Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 250
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(8): e2214085120, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36787360

RESUMO

G-protein metallochaperone MeaB in bacteria [methylmalonic aciduria type A (MMAA) in humans] is responsible for facilitating the delivery of adenosylcobalamin (AdoCbl) to methylmalonyl-CoA mutase (MCM), the only AdoCbl-dependent enzyme in humans. Genetic defects in the switch III region of MMAA lead to the genetic disorder methylmalonic aciduria in which the body is unable to process certain lipids. Here, we present a crystal structure of Methylobacterium extorquens MeaB bound to a nonhydrolyzable guanosine triphosphate (GTP) analog guanosine-5'-[(ß,γ)-methyleno]triphosphate (GMPPCP) with the Cbl-binding domain of its target mutase enzyme (MeMCMcbl). This structure provides an explanation for the stimulation of the GTP hydrolyase activity of MeaB afforded by target protein binding. We find that upon MCMcbl association, one protomer of the MeaB dimer rotates ~180°, such that the inactive state of MeaB is converted to an active state in which the nucleotide substrate is now surrounded by catalytic residues. Importantly, it is the switch III region that undergoes the largest change, rearranging to make direct contacts with the terminal phosphate of GMPPCP. These structural data additionally provide insights into the molecular basis by which this metallochaperone contributes to AdoCbl delivery without directly binding the cofactor. Our data suggest a model in which GTP-bound MeaB stabilizes a conformation of MCM that is open for AdoCbl insertion, and GTP hydrolysis, as signaled by switch III residues, allows MCM to close and trap its cofactor. Substitutions of switch III residues destabilize the active state of MeaB through loss of protein:nucleotide and protein:protein interactions at the dimer interface, thus uncoupling GTP hydrolysis from AdoCbl delivery.


Assuntos
Metalochaperonas , Chaperonas Moleculares , Humanos , Chaperonas Moleculares/metabolismo , Metilmalonil-CoA Mutase/química , Metilmalonil-CoA Mutase/genética , Metilmalonil-CoA Mutase/metabolismo , Nucleotídeos , Guanosina Trifosfato/metabolismo
2.
J Biol Chem ; 300(9): 107662, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39128713

RESUMO

Propionic acid links the oxidation of branched-chain amino acids and odd-chain fatty acids to the TCA cycle. Gut microbes ferment complex fiber remnants, generating high concentrations of short chain fatty acids, acetate, propionate and butyrate, which are shared with the host as fuel sources. Analysis of vitamin B12-dependent propionate utilization in skin biopsy samples has been used to characterize and diagnose underlying inborn errors of cobalamin (or B12) metabolism. In these cells, the B12-dependent enzyme, methylmalonyl-CoA mutase (MMUT), plays a central role in funneling propionate to the TCA cycle intermediate, succinate. Our understanding of the fate of propionate in other cell types, specifically, the involvement of the ß-oxidation-like and methylcitrate pathways, is limited. In this study, we have used [14C]-propionate tracing in combination with genetic ablation or inhibition of MMUT, to reveal the differential utilization of the B12-dependent and independent pathways for propionate metabolism in fibroblast versus colon cell lines. We demonstrate that itaconate can be used as a tool to investigate MMUT-dependent propionate metabolism in cultured cell lines. While MMUT gates the entry of propionate carbons into the TCA cycle in fibroblasts, colon-derived cell lines exhibit a quantitatively significant or exclusive reliance on the ß-oxidation-like pathway. Lipidomics and metabolomics analyses reveal that propionate elicits pleiotropic changes, including an increase in odd-chain glycerophospholipids, and perturbations in the purine nucleotide cycle and arginine/nitric oxide metabolism. The metabolic rationale and the regulatory mechanisms underlying the differential reliance on propionate utilization pathways at a cellular, and possibly tissue level, warrant further elucidation.


Assuntos
Metilmalonil-CoA Mutase , Propionatos , Vitamina B 12 , Humanos , Propionatos/metabolismo , Propionatos/farmacologia , Vitamina B 12/metabolismo , Metilmalonil-CoA Mutase/metabolismo , Metilmalonil-CoA Mutase/genética , Ciclo do Ácido Cítrico , Fibroblastos/metabolismo , Colo/metabolismo
3.
Hum Genomics ; 18(1): 84, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075538

RESUMO

BACKGROUND: Isolated methylmalonic acidemia, an autosomal recessive disorder of propionate metabolism, is usually caused by mutations in the methylmalonyl-CoA mutase gene (mut-type). Because no universal consensus was made on whether mut-type methylmalonic acidemia should be included in newborn screening (NBS), we aimed to compare the outcome of this disorder detected by NBS with that detected clinically and investigate the influence of NBS on the disease course. DESIGN & METHODS: In this study, 168 patients with mut-type methylmalonic acidemia diagnosed by NBS were compared to 210 patients diagnosed after disease onset while NBS was not performed. Clinical data of these patients from 7 metabolic centers in China were analyzed retrospectively, including initial manifestations, biochemical metabolites, the responsiveness of vitamin B12 therapy, and gene variation, to explore different factors on the long-term outcome. RESULTS: By comparison of the clinically-diagnosed patients, NBS-detected patients showed younger age at diagnosis, less incidence of disease onset, better responsiveness of vitamin B12, younger age at start of treatment, lower levels of biochemical features before and after treatment, and better long-term prognosis (P < 0.01). Onset of disease, blood C3/C2 ratio and unresponsiveness of vitamin B12 were more positively associated with poor outcomes of patients whether identified by NBS. Moreover, the factors above as well as older age at start of treatment were positively associated with mortality. CONCLUSIONS: This research highly demonstrated NBS could prevent major disease-related events and allow an earlier treatment initiation. As a key prognostic factor, NBS is beneficial for improving the overall survival of infants with mut-type methylmalonic acidemia.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Metilmalonil-CoA Mutase , Triagem Neonatal , Vitamina B 12 , Humanos , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/patologia , Erros Inatos do Metabolismo dos Aminoácidos/sangue , Recém-Nascido , Metilmalonil-CoA Mutase/genética , China/epidemiologia , Masculino , Feminino , Vitamina B 12/sangue , Vitamina B 12/genética , Lactente , Estudos Retrospectivos , Mutação/genética , Prognóstico , Resultado do Tratamento , Pré-Escolar
4.
Mol Genet Metab ; 143(1-2): 108560, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39121792

RESUMO

Isolated methylmalonic acidemia/aciduria (MMA) due to MMUT enzyme deficiency is an ultra-rare pediatric disease with high morbidity and mortality, with no approved disease-altering therapies. Previous publications showed that systemic treatment with a codon-optimized mRNA encoding wild-type human MMUT (MMUT) is a promising strategy for treatment of MMA. We developed a second-generation drug product, mRNA-3705, comprised of an mRNA encoding the MMUT enzyme formulated in a lipid nanoparticle (LNP) with incorporation of enhancements over the previous clinical candidate mRNA-3704. Both drug products produced functional MMUT in rat livers when dosed IV, and showed long-term safety and efficacy in two mouse models of MMA. mRNA-3705 produced 2.1-3.4-fold higher levels of hepatic MMUT protein expression than the first-generation drug product mRNA-3704 when given at an identical dose level, which resulted in greater and more sustained reductions in plasma methylmalonic acid. The data presented herein provide comprehensive preclinical pharmacology to support the clinical development of mRNA-3705.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Modelos Animais de Doenças , RNA Mensageiro , Animais , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/terapia , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Humanos , Fígado/metabolismo , Fígado/patologia , Fígado/efeitos dos fármacos , Nanopartículas/química , Ácido Metilmalônico , Masculino , Metilmalonil-CoA Mutase/genética , Terapia Genética/métodos , Feminino
5.
Appl Microbiol Biotechnol ; 108(1): 465, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39283347

RESUMO

The demand for sustainably produced bulk chemicals is constantly rising. Succinate serves as a fundamental component in various food, chemical, and pharmaceutical products. Succinate can be produced from sustainable raw materials using microbial fermentation and enzyme-based technologies. Bacteroides and Phocaeicola species, widely distributed and prevalent gut commensals, possess enzyme sets for the metabolization of complex plant polysaccharides and synthesize succinate as a fermentative end product. This study employed novel molecular techniques to enhance succinate yields in the natural succinate producer Phocaeicola vulgatus by directing the metabolic carbon flow toward succinate formation. The deletion of the gene encoding the methylmalonyl-CoA mutase (Δmcm, bvu_0309-0310) resulted in a 95% increase in succinate production, as metabolization to propionate was effectively blocked. Furthermore, deletion of genes encoding the lactate dehydrogenase (Δldh, bvu_2499) and the pyruvate:formate lyase (Δpfl, bvu_2880) eliminated the formation of fermentative end products lactate and formate. By overproducing the transketolase (TKT, BVU_2318) in the triple deletion mutant, succinate production increased from 3.9 mmol/g dry weight in the wild type to 10.9 mmol/g dry weight. Overall, succinate yield increased by 180% in the new mutant strain P. vulgatus Δmcm Δldh Δpfl pG106_tkt relative to the parent strain. This approach is a proof of concept, verifying the genetic accessibility of P. vulgatus, and forms the basis for targeted genetic optimization. The increase of efficiency highlights the huge potential of P. vulgatus as a succinate producer with applications in sustainable bioproduction processes. KEY POINTS: • Deleting methylmalonyl-CoA mutase gene in P. vulgatus doubled succinate production • Triple deletion mutant with transketolase overexpression increased succinate yield by 180% • P. vulgatus shows high potential for sustainable bulk chemical production via genetic optimization.


Assuntos
Fermentação , Ácido Succínico , Ácido Succínico/metabolismo , Humanos , Engenharia Metabólica/métodos , Deleção de Genes , Metilmalonil-CoA Mutase/genética , Metilmalonil-CoA Mutase/metabolismo , Microbioma Gastrointestinal , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
6.
J Biol Chem ; 298(9): 102301, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35931118

RESUMO

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a persistent environmental contaminant that induces diverse biological and toxic effects, including reprogramming intermediate metabolism, mediated by the aryl hydrocarbon receptor. However, the specific reprogramming effects of TCDD are unclear. Here, we performed targeted LC-MS analysis of hepatic extracts from mice gavaged with TCDD. We detected an increase in S-(2-carboxyethyl)-L-cysteine, a conjugate from the spontaneous reaction between the cysteine sulfhydryl group and highly reactive acrylyl-CoA, an intermediate in the cobalamin (Cbl)-independent ß-oxidation-like metabolism of propionyl-CoA. TCDD repressed genes in both the canonical Cbl-dependent carboxylase and the alternate Cbl-independent ß-oxidation-like pathways as well as inhibited methylmalonyl-CoA mutase (MUT) at lower doses. Moreover, TCDD decreased serum Cbl levels and hepatic cobalt levels while eliciting negligible effects on gene expression associated with Cbl absorption, transport, trafficking, or derivatization to 5'-deoxy-adenosylcobalamin (AdoCbl), the required MUT cofactor. Additionally, TCDD induced the gene encoding aconitate decarboxylase 1 (Acod1), the enzyme responsible for decarboxylation of cis-aconitate to itaconate, and dose-dependently increased itaconate levels in hepatic extracts. Our results indicate MUT inhibition is consistent with itaconate activation to itaconyl-CoA, a MUT suicide inactivator that forms an adduct with adenosylcobalamin. This adduct in turn inhibits MUT activity and reduces Cbl levels. Collectively, these results suggest the decrease in MUT activity is due to Cbl depletion following TCDD treatment, which redirects propionyl-CoA metabolism to the alternate Cbl-independent ß-oxidation-like pathway. The resulting hepatic accumulation of acrylyl-CoA likely contributes to TCDD-elicited hepatotoxicity and the multihit progression of steatosis to steatohepatitis with fibrosis.


Assuntos
Acil Coenzima A , Poluentes Ambientais , Fígado Gorduroso , Fígado , Dibenzodioxinas Policloradas , Deficiência de Vitamina B 12 , Vitamina B 12 , Ácido Aconítico/metabolismo , Acil Coenzima A/metabolismo , Animais , Cobalto/metabolismo , Cisteína/metabolismo , Poluentes Ambientais/toxicidade , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/metabolismo , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Metilmalonil-CoA Mutase/genética , Metilmalonil-CoA Mutase/metabolismo , Camundongos , Dibenzodioxinas Policloradas/toxicidade , Receptores de Hidrocarboneto Arílico/metabolismo , Succinatos/metabolismo , Vitamina B 12/metabolismo , Deficiência de Vitamina B 12/induzido quimicamente , Deficiência de Vitamina B 12/complicações
7.
J Inherit Metab Dis ; 46(4): 554-572, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37243446

RESUMO

Methylmalonic Acidemia (MMA) is a heterogenous group of inborn errors of metabolism caused by a defect in the methylmalonyl-CoA mutase (MMUT) enzyme or the synthesis and transport of its cofactor, 5'-deoxy-adenosylcobalamin. It is characterized by life-threatening episodes of ketoacidosis, chronic kidney disease, and other multiorgan complications. Liver transplantation can improve patient stability and survival and thus provides clinical and biochemical benchmarks for the development of hepatocyte-targeted genomic therapies. Data are presented from a US natural history protocol that evaluated subjects with different types of MMA including mut-type (N = 91), cblB-type (15), and cblA-type MMA (17), as well as from an Italian cohort of mut-type (N = 19) and cblB-type MMA (N = 2) subjects, including data before and after organ transplantation in both cohorts. Canonical metabolic markers, such as serum methylmalonic acid and propionylcarnitine, are variable and affected by dietary intake and renal function. We have therefore explored the use of the 1-13 C-propionate oxidation breath test (POBT) to measure metabolic capacity and the changes in circulating proteins to assess mitochondrial dysfunction (fibroblast growth factor 21 [FGF21] and growth differentiation factor 15 [GDF15]) and kidney injury (lipocalin-2 [LCN2]). Biomarker concentrations are higher in patients with the severe mut0 -type and cblB-type MMA, correlate with a decreased POBT, and show a significant response postliver transplant. Additional circulating and imaging markers to assess disease burden are necessary to monitor disease progression. A combination of biomarkers reflecting disease severity and multisystem involvement will be needed to help stratify patients for clinical trials and assess the efficacy of new therapies for MMA.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Humanos , Mutação , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/terapia , Erros Inatos do Metabolismo dos Aminoácidos/complicações , Biomarcadores , Progressão da Doença , Ácido Metilmalônico , Metilmalonil-CoA Mutase/genética , Metilmalonil-CoA Mutase/metabolismo
8.
Hereditas ; 160(1): 25, 2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37248539

RESUMO

BACKGROUND: Methylmalonic acidemia (MMA) is a rare metabolic disorder resulting from functional defects in methylmalonyl-CoA mutase. Mutations in the MMAB gene are responsible for the cblB type of vitamin B12-responsive MMA. RESULTS: This study used Whole-exome sequencing (WES), Sanger sequencing, linkage analysis, and in-silico evaluation of the variants' effect on protein structure and function to confirm their pathogenicity in a 2-day-old neonate presenting an early-onset metabolic crisis and death. WES revealed a homozygous missense variant on chromosome 12, the NM_052845.4 (MMAB):c.557G > A, p.Arg186Gln, in exon 7, a highly conserved and hot spot region for pathogenic variants. After being confirmed by Sanger sequencing, the wild-type and mutant proteins' structure and function were modeled and examined using in-silico bioinformatics tools and compared to the variant NM_052845.4 (MMAB):c.556C > T, p.Arg186Trp, a known pathogenic variant at the same position. Comprehensive bioinformatics analysis showed a significant reduction in the stability of variants and changes in protein-protein and ligand-protein interactions. Interestingly, the variant c.557G > A, p.Arg186Gln depicted more variations in the secondary structure and less binding to the ATP and B12 ligands compared to the c.556C > T, p.Arg186Trp, the known pathogenic variant. CONCLUSION: This study succeeded in expanding the variant spectra of the MMAB, forasmuch as the variant c.557G > A, p.Arg186Gln is suggested as a pathogenic variant and the cause of severe MMA and neonatal death. These results benefit the prenatal diagnosis of MMA in the subsequent pregnancies and carrier screening of the family members. Furthermore, as an auxiliary technique, homology modeling and protein structure and function evaluations could provide geneticists with a more accurate interpretation of variants' pathogenicity.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Recém-Nascido , Humanos , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/patologia , Mutação , Metilmalonil-CoA Mutase/genética , Éxons
9.
Mol Genet Metab ; 137(1-2): 1-8, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35868241

RESUMO

Methylmalonic acidemia (MMA) is a rare and severe inherited metabolic disease typically caused by mutations of the methylmalonyl-CoA mutase (MMUT) gene. Despite medical management, patients with MMA experience frequent episodes of metabolic instability, severe morbidity, and early mortality. In several preclinical studies, systemic gene therapy has demonstrated impressive improvement in biochemical and clinical phenotypes of MMA murine models. One approach uses a promoterless adeno-associated viral (AAV) vector that relies upon homologous recombination to achieve site-specific in vivo gene addition of MMUT into the last coding exon of albumin (Alb), generating a fused Alb-MMUT transcript after successful editing. We have previously demonstrated that nuclease-free AAV mediated Alb editing could effectively treat MMA mice in the neonatal period and noted that hepatocytes had a growth advantage after correction. Here, we use a transgenic knock-out mouse model of MMA that recapitulates severe clinical and biochemical symptoms to assess the benefits of Alb editing in juvenile animals. As was first noted in the neonatal gene therapy studies, we observe that gene edited hepatocytes in the MMA mice treated as juveniles exhibit a growth advantage, which allows them to repopulate the liver slowly but dramatically by 8-10 months post treatment, and subsequently manifest a biochemical and enzymatic response. In conclusion, our results suggest that the benefit of AAV mediated nuclease-free gene editing of the Alb locus to treat MMA could potentially be therapeutic for older patients.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Metilmalonil-CoA Mutase , Camundongos , Animais , Metilmalonil-CoA Mutase/genética , Metilmalonil-CoA Mutase/metabolismo , Edição de Genes , Dependovirus/genética , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/terapia , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Camundongos Knockout , Fígado/metabolismo , Hepatócitos/metabolismo , Albuminas/genética , Albuminas/metabolismo , Ácido Metilmalônico/metabolismo
10.
Hepatology ; 73(6): 2223-2237, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32976669

RESUMO

BACKGROUND AND AIMS: Adeno-associated viral (AAV) gene therapy has shown great promise as an alternative treatment for metabolic disorders managed using liver transplantation, but remains limited by transgene loss and genotoxicity. Our study aims to test an AAV vector with a promoterless integrating cassette, designed to provide sustained hepatic transgene expression and reduced toxicity in comparison to canonical AAV therapy. APPROACH AND RESULTS: Our AAV vector was designed to insert a methylmalonyl-CoA mutase (MMUT) transgene into the 3' end of the albumin locus and tested in mouse models of methylmalonic acidemia (MMA). After neonatal delivery, we longitudinally evaluated hepatic transgene expression, plasma levels of methylmalonate, and the MMA biomarker, fibroblast growth factor 21 (Fgf21), as well as integration of MMUT in the albumin locus. At necropsy, we surveyed for AAV-related hepatocellular carcinoma (HCC) in all treated MMA mice and control littermates. AAV-mediated genome editing of MMUT into the albumin locus resulted in permanent hepatic correction in MMA mouse models, which was accompanied by decreased levels of methylmalonate and Fgf21, and improved survival without HCC. With time, levels of transgene expression increased and methylmalonate progressively decreased, whereas the number of albumin-MMUT integrations and corrected hepatocytes in MMA mice increased, but not in similarly treated wild-type animals. Additionally, expression of MMUT in the setting of MMA conferred a selective growth advantage upon edited cells, which potentiates the therapeutic response. CONCLUSIONS: In conclusion, our findings demonstrate that AAV-mediated, promoterless, nuclease-free genome editing at the albumin locus provides safe and durable therapeutic benefit in neonatally treated MMA mice.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/terapia , Dependovirus/genética , Edição de Genes/métodos , Terapia Genética/métodos , Metilmalonil-CoA Mutase/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Animais , Animais Recém-Nascidos , Biomarcadores/sangue , Carcinoma Hepatocelular/patologia , Modelos Animais de Doenças , Fatores de Crescimento de Fibroblastos/sangue , Hepatócitos , Neoplasias Hepáticas/patologia , Transplante de Fígado , Malonatos/sangue , Metilmalonil-CoA Mutase/genética , Camundongos , Camundongos Endogâmicos C57BL
11.
Genet Res (Camb) ; 2022: 5611697, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35919035

RESUMO

Methylmalonic acidemia (MMA) is an autosomal recessive metabolic disorder mainly caused by mutations in the methylmalonyl coenzyme A mutase (MCM) gene (MMUT) and leads to the reduced activity of MCM. In this study, a 3-year-old girl was diagnosed with carnitine deficiency secondary to methylmalonic acidemia by tandem mass spectrometry (MS/MS) and gas chromatography/mass spectrometry (GS/MS). Whole-exome sequencing (WES) was performed on the patient and identified two compound heterozygous mutations in MMUT: c.554C>T (p. S185F) and c.729-730insTT (p. D244Lfs ∗ 39). Bioinformatics analysis predicted that the rare missense mutation of c.554C>T would be damaging. Moreover, this rare mutation resulted in the reduced levels of MMUT mRNA and MMUT protein. Collectively, our findings provide a greater understanding of the effects of MMUT variants and will facilitate the diagnosis and treatment of patients with MMA.


Assuntos
Metilmalonil-CoA Mutase , Espectrometria de Massas em Tandem , Erros Inatos do Metabolismo dos Aminoácidos , Pré-Escolar , China , Feminino , Humanos , Metilmalonil-CoA Mutase/genética , Metilmalonil-CoA Mutase/metabolismo , Mutação
12.
Metab Brain Dis ; 37(5): 1317-1335, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35348993

RESUMO

Methylmalonic acidemia (MMA) due to methylmalonyl-CoA mutase deficiency (OMIM #251,000) is an autosomal recessive disorder of organic acid metabolism associated with life-threatening acute metabolic decompensations and significant neuropsychological deficits. "Isolated" MMA refers to the presence of excess methylmalonic acid without homocysteine elevation. Belonging to this class of disorders are those that involve complete deficiency (mut0) and partial deficiency (mut-) of the methylmalonyl-CoA mutase enzyme and other disorders causing excess methylmalonic acid excretion. These other disorders include enzymatic subtypes related to cobalamin A defect (cblA) (OMIM #25,110), cobalamin B defect (cblB) (OMIM #251,110) and related conditions. Neuropsychological attributes associated with isolated MMA have become more relevant as survival rates increased following improved diagnostic and treatment strategies. Children with this disorder still are at risk for developmental delay, cognitive difficulties and progressive declines in functioning. Mean IQ for all types apart from cblA defect enzymatic subtype is rarely above 85 and much lower for mut0 enzymatic subtype. Identifying psychological domains responsive to improvements in biochemical status is important. This review suggests that processing speed, working memory, language, attention, and quality of life may be sensitive to fluctuations in metabolite levels while IQ and motor skills may be less amenable to change. Due to slower developmental trajectories, Growth Scale Values, Projected Retained Ability Scores and other indices of change need to be incorporated into clinical trial study protocols. Neuropsychologists are uniquely qualified to provide a differentiated picture of cognitive, behavioral and emotional consequences of MMA and analyze benefits or shortcomings of novel treatments.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Metilmalonil-CoA Mutase , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/terapia , Criança , Humanos , Ácido Metilmalônico/metabolismo , Metilmalonil-CoA Mutase/genética , Mutação , Qualidade de Vida , Vitamina B 12
13.
Mol Genet Metab ; 133(1): 71-82, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33741272

RESUMO

Propionic Acidemia (PA) and Methylmalonic Acidemia (MMA) are inborn errors of metabolism affecting the catabolism of valine, isoleucine, methionine, threonine and odd-chain fatty acids. These are multi-organ disorders caused by the enzymatic deficiency of propionyl-CoA carboxylase (PCC) or methylmalonyl-CoA mutase (MUT), resulting in the accumulation of propionyl-coenzyme A (P-CoA) and methylmalonyl-CoA (M-CoA in MMA only). Primary metabolites of these CoA esters include 2-methylcitric acid (MCA), propionyl-carnitine (C3), and 3-hydroxypropionic acid, which are detectable in both PA and MMA, and methylmalonic acid, which is detectable in MMA patients only (Chapman et al., 2012). We deployed liver cell-based models that utilized PA and MMA patient-derived primary hepatocytes to validate a small molecule therapy for PA and MMA patients. The small molecule, HST5040, resulted in a dose-dependent reduction in the levels of P-CoA, M-CoA (in MMA) and the disease-relevant biomarkers C3, MCA, and methylmalonic acid (in MMA). A putative working model of how HST5040 reduces the P-CoA and its derived metabolites involves the conversion of HST5040 to HST5040-CoA driving the redistribution of free and conjugated CoA pools, resulting in the differential reduction of the aberrantly high P-CoA and M-CoA. The reduction of P-CoA and M-CoA, either by slowing production (due to increased demands on the free CoA (CoASH) pool) or enhancing clearance (to replenish the CoASH pool), results in a net decrease in the CoA-derived metabolites (C3, MCA and MMA (MMA only)). A Phase 2 study in PA and MMA patients will be initiated in the United States.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/tratamento farmacológico , Metilmalonil-CoA Descarboxilase/genética , Metilmalonil-CoA Mutase/genética , Acidemia Propiônica/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/farmacologia , Acil Coenzima A/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/patologia , Carnitina/metabolismo , Linhagem Celular , Citratos/metabolismo , Hepatócitos/efeitos dos fármacos , Humanos , Metilmalonil-CoA Mutase/deficiência , Acidemia Propiônica/genética , Acidemia Propiônica/patologia
14.
J Inherit Metab Dis ; 44(1): 193-214, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32754920

RESUMO

INTRODUCTION: Long-term outcome is postulated to be different in isolated methylmalonic aciduria caused by mutations in the MMAA gene (cblA type) compared with methylmalonyl-CoA mutase deficiency (mut), but case definition was previously difficult. METHOD: Cross-sectional analysis of data from the European Registry and Network for Intoxication type Metabolic Diseases (Chafea no. December 1, 2010). RESULTS: Data from 28 cblA and 95 mut patients in most cases confirmed by mutation analysis (including 4 new mutations for cblA and 19 new mutations for mut). Metabolic crisis is the predominant symptom leading to diagnosis in both groups. Biochemical disturbances during the first crisis were similar in both groups, as well as the age at diagnosis. Z scores of body height and body weight were similar in both groups at birth, but were significantly lower in the mut group at the time of last visit. Glomerular filtration rate was significantly higher in cblA; and as a consequence, chronic renal failure and related complications were significantly less frequent and renal function could be preserved even in older patients. Neurological complications were predominantly found in the mut subgroup. Methylmalonic acidemia (MMA) levels in urine and plasma were significantly lower in cblA. 27/28 cblA patients were reported to be responsive to cobalamin, only 86% of cblA patients were treated with i.m. hydroxocobalamin. In total, 73% of cblA and 98% of mut patients followed a calculated diet with amino acid supplements in 27% (cblA) and 69% (mut). During the study interval, six patients from the mut group died, while all cblA patients survived. CONCLUSION: Although similar at first, cblA patients respond to hydroxocobalamin treatment, subsequently show significantly lower levels of MMA and a milder course than mut patients.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo/genética , Metilmalonil-CoA Mutase/deficiência , Proteínas de Transporte da Membrana Mitocondrial/genética , Vitamina B 12/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/complicações , Erros Inatos do Metabolismo dos Aminoácidos/enzimologia , Erros Inatos do Metabolismo dos Aminoácidos/mortalidade , Criança , Estudos Transversais , Feminino , Taxa de Filtração Glomerular , Humanos , Falência Renal Crônica/etiologia , Masculino , Ácido Metilmalônico/sangue , Ácido Metilmalônico/urina , Metilmalonil-CoA Mutase/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Mutação
15.
BMC Pediatr ; 21(1): 578, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34915869

RESUMO

BACKGROUND: Isolated methylmalonic aciduria can be caused by pathogenic mutations in the gene for methylmalonyl-CoA mutase or in the genes encoding enzymes involved in the intracellular metabolism of cobalamin. Some of these mutations may be cobalamin responsive. The type of methylmalonic aciduria cannot always be assumed from clinical manifestation and the responsiveness to cobalamin has to be assessed for appropriate cobalamin administration, or to avoid unnecessary treatment. The cases presented herein highlight the importance of genetic testing in methylmalonic aciduria cases and the need for standardisation of the in vivo cobalamin-responsiveness assessment. CASE PRESENTATION: We describe two patients who presented in the first week of life with rapid neurological deterioration caused by metabolic acidosis with severe hyperammonaemia requiring extracorporeal elimination in addition to protein restriction, energy support, carnitine, and vitamin B12 treatment. The severity of the clinical symptoms and high methylmalonic acid concentrations in the urine (>30,000 µmol/mmol of creatinine) without hyperhomocysteinaemia in both of our patients suggested isolated methylmalonic aciduria. Based on the neonatal manifestation and the high methylmalonic acid urine levels, we assumed the cobalamin non-responsive form. The in vivo test of responsiveness to cobalamin was performed in both patients. Patient 1 was evaluated as non-responsive; thus, intensive treatment with vitamin B12 was not used. Patient 2 was responsive to cobalamin, but the dose was decreased to 1 mg i.m. every two weeks with daily oral treatment due to non-compliance. Genetic tests revealed bi-allelic mutations in the genes MMAB and MMAA in Patient 1 and 2, respectively. Based on these results, we were able to start intensive treatment with hydroxocobalamin in both patients. After the treatment intensification, there was no acute crisis requiring hospitalisation in Patient 1, and the urine methylmalonic acid levels further decreased in Patient 2. CONCLUSIONS: Despite carrying out the in vivo test of responsiveness to cobalamin in both patients, only the results of molecular genetic tests led us to the correct diagnosis and enabled intensive treatment with hydroxocobalamin. The combination of the standardized in vivo test of cobalamin responsiveness and genetic testing is needed for accurate diagnosis and appropriate treatment of isolated methylmalonic aciduria.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/tratamento farmacológico , Erros Inatos do Metabolismo dos Aminoácidos/genética , Testes Genéticos , Humanos , Recém-Nascido , Ácido Metilmalônico , Metilmalonil-CoA Mutase/genética , Vitamina B 12/uso terapêutico
16.
Turk J Med Sci ; 51(3): 1220-1228, 2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-33453710

RESUMO

Background/aim: Isolated methylmalonic acidemia (MMA) is caused by complete or partial deficiency of the enzyme methylmalonyl- CoA mutase (mut0 or mut­ enzymatic subtype), a defect of its cofactor adenosyl-cobalamin (cblA, cblB, or cblD-MMA), or deficiency of the enzyme methylmalonyl-CoA epimerase. While onset of the disease ranges from the neonatal period to adulthood, most cases present with lethargy, vomiting and ketoacidosis in the early infancy. Major secondary complications are; growth failure, developmental delay, interstitial nephritis with progressive renal failure, basal ganglia injury and cardiomyopathy. We aimed to demonstrate clinical and molecular findings based on long-term follow up in our patient cohort. Materials and methods: The study includes 37 Turkish patients with isolated MMA who were followed up for long term complications 1 to 14 years. All patients were followed up regularly with clinical, biochemical and dietary monitoring to determine long term complications. Next Generation Sequencing technique was used for mutation screening in five disease-causing genes including; MUT, MMAA, MMAB, MMADHC, MCEE genes. Mutation screening identified 30 different types of mutations. Results: While 28 of these mutations were previously reported, one novel MMAA mutation p.H382Pfs*24 (c.1145delA) and one novel MUT mutation IVS3+1G>T(c.752+1G>T) has been reported. The most common clinical complications were growth retardation, renal involvement, mental motor retardation and developmental delay. Furthermore, one of our patients developed cardiomyopathy, another one died because of hepatic failure and one presented with lactic acidosis after linezolid exposure. Conclusion: We have detected two novel mutations, including one splice-site mutation in the MUT gene and one frame shift mutation in the MMAA gene in 37 Turkish patients. We confirm the genotype-phenotype correlation in the study population according to the long-term complications.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Proteínas de Transporte da Membrana Mitocondrial , Adulto , Erros Inatos do Metabolismo dos Aminoácidos/genética , Humanos , Ácido Metilmalônico , Metilmalonil-CoA Mutase/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Mutação
17.
Georgian Med News ; (313): 118-124, 2021 Apr.
Artigo em Russo | MEDLINE | ID: mdl-34103442

RESUMO

The review summarizes the current literature data on the inherited metabolic disorder of branched-chain amino acids - methylmalonic aciduria, characterized by high mortality, acute onset and crisis course. The paper presents the molecular genetic characteristics of the known thirteen different genes (responsible for the synthesis of methylmalonyl-CoA mutase, methylmalonyl-CoA epimerase and vitamin B12 metabolism), mutations of which lead to the development of methylmalonic aciduria. The current knowledge about the potential role of organic acids and their derivatives in the development of metabolic decompensation, toxic damage to the nervous system and internal organs is presented. Early diagnosis by tandem mass spectrometry is extremely important, since timely treatment started (diet therapy, the use of hydroxycobalamin in the B12-dependent form) prevent an unfavorable outcome and allow a high degree of rehabilitation for children with this pathology. Moreover, the identification of the primary molecular genetic defect makes it possible to adjust the patient management tactics and to carry out further prenatal diagnosis of the pathology in subsequent pregnancies.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Ácido Metilmalônico , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/genética , Criança , Feminino , Humanos , Metilmalonil-CoA Mutase/genética , Mutação , Gravidez
18.
Genet Med ; 22(2): 432-436, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31462756

RESUMO

PURPOSE: Our laboratory has classified patients with methylmalonic aciduria using somatic cell studies for over four decades. We have accumulated 127 fibroblast lines from patients with persistent elevated methylmalonic acid (MMA) levels in which no genetic cause could be identified. Cultured fibroblasts from 26 of these patients had low [14C]propionate incorporation into macromolecules, possibly reflecting decreased methylmalonyl-CoA mutase function. METHODS: Genome sequencing (GS), copy-number variation (CNV) analysis, and RNA sequencing were performed on genomic DNA and complementary DNA (cDNA) from these 26 patients. RESULTS: No patient had two pathogenic variants in any gene associated with cobalamin metabolism. Nine patients had heterozygous variants of unknown significance previously identified by a next-generation sequencing (NGS) panel targeting cobalamin metabolic genes. Three patients had pathogenic changes in genes not associated with cobalamin metabolism (PCCA, EPCAM, and a 17q12 duplication) that explain parts of their phenotypes other than elevated MMA. CONCLUSION: Genome and RNA sequencing did not detect any additional putative causal genetic defects in known cobalamin genes following somatic cell studies and the use of a targeted NGS panel. They did detect pathogenic variants in other genes in three patients that explained some aspects of their clinical presentation.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/genética , Ácido Metilmalônico/metabolismo , Vitamina B 12/genética , Sequência de Bases/genética , Linhagem Celular , Feminino , Fibroblastos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Lactente , Recém-Nascido , Masculino , Metilmalonil-CoA Mutase/genética , Metilmalonil-CoA Mutase/metabolismo , Mutação/genética , Análise de Sequência de RNA/métodos , Vitamina B 12/metabolismo , Sequenciamento do Exoma/métodos
19.
BMC Med Genet ; 21(1): 22, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-32013889

RESUMO

BACKGROUND: Methylmalonic acidemia (MMA), which is an autosomal recessive metabolic disorder, is caused by mutations in methylmalonyl-CoA mutase (MUT) gene. As a result, the conversion of methylmalonyl-CoA to succinyl-CoA is impaired in this disorder, leading to a wide range of clinical manifestations varying from no signs or symptoms to severe lethargy and metabolic crisis in newborn infants. Since identification of novel mutations in MUT gene can help discover the exact pathogenesis of MMA and also use these disease-causing mutations in prenatal diagnosis, this study was conducted to uncover the possible mutations in an Iranian couple with a deceased offspring clinically diagnosed as having organic acidemia. Moreover, to prevent the occurrence of the mutation in the next pregnancy, we took the advantage of pre-implantation genetic diagnosis (PGD), which resulted in a successful pregnancy. CASE PRESENTATION: The affected individual was a 15-month-old boy who passed away due to aspiration pneumonia. The child presented at the age of 3 months with lethargy, protracted vomiting, hypotonia, and decreased level of consciousness. To find the mutated gene, Next Generation Sequencing (NGS) was performed as carrier testing for the parents and the results revealed a novel (private) heterozygous missense mutation in MUT gene (c.1055A > G, p.Q352R). After performing PGD on three blastomeres, one was identified as being homozygous wild-type that was followed by successful pregnancy. CONCLUSIONS: Our study identified a novel, deleterious, heterozygous missense mutation in MUT gene in a couple and helps to consider the genetic counselling and prenatal diagnosis more seriously for this family with clinical phenotypes of organic acidemia.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/genética , Metilmalonil-CoA Mutase/genética , Diagnóstico Pré-Implantação , Acil Coenzima A/genética , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/fisiopatologia , Criança , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Homozigoto , Humanos , Lactente , Recém-Nascido , Irã (Geográfico) , Masculino , Mutação de Sentido Incorreto/genética , Fenótipo , Gravidez
20.
Molecules ; 25(14)2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32709013

RESUMO

Adenyl cobamide (commonly known as pseudovitamin B12) is synthesized by intestinal bacteria or ingested from edible cyanobacteria. The effect of pseudovitamin B12 on the activities of cobalamin-dependent enzymes in mammalian cells has not been studied well. This study was conducted to investigate the effects of pseudovitamin B12 on the activities of the mammalian vitamin B12-dependent enzymes methionine synthase and methylmalonyl-CoA mutase in cultured mammalian COS-7 cells to determine whether pseudovitamin B12 functions as an inhibitor or a cofactor of these enzymes. Although the hydoroxo form of pseudovitamin B12 functions as a coenzyme for methionine synthase in cultured cells, pseudovitamin B12 does not activate the translation of methionine synthase, unlike the hydroxo form of vitamin B12 does. In the second enzymatic reaction, the adenosyl form of pseudovitamin B12 did not function as a coenzyme or an inhibitor of methylmalonyl-CoA mutase. Experiments on the cellular uptake were conducted with human transcobalamin II and suggested that treatment with a substantial amount of pseudovitamin B12 might inhibit transcobalamin II-mediated absorption of a physiological trace concentration of vitamin B12 present in the medium.


Assuntos
5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/genética , Metilmalonil-CoA Mutase/genética , Vitamina B 12/análogos & derivados , Vitamina B 12/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Células COS , Chlorocebus aethiops , Coenzimas/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Vitamina B 12/genética , Vitamina B 12/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA