enters environments largely because of global release into the environment from weapons testing and accidents such as Fukushima Daiichi and Chernobyl nuclear waste. Even at low concentrations, Cs+ is highly toxic to ecological receptors because of its physicochemical similarity to macronutrient potassium (K+). We investigated the uptake and accumulation of Cs+ by Arthrobacter globiformis strain 151B in reference to three similar alkali metal cations rubidium (Rb+), sodium (Na+), and potassium (K+). The impact of hexavalent chromium (Cr+6) as a co-contaminant was also evaluated. A. globiformis 151B accumulated Cs+ and Cr6+ in a time-dependent fashion. In contrast, the uptake and accumulation of Rb+ did not exhibit any trends. An exposure to Cs+, Rb+, and Cr+6 triggered a drastic increase in K+ and Na+ uptake by the bacterial cells. That was followed by the efflux of K+ and Na+, suggesting a Cs+ "substitution." Two-dimensional gel-electrophoresis of bacterial cell proteomes with the following mass-spectrometry of differentially expressed bands revealed that incubation of bacterial cells with Cs+ induced changes in the expression of proteins involved in the maintenance of cellular homeostasis and reactive oxygen species removal. The ability of A. globiformis 151B to mediate the uptake and accumulation of cesium and hexavalent chromium suggests that it possesses wide-range bioremediation potential.


Assuntos
Metais Alcalinos , Resíduos Radioativos , Álcalis , Arthrobacter , Biodegradação Ambiental , Cátions/análise , Césio/análise , Césio/metabolismo , Cromo , Potássio/análise , Potássio/metabolismo , Proteoma , Resíduos Radioativos/análise , Espécies Reativas de Oxigênio , Rubídio/análise , Rubídio/metabolismo , Sódio/metabolismo
13.
Inorg Chem ; 61(49): 19838-19846, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36503245

RESUMO

We report the oxidative addition of phenylsilane to the complete series of alkali metal (AM) aluminyls [AM{Al(NONDipp)}]2 (AM = Li, Na, K, Rb, and Cs). Crystalline products (1-AM) have been isolated as ether or THF adducts, [AM(L)n][Al(NONDipp)(H)(SiH2Ph)] (AM = Li, Na, K, Rb, L = Et2O, n = 1; AM = Cs, L = THF, n = 2). Further to this series, the novel rubidium rubidiate, [{Rb(THF)4}2(Rb{Al(NONDipp)(H)(SiH2Ph)}2)]+ [Rb{Al(NONDipp)(H)(SiH2Ph)}2]-, was isolated during an attempted recrystallization of Rb[Al(NONDipp)(H)(SiH2Ph)] from a hexane/THF mixture. Structural and spectroscopic characterizations of the series 1-AM confirm the presence of µ-hydrides that bridge the aluminum and alkali metals (AM), with multiple stabilizing AM···π(arene) interactions to either the Dipp- or Ph-substituents. These products form a complete series of soluble, alkali metal (hydrido) aluminates that present a platform for further reactivity studies.


Assuntos
Metais Alcalinos , Metais Alcalinos/química , Sódio/química , Lítio , Rubídio/química , Íons
14.
Environ Sci Technol ; 56(6): 3739-3747, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35212519

RESUMO

The V2O5/TiO2 (VTi) catalyst has been widely employed for the NH3 selective catalytic reduction (NH3-SCR) reaction, and sulfur (S) and alkali metals (K) were usually considered as poisons during this reaction. In this work, the synergistic effect of S and K over the VTi catalyst for the NH3-SCR reaction was analyzed and discussed. It is surprisingly observed that the synergistic effects of S and K exhibited a detoxification effect on the NH3-SCR reaction. That is, although the VTi catalyst exhibited moderate resistance to S poisoning and unsatisfactory resistance to K deactivation, the SCR activity was restored to close to fresh VTi when K and S coexisted. This detoxification effect also could occur between other alkali metals (e.g., Ca and Na) and sulfur. X-ray photoelectron spectroscopy and charge density difference studies both indicate that the introduction of K could significantly affect the electronic structure of V, but this toxic effect was recovered by the further addition of S because of the strong interaction between S and K. Therefore, this detoxification effect can occur in the practical reaction atmosphere, which alleviates the alkali metal poisoning of commercial catalysts.


Assuntos
Amônia , Metais Alcalinos , Amônia/química , Catálise , Enxofre , Titânio/química
15.
Phys Chem Chem Phys ; 24(35): 20803-20812, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36000593

RESUMO

K+ channels allow selective permeation of K+, but not physiologically abundant Na+, at almost diffusion limit rates. The conduction mechanism of K+ channels is still controversial, with experimental and computation studies supporting two distinct conduction mechanisms: either with or without water inside the channel. Here, we employ a bottom-up approach on hydrated alkali metal complexes of a model peptide of K+ channels, Ac-Tyr-NHMe, to characterize metal-peptide, metal-water, and water-peptide interactions that govern the selectivity of K+ channels at a molecular level. Both the extension to the series of alkali metal ions and to temperature-dependent studies (approaching physiological values) have revealed the clear difference between permeable and non-permeable ions in the spectral features of the ion complexes. Furthermore, the impact of hydration is discussed in relation to the K+ channels by comparisons of the non-hydrated and hydrated complexes.


Assuntos
Complexos de Coordenação , Metais Alcalinos , Álcalis , Íons/química , Lasers , Metais Alcalinos/química , Peptídeos , Análise Espectral , Água/química
16.
Phys Chem Chem Phys ; 24(37): 22950-22959, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36125205

RESUMO

The gas-phase structures of cationized glycine (Gly), including complexes with Li+, Na+, K+, Rb+, and Cs+, are examined using infrared multiple-photon dissociation (IRMPD) spectroscopy utilizing light generated by a free electron laser, in conjunction with ab initio calculations. To identify the structures present in the experimental studies, measured IRMPD spectra are compared to spectra calculated at B3LYP/6-311+G(d,p) for the Li+, Na+, and K+ complexes and at B3LYP/def2TZVP for the Rb+ and Cs+ complexes. Single-point energy calculations were carried out at the B3LYP, B3P86, and MP2(full) levels using the 6-311+G(2d,2p) basis set for Li+, Na+, K+ and the def2TZVPP basis set for Rb+ and Cs+. The Li+ and Na+ complexes are identified as metal cation coordination to the amino nitrogen and carbonyl oxygen, [N,CO]-tt, although Na+(Gly) may have contributions from additional structures. The heavier metal cations coordinate to either the carbonyl oxygen, [CO]-cc, or the carbonyl oxygen and hydroxy oxygen, [CO,OH]-cc, with the former apparently preferred for Rb+ and Cs+ and the latter for K+. These two structures reside in a double-well potential and different levels of theory predict very different relative stabilities. Some experimental evidence is provided that MP2(full) theory provides the most accurate relative energies.


Assuntos
Glicina , Metais Alcalinos , Cátions/química , Glicina/química , Metais Alcalinos/química , Conformação Molecular , Oxigênio
17.
Environ Res ; 214(Pt 4): 114093, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35998690

RESUMO

The high moisture content and heavy metal concentration of hyperaccumulator are the main bottlenecks of resource utilization. Supercritical water gasification technology was used to convert Sedum plumbizincicola (a hyperaccumulator of Zn and Cd) into hydrogen gas and to immobilize HMs into biochar. Homogeneous alkali metal catalysts such as NaOH, Na2CO3 and Ca(OH)2 were added to optimize the experimental conditions. The results showed that NaOH was effective in capturing CO2in-situ, thereby shifting the water-gas shift reaction equilibrium in the forward direction. And the increase of NaOH concentration had a significant promotion effect on hydrogen production. In the non-catalytic gasification of Sedum plumbizincicola, the highest hydrogen (1.5 mol/kg) and H2 selectivity (22.9%) with greater carbon gasification efficiency (19.3%) and lower H2 gasification efficiency (8.7%) of the gas products were obtained at 400 °C with 6 wt% material concentration for 20 min. However, NaOH at 5% mass fraction maximized hydrogen and H2 selectivity up to 7.5 and 98.2%, respectively. Alkali catalyst not only promoted the generation of hydrogen-rich bio-gas but also enhanced the immobilization efficiency of heavy metals. Compared to non-catalytic, when the addition amount of NaOH was 1 wt%, the Zn、Mn、Cd、Pb、Cr accumulated in biochar increased significantly for 76.8, 42.5, 80.8, 75.6 and 80.0%, respectively. This study highlights the remarkable ability of SCWG with alkali catalyst for hydrogen production and heavy metal stabilization.


Assuntos
Metais Alcalinos , Metais Pesados , Álcalis , Cádmio , Hidrogênio , Hidróxido de Sódio , Água
18.
Environ Res ; 205: 112429, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34863693

RESUMO

In the present work we compared the biological activity of mandelic acid (MA) and its Li, Na, K, Rb and Cs salts. The study also investigated the effect of raw wastewaters (RW) and treated wastewaters (TW), comparable to microbial medium (MM) on the biological activity of the tested chemical compounds used in concentrations of 5; 2.5; 1.25; 0.625; 0.3125 mg/ml. In the present experiment the evaluation of the following parameters was performed: E. coli (ATCC 25922) cells viability, growth inhibition of E. coli (ATCC 25922), the inhibition of GFP protein, genotoxicity and ROS generation. Our results showed that three main factors differentiated the antibacterial activity of MA and its Li, Na, K, Rb and Cs salts: study environment (MM, RW, TW), metal forming salt of mandelic acid and concentration of tested compounds. Additionally, raw and treated wastewater, compared to microbial medium, changes the antimicrobial activity of MA and its salts in relation to the E. coli strain. We also detected that both MA and its salts affect the GFP protein and the induction of the recA promoter (genotoxicity test). The activity of the tested salts in relation to these two parameters is strictly dependent on the type of salt-forming metal and the concentration used. The analysis of ROS synthesis suggests that in the majority of the studied mandelic acid salts, oxidative stress is the dominant mechanism of cytotoxicity and genotoxicity. We also showed that both raw wastewaters (RW) and treated wastewaters (TW), compared to microbial medium (MM), change significantly the activity of MA and its salts.


Assuntos
Metais Alcalinos , Águas Residuárias , Escherichia coli , Ácidos Mandélicos , Sais/farmacologia , Águas Residuárias/toxicidade
19.
J Chem Phys ; 157(17): 174301, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36347691

RESUMO

Using infrared predissociation spectroscopy of cryogenic ions, we revisit the vibrational spectra of alkali metal ion (Li+, Na+, K+) di- and triglycine complexes. We assign their most stable conformation, which involves metal ion coordination to all C=O groups and an internal NH⋯NH2 hydrogen bond in the peptide backbone. An analysis of the spectral shifts of the OH and C=O stretching vibrations across the different metal ions and peptide chain lengths shows that these are largely caused by the electric field of the metal ion, which varies in strength as a function of the square of the distance. The metal ion-peptide interaction also remotely modulates the strength of internal hydrogen bonding in the peptide backbone via the weakening of the amide C=O bond, resulting in a decrease in internal hydrogen bond strength from Li+ > Na+ > K+.


Assuntos
Hidrogênio , Metais Alcalinos , Ligação de Hidrogênio , Vibração , Metais Alcalinos/química , Íons/química , Metais/química , Sódio/química , Ácido Nitrilotriacético , Peptídeos/química
20.
Int J Mol Sci ; 23(9)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35563161

RESUMO

Graphene doped by alkali atoms (ACx) supports two heavily populated bands (π and σ) crossing the Fermi level, which enables the formation of two intense two-dimensional plasmons: the Dirac plasmon (DP) and the acoustic plasmon (AP). Although the mechanism of the formation of these plasmons in electrostatically biased graphene or at noble metal surfaces is well known, the mechanism of their formation in alkali-doped graphenes is still not completely understood. We shall demonstrate that two isoelectronic systems, KC8 and CsC8, support substantially different plasmonic spectra: the KC8 supports a sharp DP and a well-defined AP, while the CsC8 supports a broad DP and does not support an AP at all. We shall demonstrate that the AP in an ACx is not, as previously believed, just a consequence of the interplay of the π and σ intraband transitions, but a very subtle interplay between these transitions and the background screening, caused by the out-of-plane interband C(π)→A(σ) transitions.


Assuntos
Grafite , Metais Alcalinos , Acústica , Álcalis , Ressonância de Plasmônio de Superfície/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA